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Subdifferential Regularity of Directionally
Lipschitzian Functions
M. Bounkhel and L. Thibault

Abstract. Formulas for the Clarke subdifferential are always expressed in the form of inclusion. The equality
form in these formulas generally requires the functions to be directionally regular. This paper studies the
directional regularity of the general class of extended-real-valued functions that are directionally Lipschitzian.
Connections with the concept of subdifferential regularity are also established.

1 Introduction

A general concept of subdifferential has been introduced by Clarke [1] for any extended-
real-valued function defined on a finite dimensional space X. He defined first the sub-
differential of a locally Lipschitzian function f at a point x̄ with the help of Rademacher’s
theorem (see also Clarke [2] for a subsequent approach using the generalized directional
derivative f 0(x̄; .) for f locally Lipschitzian over any Banach space X). This allowed him to
consider a subset S ⊂ X and for x̄ ∈ S the normal cone NC (S; x̄) to S at x̄ as the closed cone
generated by the subdifferential at x̄ of the distance function dS to S. Then he defined the
subdifferential of any extended-real-valued function f at a point x̄ where f is finite with
the formula

∂C f (x̄) =
{

x∗ ∈ X∗ : (x∗,−1) ∈ NC

(
epi f ;

(
x̄, f (x̄)

))}
(�)

where epi f denotes the epigraph of f , that is epi f := {(x, r) ∈ X × R : f (x) ≤ r}. Note
that this approach also works via [2] for any normed vector space X. An important fact
to record about this subdifferential is that it enjoys a general subdifferential calculus (for
compositions, sums . . . ) that makes it applicable in mathematical programming, optimal
control and several other mathematical fields. A prototype formula is given by

∂C ( f + g)(x̄) ⊂ ∂C f (x̄) + ∂C g(x̄)(��)

whenever f and g are locally Lipschitzian.
Rockafellar in [11] showed the route to extend the definition for functions defined over

any topological vector space X. He defined a generalized directional derivative f ↑(x̄; .) for
any extended-real-valued function f and showed that f ↑(x̄; .) coincides with f 0(x̄; .) when-
ever f is locally Lipschitzian. With this directional derivative he defined the subdifferential
of f at x̄ as the set of all x∗ ∈ X∗ such that 〈x∗, h〉 ≤ f ↑(x̄; h) for all h ∈ X and showed
that it is equal to the set given by (�) when X is a normed space. Rockafellar also extended
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26 M. Bounkhel and L. Thibault

formula (��) under a natural qualification condition to the case where g is directionally
Lipschitzian. Several crucial properties of directionally Lipschitzian functions are estab-
lished in [11], [12]. The notion of directional Lipschitzness and the various directional
derivatives will be recalled in Section 2.

The equality in (��) (as those for composition, maximum . . . ) requires in Clarke [1]
as well as in Rockafellar [12] the functions to be H-directionally regular at x̄ (i.e., f ↑(x̄; .)
coincides with the lower Hadamard directional derivative) and so makes clear the impor-
tance of this notion. See also Jofré and Thibault [6] for some representations of ∂C f (x̄) for
functions f that are directionally Lipschitzian and H-directionally regular at x̄.

Another natural dual concept of regularity in nonsmooth analysis is that of subdiffer-
ential regularity. This means that the Clarke subdifferential of f at x̄ coincides with a pre-
scribed subdifferential of f at x̄. For example, the primal lower nice functions introduced
by Poliquin [10] are regular in this sense with respect to the proximal subdifferential (we
refer to [10] and [7] for the importance of these functions in nonsmooth analysis). In this
paper we show how the Zagrodny mean value theorem allows to study connections be-
tween these concepts of regularity. Section 2 recalls some results in Rockafellar [11], [12]
and the Zagrodny mean value theorem [16] and Section 3 establishes some preparatory
lemmas. In Section 4 after proving the equivalence between the H-directional regularity of
f at x̄ and the subdifferential regularity with respect to the Hadamard subdifferential ∂H f
(when ∂C f (x̄) 
= ∅), we characterize the H-directional regularity in terms of closedness
of the Hadamard subdifferential. In Section 5 we prove a similar characterization of the
subdifferential regularity with respect to the Fréchet (resp. proximal) subdifferential.

