ON ANTI-COMMUTATIVE ALGEBRAS WITH
AN INVARIANT FORM

ARTHUR A. SAGLE

1. Introduction. In this paper we consider anti-commutative algebras
with an invariant form, that is, an algebra A over a field F such that

(1) xy = —yx for all x,y in 4
and 4 possesses a symmetric bilinear form f(x, y) such that
(2) fley, 2) = f(x, y3) for all x, v,z in A.

Lie and Malcev algebras (2, 3) are examples of such algebras and we shall
consider generalizations of these algebras obtained by introducing commuta-
tion, x oy = xy — yx, as a new multiplicative operation in the non-com-
mutative Jordan algebras of (1). Thus if ¥ is such a Jordan algebra we form
the anti-commutative algebra 9~ which is the same vector space [ but with
commutation x oy as multiplication. If € is the centre of 2~, that is, € is
the set of elements x in %~ such that x oy = 0 for all y € 9U~, then we con-
sider A° = Y~/C and use this algebra to construct more simple Jordan and
anti-commutative algebras. Finally these results are used to prove the fol-
lowing theorem.

THEOREM. If A is a finite-dimensional anti-commutative algebra with an in-
variant form f(x,y) over a field F of characteristic not 2, then there exists a
non-commutative Jordan algebra B with identity element 1 such that B—/1F is
isomorphic to A. Furthermore if f(x,7v) is non-degenerate and the mapping
x — R, where R, is right multiplication by x, is injective, then B is simple.

2. Basic properties. We shall assume that all algebras discussed are
finite dimensional and for any algebra 4 we let
(x, 9,28 =xy-2— x:y3 for any «x,v,3 € 4.

The Jordan algebras of (1) are constructed as follows. Let 4 be an anti-
commutative algebra with an invariant form f(«, 8) and let % (4, f, s, ¢) denote

< >
B b

where o, 8 € 4 and @, b € F. For these matrices define equality, addition,
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and multiplication by elements in F in the obvious manner. Next define
multiplication of two such matrices by

(a a><c 7>_<ac + f(a, 6) a7+da—l—t66>
B b/\6 d/  \cB+ b+ say bd+f(B,v) /'

where f(a, ) denotes the invariant form on 4 and s,¢ € F. Thus
A=AM4,f s t)

becomes an algebra with the following properties (1): (i) U is a flexible quad-
ratic algebra with identity element 1, that is, for all x,y € %, (x,vy,x) =0
and x2 — (¢ + b)x + [ab — f(e, B)]1 = 0 for all

¢ a
x=<ﬁ b)E%I.

Thus (x2, y,x) = 0 and so ¥ is a non-commutative Jordan algebra. (ii) ¥ is
simple if and only if f(«, 8) is non-degenerate on A4, where f(«, 8) being non-
degenerate on 4 means that f(o, 8) = 0 for all 3 € 4 implies a = 0.
Next introduce commutation x oy as a new multiplication in ¥ and form
the anti-commutative algebra %~ which is the same vector space as ¥, but if

_(a « e v -
x_<6 b>’ y‘(a d)eg[’

we now have the multiplication in U~ given by

3) xoy= ( fla 8) — (v, 8) @ = a+ (@— by + 2tﬁa>
PN = a)s + (c — d)B + 2sey 7, 8) — fla, ) :

Now the identity matrix 1 is such that for every x € %~, 1 ox = 0 and it
is easy to see from (3) that scalar multiples of 1 are the only such elements.
Thus 1F is the centre € of A~ and we form the quotient algebra 9° = 9~/C.
If F is of characteristic not 2, then every & = x -+ € of 9° has the form

S R G A P

_ Xo o
<,3 —-x0> +¢

for xo = (@ — 3)/2 € F. Identify x with Z in 9° and note that the multiplica-
tion in A° is now given by

@) xoy= ( F@,8) = (1, B)  —2yox + 2wy + zma>
Y= \—2w08 + 2908 + 250y f(, 8) — fl@, ) /)
where y = <§’° ';0> and x = <3;o ;)
- —Xo.
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are now in A°. We assume for the remainder of the paper that the characteristic
of F is not 2.

Next we construct a basis for A° and the corresponding multiplication
table. Let {ey, ..., e} be a basis of 4 over F and set

10 {0 e, , (0 0
®) E—<0 —1)’ bi“(o o>’ Ei_(ei 0)’

2 =1,...,n Clearly these elements form a basis for A° and we have the
following relations:

EoE; = 2E, EoE; = —2E/,

A
_ 0 0 ' r _ 0 € e,>
6) E,0F, = 2s<ei . 0)’ E/oE; = 215(0 V),

Ei o) Ej’ = f(ei, ej)E.
We now prove the following theorem.
THEOREM 1. A° is simple if and only if f(a, B) is non-degenerate on A.