2 Preliminaries

Let f be any extended-real-valued function on a real normed vector space X whose topo-
logical dual space is X∗ and let x̄ be any point where f is finite. The generalized directional
derivative f ↑(x̄; .) is defined (see Rockafellar [11]) by

f ↑(x̄; h) = lim sup
(x,α)↓ f x̄

t↓0

inf
h ′→h

t−1[ f (x + th ′)− α]

:= sup
H∈N(h)

[
lim sup
(x,α)↓ f x̄

t↓0

(
inf

h ′∈H
t−1[ f (x + th ′)− α]

)]
,

where (x, α) ↓ f x̄ means (x, α) ∈ epi f := {(z, β) ∈ X × R; f (z) ≤ β} and (x, α) −→(
x̄, f (x̄)

)
and N(h) denotes the filter of neighbourhoods of h.

If f is lower semicontinuous (l.s.c.) at x̄, the definition can be expressed in the following
simpler form

f ↑(x̄; h) = lim sup
x→ f x̄

t↓0

inf
h ′→h

t−1[ f (x + th ′)− f (x)],

where x→ f x̄ means x→ x̄ and f (x)→ f (x̄).
If f is Lipschitz around x̄, then f ↑(x̄; h) coincides with the Clarke directional derivative

f 0(x̄; .) defined by
f 0(x̄; h) = lim sup

x→x̄
t↓0

t−1[ f (x + th)− f (x)].
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Even if f is not necessarily Lipschitz around x̄ we will put

f 0(x̄; h) := lim sup
(x,α)↓ f x̄

t↓0

t−1[ f (x + th)− α].

The lower Hadamard directional derivative of f at x̄ is defined (see Penot [8]) by

f H(x̄; h) = lim inf
h ′→h

t↓0

t−1[ f (x̄ + th ′)− f (x̄)],

and when f is Lipschitz around x̄ the lower Hadamard directional derivative f H(x̄; h) co-
incides with the lower Dini directional derivative f−(x̄; .) defined by

f−(x̄; h) = lim inf
t↓0

t−1[ f (x̄ + th)− f (x̄)].

The function f is said to be directionally Lipschitzian at x̄ with respect to a vector h
(see [11]) if

lim sup
(x,α)↓ f x̄

(t,h ′)→(0+,h)

t−1[ f (x + th ′)− α] < +∞,

and this is reduced when f is l.s.c. at x̄ to

lim sup
(t,h ′)→(0+,h)

x→ f x̄

t−1[ f (x + th ′)− f (x)] < +∞.

If this relation holds for some h, one says that f is directionally Lipschitzian at x̄. Observe
that f is Lipschitz around x̄ if and only if it is directionally Lipschitzian at x̄ with respect to
the vector zero (or equivalently with respect to every vector in X).

We also recall that the Clarke (resp. the Hadamard, the Fréchet) subdifferential of f at x
(with f (x) finite) is defined by

∂C f (x) = {x∗ ∈ X∗ : 〈x∗, h〉 ≤ f ↑(x; h), for all h ∈ X},

(resp.

∂H f (x) = {x∗ ∈ X∗ : 〈x∗, h〉 ≤ f H(x; h), for all h ∈ X},

∂F f (x) = {x∗ ∈ X∗ : lim inf
x ′→x

f (x ′)− f (x)− 〈x∗, x ′ − x〉

‖x ′ − x‖
≥ 0}),

and that the proximal subdifferential ∂P f (x) is the set of all x∗ ∈ X∗ for which there exist
r, σ > 0 such that for all x ′ ∈ x + rB

〈x∗, x ′ − x〉 ≤ f (x ′)− f (x) + σ‖x ′ − x‖2.

By convention ∂C f (x) = ∂H f (x) = ∂F f (x) = ∂P f (x) = ∅ if f (x) is not finite. Note that
one always has ∂P f (x) ⊂ ∂F f (x) ⊂ ∂H f (x) ⊂ ∂C f (x).
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One says that f is H-directionally regular at x̄ with respect to a vector h ∈ X if one has
f ↑(x̄; h) = f H(x̄; h). When this holds for all h ∈ X one says that f is H-directionally regular
at x̄.

Now, let us recall some definitions and results that will be used in all the paper. A Banach
space X is called an Asplund space if every continuous convex function defined on a convex
open subset U of X is Fréchet differentiable on a dense Gδ subset of U (see [9]). Recall (see
J. Diestel [3]) that the dual united ball BX∗ is weak star sequentially compact, whenever the
space X is Asplund or admits an equivalent norm that is Gâteaux differentiable away from
the origin.

In the following definition we denote by dom f the effective domain of a function
f : X −→ R ∪ {+∞}, that is dom f := {x ∈ X : f (x) < +∞}.

Definition 2.1 Let f : X −→ R ∪ {+∞} be l.c.s. and x̄ ∈ dom f and let ∂ f be any
subdifferential or presubdifferential of f (in the sense of [14], [15]). We will say that ∂ f
is topologically closed at x̄ if, for every net (x j , x∗j ) j∈ J in ∂ f such that x∗j −→

w∗ x∗ and

x j −→ f x̄ one has (x̄, x∗) ∈ ∂ f , where −→w∗ denotes the w∗-convergence in X∗ and
(y, y∗) ∈ ∂ f means that y∗ ∈ ∂ f (y). When the set J is replaced by N, we say that ∂ f is
sequentially closed at x̄.

We will also say that the function f is subdifferentially ∂-regular at x̄ whenever ∂ f (x̄)
coincides with ∂C f (x̄).

We finish this section by recalling the following results (by Zagrodny [16] and Rockafel-
lar [11]). As it appears in [14], [15] the following Zagrodny mean value theorem holds for
any presubdifferential although the proof in [16] was given for the Clarke subdifferential.

Theorem 2.1 (see [16]) Let X be a Banach space, f : X −→ R∪{+∞} be l.s.c. on X and ∂ f
be any subdifferential or presubdifferential of f (in the sense of [14], [15]). Let a, b ∈ dom f
(with a 
= b). Then there exist xn −→ f c ∈ [a, b[ := {rb + (1 − r)a : r ∈ [0, 1[} and
x∗n ∈ ∂ f (xn) such that

f (b)− f (a) ≤ lim
n
〈x∗n , b− a〉,

and
‖b− c‖

‖b− a‖
[ f (b)− f (a)] ≤ lim

n
〈x∗n , b− xn〉.

Proposition 2.1 (see [11]) Let f be any extended-real-valued function on X and x̄ be any
point where f is finite. If f is directionally Lipschitzian at x̄, then

(i) for every h ∈ int dom f ↑(x̄; .)

f ↑(x̄; h) = f 0(x̄; h) = lim sup
(x,α)↓ f x̄

(t,h ′)→(0+,h)

t−1[ f (x + th ′)− α];

(ii) int dom f ↑(x̄, .) is the set of all vectors h with respect to which f is directionally Lip-
schitzian and f ↑(x̄, .) is continuous over int dom f ↑(x̄, .);

(iii) f ↑(x̄; h) = lim infh ′→h f 0(x̄; h ′) for every h ∈ X.
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3 General Results

Throughout this section we assume that X is a Banach space, f : X −→ R∪ {+∞} is lower
semicontinuous on X, x̄ ∈ dom f and ∂ f is a subdifferential or presubdifferential of f (in
the sense of [14], [15]) that satisfies ∂ f ⊂ ∂C f . Recall that ∂F f (resp. ∂H f , ∂P f ) is a
presubdifferential whenever X is an Asplund space (resp. a Banach space with a Gâteaux
differentiable (away from the origin) renorm, a Hilbert space). The following two lemmas
will be needed in the next section.

Lemma 3.1 If f is directionally Lipschitzian at x̄ with respect to h̄ ∈ X, then there exists
β ∈ R such that for every sequence (xn, x∗n )n∈N in ∂ f , with xn −→ f x̄, there are n0 ∈ N and
a neigbourhood H of h̄ such that for all n ≥ n0 one has

〈x∗n , h〉 ≤ β for all h ∈ H.

Proof As f is directionally Lipschitzian at x̄ with respect to h̄, there exist β ∈ R, δ > 0
such that

t−1[ f (x + th)− f (x)] ≤ β, for all t ∈ ]0, δ[ , h ∈ h̄ + δB, x ∈ U ( f , x̄, δ),(1)

where U ( f , x̄, δ) := {x ∈ X : x ∈ x̄ + δB and | f (x)− f (x̄)| ≤ δ} and B denotes the closed
united ball of X. Let (xn, x∗n )n∈N in ∂ f , with xn −→ f x̄. Then there exist n0 ∈ N such that
xn ∈ U ( f , x̄, δ), for all n ≥ n0. Fix any h0 ∈ h̄ + δ

2 B and any n ≥ n0. Then (by (1))

t−1[ f (x + th)− f (x)] ≤ β, for all t ∈ ]0, δ[ , h ∈ h0 +
δ

2
B, x ∈ U

(
f , xn,

δ

2

)
,

which ensures that

f ↑(xn, h0) ≤ β, for all n ≥ n0 and all h0 ∈ h̄ +
δ

2
B.

Thus, as x∗n ∈ ∂ f (xn) ⊂ ∂C f (xn), one has

〈x∗n , h〉 ≤ f ↑(xn, h) ≤ β, for all n ≥ n0 and all h ∈ h̄ +
δ

2
B,

which completes the proof.

Lemma 3.2 If f is directionally Lipschitzian at x̄ and ∂C f (x̄) 
= ∅, then for each h ∈
int dom f ↑(x̄, .) there exist a sequence un −→ f x̄ and a bounded sequence (u∗n )n∈N in X∗

such that

(i) u∗n ∈ ∂ f (un) for all n ∈ N;
(ii) f ↑(x̄, h) ≤ lim supn〈u

∗
n , h〉.
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Proof Let h̄ ∈ int dom f ↑(x̄, .). As ∂C f (x̄) 
= ∅, one has (see [11])

f ↑(x̄; h̄) := sup{〈x∗, h̄〉; x∗ ∈ ∂C f (x̄)} > −∞,(2)

and by (i) in Proposition 2.1 one also has

f ↑(x̄; h̄) = lim sup
x→ f x̄

t↓0

t−1[ f (x + th̄)− f (x)].

Let us consider sequences xn −→ f x̄ and tn −→ 0+ such that

f ↑(x̄; h̄) = lim
n

t−1
n [ f (xn + tnh̄)− f (xn)].(3)

For each n ∈ N, we put an := xn and bn := xn + tnh̄. Note that, for n large enough, f (xn)
is finite and that f (bn) is also finite because f is directionally Lipschitzian at x̄ with respect
to h̄. Then (by Theorem 2.1), there exist a sequence ck,n −→ cn ∈ [an, bn[ and a sequence
(x∗k,n)k∈N in X∗ such that x∗k,n ∈ ∂ f (ck,n) for all k ∈ N and

t−1
n [ f (xn + tnh̄)− f (xn)] ≤ lim

k→+∞
〈x∗k,n, h̄〉.(4)

Thus for each n ∈ N, there exists s(n) ∈ N such that

lim
k
〈x∗k,n, h̄〉 ≤ 〈x

∗
s(n),n, h̄〉 +

1

n + 1
,(5)

and

‖cs(n),n − cn‖ ≤
1

n + 1
.

Put u∗n := x∗s(n),n and un := cs(n),n. Then u∗n ∈ ∂ f (un) for each n ∈ N, which ensures (i).

As f is directionally Lipschitzian at x̄ with respect to h̄ (see (ii) in Proposition 2.1), then
by Lemma 3.1 above, there exist β ∈ R and n0 ∈ N such that for all h around h̄ and all
n ≥ n0

〈u∗n , h〉 ≤ β.

By (2), there exist n1 ∈ N and σ ∈ R such that for all n ≥ n1

σ ≤ t−1
n [ f (un + tnh̄)− f (un)] ≤ 〈u∗n , h̄〉 +

1

n + 1
, (by (4) and (5))

and hence σ − 1
n1+1 ≤ 〈u

∗
n , h̄〉 for all n ≥ n1. Put N := max{n0, n1} and σ1 := σ − 1

n1+1 .

Choose δ > 0 such that 〈u∗n , h〉 ≤ β for all h ∈ h̄ + δB and all n ≥ N . Then, for all n ≥ N
and all b ∈ B, one has

〈u∗n , b〉 ≤
1

δ
[〈u∗n , h̄ + δb〉 − 〈u∗n , h̄〉]

≤
1

δ
[β − σ1].

So for all n ≥ N ,

‖u∗n‖ ≤ M :=
β − σ1

δ
,

which ensures that the sequence (u∗n )n∈N is bounded. Furthermore, (ii) is ensured by (3),
(4) and (5), and hence the proof is finished.
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4 H-Regularity.

In this section we are going to prove (under some general assumptions) that the H-direc-
tional regularity is equivalent to the closedness of the Hadamard subdifferential. We begin
by showing that the H-directional regularity of f at x̄ coincides with the H-subdifferential
regularity of f at x̄ whenever the Clarke subdifferential of f at x̄ is nonempty.

Proposition 4.1 Let X be a real normed vector space, f : X −→ R ∪ {+∞} be l.s.c. and
x̄ ∈ dom f with ∂C f (x̄) 
= ∅. Then the following assertions are equivalent

(i) f is H-directionally regular at x̄;
(ii) f is subdifferentially ∂H-regular at x̄.

Proof The implication (i)⇒(ii) is obvious. So, we will prove the reverse implication
(ii)⇒(i). Fix any h ∈ X. Suppose that ∂H f (x̄) = ∂C f (x̄). As the inequality f H(x̄; h) ≤
f ↑(x̄; h) always holds, one has

f ↑(x̄; h) = sup{〈x∗, h〉 : x∗ ∈ ∂C f (x̄)}

= sup{〈x∗, h〉 : x∗ ∈ ∂H f (x̄)}

≤ f H(x̄; h)

≤ f ↑(x̄; h).

This ensures that f is H-directionally regular at x̄ and proves the reverse implication.

As a direct application of this proposition one obtains that the primal lower nice func-
tions introduced by Poliquin [10] (see [10] and [7] for the importance of these functions)
are H-directionally regular at all points of the domains of the subdifferentials. Indeed it is
shown in [7], [10] that all subdifferentials coincide for these functions.

Consider now the following lemma which has its own interest. It will allow us to prove
the next propositions 4.2 and 4.3.

Lemma 4.1 Let X be a real normed vector space, f : X −→ R ∪ {+∞} be l.s.c. and x̄ ∈
dom f . Suppose that f is directionally Lipschitzian at x̄. Then, for all h ∈ int dom f ↑(x̄; .)
one has

lim sup
x→ f x̄

f ↑(x; h) ≤ f ↑(x̄; h).

Proof Fix any h ∈ int dom f ↑(x̄; .). As f is directionally Lipschitzian at x̄, one has (by (i)
in Proposition 2.1)

f ↑(x̄; h) = lim sup
x→ f x̄

t↓0

t−1[ f (x + th)− f (x)],

and there exists δ > 0 such that f is directionally Lipschitzian at each x ∈ U ( f , x̄, δ). Let
γ > f ↑(x̄; h). By definition of upper limit, there exists 0 < δ ′ < δ such that

t−1[ f (x + th)− f (x)] < γ,
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for all x ∈ U ( f , x̄, δ ′) and all t ∈
]
0, δ ′
[
. Fix any x0 ∈ U ( f , x̄, δ

′

2 ). Then we have

t−1[ f (x + th)− f (x)] < γ,

for all x ∈ U ( f , x0,
δ ′

2 ) and all t ∈
]
0, δ ′
[
, and hence as f is directionally Lipschitzian at

each point x ∈ U ( f , x̄, δ ′) one has

f ↑(x0; h) = lim sup
x→ f x0

t↓0

t−1[ f (x + th)− f (x)] ≤ γ.

Thus, since this inequality holds for all x0 ∈ U ( f , x̄, δ
′

2 ) and all γ > f ↑(x̄; h), then taking
upper limits as x0 −→ f x̄ gives

lim sup
x0→ f x̄

f ↑(x0; h) ≤ f ↑(x̄; h),

which completes the proof.

Proposition 4.2 Let X be a real normed vector space, f : X −→ R ∪ {+∞} be l.s.c. and
x̄ ∈ dom f . If f is directionally Lipschitzian at x̄, then ∂C f is topologically closed at x̄.

Proof This follows immediately from Lemma 4.1 and the equality

∂C f (x̄) = {x∗ : 〈x∗, h〉 ≤ f ↑(x̄; h) for all h ∈ int dom f ↑(x̄; .)},

because f is directionally Lipschitzian at x̄.

Proposition 4.3 Let X be a Banach space, f : X −→ R ∪ {+∞} be l.s.c. and x̄ ∈ dom f .
Suppose that f is directionally Lipschitzian at x̄. Then the following assertions are equivalent

(i) f is H-directionally regular at x̄ with respect to any vector h ∈ int dom f ↑(x̄; .);
(ii) lim supx→ f x̄ f H(x; h) ≤ f H(x̄; h), for all h ∈ int dom f ↑(x̄; .).

Proof The implication (i)⇒(ii) is immediate from Lemma 4.1 and the inequality
f H(x; h) ≤ f ↑(x; h). Let us prove the reverse implication. Assume (ii) and fix any h̄ ∈
int dom f ↑(x̄; .). As we always have (see [4], [5])

f ↑(x̄; h̄) ≤ sup
ε>0

(
lim sup

x→ f x̄

(
inf

h∈h̄+εB
f H(x; h)

))
,

then

f ↑(x̄; h̄) ≤ lim sup
x→ f x̄

f H(x; h̄)

≤ f H(x̄; h̄) (by (ii))

≤ f ↑(x̄; h̄).

This ensures the H-directional regularity of f at x̄ with respect to h̄ and hence the proof is
complete.

Now, we are ready to prove the first of our main theorems.
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Theorem 4.1 Assume that X is a Banach space admitting an equivalent norm that is Gâteaux
differentiable away from the origin. Let f : X −→ R ∪ {+∞} be l.s.c. on X and directionally
Lipschitzian at x̄ ∈ dom f with ∂C f (x̄) 
= ∅. Then the following assertions are equivalent

(i) f is H-directionally regular at x̄;
(ii) ∂H f is topologically closed at x̄ and dom f ↑(x̄; .) = dom f H(x̄; .);
(iii) ∂H f is sequentially closed at x̄ and dom f ↑(x̄; .) = dom f H(x̄; .).

Proof Let us prove first the implication “(i)⇒(ii)”. The assumption (i) evidently implies
dom f ↑(x̄; .) = dom f H(x̄; .) and ∂H f (x̄) = ∂C f (x̄). So Proposition 4.2 ensures that ∂H f
is topologically closed at x̄ and this finishes the proof of the first implication. Since the
implication “(ii)⇒(iii)” is obvious, it remains to show the third one “(iii)⇒(i)”. Fix any
vector h̄ ∈ int dom f ↑(x̄; .). We apply Lemma 3.2 with the Hadamard subdifferential ∂H f
and we obtain a sequence xn −→ f x̄ and a bounded sequence (x∗n )n∈N in X∗ such that

(a) x∗n ∈ ∂
H f (xn) for all n ∈ N;

(b) f ↑(x̄; h̄) ≤ lim supn→+∞〈x
∗
n , h̄〉.

As the space X admits an equivalent norm that is Gâteaux differentiable away from the
origin, the closed united ball of X∗ is w∗-sequentially compact and hence we may suppose
that the sequence (x∗n )n∈N converges with respect to the weak star topology to some x∗ ∈
X∗. Therefore, by the sequential closedness of ∂H f we have x∗ ∈ ∂H f (x̄), and hence by (b)
and Proposition 2.1

f 0(x̄; h̄) = f ↑(x̄; h̄) ≤ 〈x∗, h̄〉.(6)

Note that the analysis above ensures that ∂H f (x̄) 
= ∅. Fix now h̄ ∈ dom f ↑(x̄; .), consider
the lower semicontinuous convex function ϕ defined by

ϕ(h) := sup{〈x∗, h〉 : x∗ ∈ ∂H f (x̄)},

and note that

ϕ(h) ≤ f H(x̄; h) ≤ f ↑(x̄; h) for all h ∈ X.(7)

Fix v ∈ int dom f ↑(x̄; .) and put ht := h̄ + t(v − h̄) for t ∈ [0, 1]. By (7) we have ht ∈
dom ϕ for all t ∈ [0, 1] and hence the function t �→ ϕ(ht ) is continuous on [0, 1] (see
Theorem 10.2 in [13]). Moreover for each t ∈ ]0, 1] we have ht ∈ int dom f ↑(x̄; .) and (6)
ensures that there exists x∗t ∈ ∂

H f (x̄) with

f 0(x̄; ht ) = f ↑(x̄; ht ) ≤ 〈x
∗
t , ht〉 ≤ ϕ(ht ).

Therefore by Proposition 2.1

f ↑(x̄; h̄) = lim inf
h→h̄

f 0(x̄; h)

≤ lim inf
t→0+

f 0(x̄; ht )

≤ lim
t→0+
ϕ(ht )

= ϕ(h̄)

≤ f H(x̄; h̄).
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So f ↑(x̄; h̄) = f H(x̄; h̄) for all h̄ ∈ dom f ↑(x̄; .). As dom f ↑(x̄; .) = dom f H(x̄; .) by as-
sumption, we get f ↑(x̄; h̄) = f H(x̄; h̄) for all h̄ ∈ X and the proof is complete.

We close this section with the following result, which gives the equivalence between
the various notions of H-regularity given above and also the closedness of the Hadamard
subdifferential, when the function is assumed be locally Lipschitzian. Its proof follows
directly from Propositions 4.1 and 4.3 and Theorem 4.1.

Corollary 4.1 Assume that X is a Banach space admitting an equivalent norm that is
Gâteaux differentiable away from the origin. Let f : X −→ R ∪ {+∞} be a locally Lips-
chitzian function around x̄ ∈ dom f . Then the following assertions are equivalent

(i) f H(.; h) is upper semicontinuous at x̄ for all h ∈ X;
(ii) f is H-directionally regular at x̄;
(iii) f is subdifferentially ∂H-regular at x̄;
(iv) ∂H f is topologically closed at x̄;
(v) ∂H f is sequentially closed at x̄.

Remark 4.1 Note that Theorem 4.1 and its Corollary 4.1 still holds for any Banach space
X for which ∂H is a presubdifferential.

5 Fréchet and Proximal Regularity

As in the section above and Theorem 4.1, we use the general results established in Section 3,
to prove the equivalence between the topological closedness of the Fréchet subdifferential
(resp. proximal subdifferential) and the Fréchet (resp. proximal) subdifferential regularity
of f whenever it is directionally Lipschitzian.

Theorem 5.1 Let X be an Asplund space, f : X −→ R∪{+∞} be l.s.c. on X with x̄ ∈ dom f
and let s(x̄; .) be the support function of ∂F f (x̄), that is

s(x̄; h) := sup{〈y∗, h〉; y∗ ∈ ∂F f (x̄)}.

Suppose that f is directionally Lipschitzian at x̄. Then f is subdifferentially ∂F-regular at x̄ if
and only if ∂F f is topologically closed at x̄ and dom f ↑(x̄; .) = dom s(x̄; .).

Proof The implication “⇒” follows from Proposition 4.2. So we will prove the reverse
implication “⇐”. Fix any h̄ ∈ int dom f ↑(x̄; .). As in the proof of Theorem 4.1 we apply
Lemma 3.2 to obtain an element x∗ ∈ ∂F f (x̄) that satisfies f ↑(x̄; h̄) ≤ 〈x∗, h̄〉, and hence
∂F f (x̄) 
= ∅. Thus for each h̄ ∈ int dom f ↑(x̄; .) there exists x∗ ∈ ∂F f (x̄) such that

f ↑(x̄; h̄) ≤ 〈x∗, h̄〉 ≤ s(x̄; h̄) = sup{〈y∗, h̄〉; y∗ ∈ ∂F f (x̄)}.(8)

Put D := dom f ↑(x̄; .). It is obvious that the function s(x̄; .) is convex and lower semicon-
tinuous. Fix v ∈ int D and h ∈ D and put ht := h + t(v − h) for each t ∈ [0, 1]. Observe
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that ht ∈ int D for each t ∈ ]0, 1] and that the function t �→ s(x̄; ht ) is continuous on [0, 1]
(see Theorem 10.2 in [13]). So, we have (see (iii) in Proposition 2.1)

f ↑(x̄; h) = lim inf
h ′→h

f 0(x̄; h ′)

≤ lim inf
t→0+

f 0(x̄; ht )

≤ lim
t→0+

s(x̄; ht ) (by (8))

= s(x̄; h).

Therefore f ↑(x̄; h) ≤ s(x̄; h) for all h ∈ dom f ↑(x̄; .). As dom f ↑(x̄; .) = dom s(x̄; .),
the inequality above holds for each h ∈ X, which ensures that the support function of
∂C f (x̄) is not greater than the support function of ∂F f (x̄). Since ∂F f (x̄) is weak-star closed
(because of the topological closedness of ∂F f at x̄) we get that ∂C f (x̄) ⊂ ∂F f (x̄) and hence
∂C f (x̄) = ∂F f (x̄) (the reverse inclusion being always true). So the proof is complete.

We conclude the paper with the theorem below, which concerns the proximal regularity
when X is assumed to be a Hilbert space. We omit the proof since it follows the arguments
in Theorem 5.1.

Theorem 5.2 Let X be a Hilbert space, f : X −→ R ∪ {+∞} be l.s.c. on X with x̄ ∈ dom f
and let s(x̄; .) be the support function of ∂P f (x̄). Suppose that f is directionally Lipschitzian
at x̄. Then f is subdifferentially ∂P-regular at x̄ if and only if ∂P f is topologically closed at x̄
and dom f ↑(x̄; .) = dom s(x̄; .).
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