Proof. Assume that f(a, 8) is non-degenerate on 4 and 9B is a non-zero ideal
containing the non-zero element b = bE + Y b,E; + > b/E,. Then, using
(6),

Eob

Zbi.EOEi+ Zbi,EOEi,
2 b0,E;—23Xb/E/ €9,

I

and, therefore,
Eo(Eob) =43 b,E,+43 b/E/ € 9.

Thus 40 — Eo (Eobd) = 4bE € B and if b0, E € B, and from (6),
B = A°. We shall now show that B always contains an element with the
coefficient of E not equal to zero. Suppose b = Y b,E, + > b/E/ € B and
assume some b # 0. Let E; be as in (5); then from (6)

boE, = (b fles e,))E + Zi%b/(g eioef>
is in B. Now there exists an E;’ such that >, b, f(e;, e;) ¥ 0. Otherwise we
would have, for all j = 1,...,n,

0=2:biflese) = f(Xibiese;) = f(v,ey).

Since v = > ;b,e; # 0, this equation implies that f(a, 8) is degenerate, a
contradiction.

Conversely suppose A° is simple and let N = {a € 4 :f(a, 8) = 0 for all
B € A}. Since f(a, 8) is an invariant form, N is an ideal of 4 and if we set

T
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and use (4) we see that 8 is an ideal of A°. But E ¢ B and since A° is simple,
we must have ¥ = 0, and therefore N = 0, which means that f(e, 8) is non-
degenerate in A.

If f(e, B) is a non-degenerate invariant form so that a dual basis {e;, . . . , €.}
can be chosen for 4 satisfying f(e;, ;) = 8;; (Kronecker delta), then we obtain
a rather natural multiplication table for A°. First since f(es e;) = 64y
E;oE,/ = §;;E. To find the remaining relations we shall determine a multi-
plication table for 4 relative to {ey, ..., e,}. Let e;e;, = 3 a (3, j, k)ex, where
a(s,j, k) € F, then

f(eiejr ek) = Z a(ivj’ m)f(@m, ek) = d(?:,j, k)

This formula implies that a(4,j, k) is a skew-symmetric function for
1,7,k =1,...,n Conversely, if 4 is an n-dimensional vector space with
basis {es,...,e,} and a(3, j, k) is a skew-symmetric function for 7,7,k =1,...,n,
then e; e; = Yy a(i, ], k)ey, makes 4 into an anti-commutative algebra when
this multiplication is extended to all of A. Furthermore, if a = Y a;e;
B = bsey and fla,B) = D% 1a;b; then f(a, B) is a non-degenerate in-
variant form. For it clearly suffices to show that f(e;e;, ex) = f(es, €;€) and
we have
f(ei €js ek) = Z a(irjr m)f(emr ek) = a’(irj: k) = a’(jr kv 1) = f(ei, € ekv)'

m

Thus the multiplication table of A, and therefore A° is completely deter-
mined by the invariant form f(e, 8) or equivalently the corresponding skew-
symmetric function a(4, j, k).

3. Invariant forms for 2°. Since A° is constructed from an anti-com-
mutative algebra with an invariant form, it is natural to ask if ° has an
invariant form. We shall show that if f(a, 8) = trace R,Rs is an invariant
form for A4, then F(x,y) = trace R,° R, is an invariant form for °, where
R,® is defined by 2R,% = zo0x.

First we note that if g(x,y) is a symmetric bilinear form for any anti-
commutative algebra A, then g(x,y) is an invariant form if and only if
g(x,xy) =0 for all x,y € A. For if g(x,y) is invariant, then g(x, xy) =
g(x%, 9) = 0 and for the converse linearize the identity g(x, xy) = 0.

Next we determine a matrix for R,% on 9(°. Let 4 have the basis {ey, . . ., e,}

and let
_ Xo 64 0
v = <ﬁ ‘*xo> €U ’

where o = Zaieiy B =2 bie; and e a = Zil’kieiy e B = Zigkiei for
k=1,...,n Then from (4) and (5),

ER = <_°2B 20“> —2S @ E—23 b,E/
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M(x) =
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flen B)  —2x0 ei>

2567; o

—f(es, B)

= fles, B)E — 2x0E; + 25 D, p4; Ef,

—flena) 2te; 5)
2x0e;  fley, @)

= *f(ei, a)E + 2t quij E]' + 2000 Ei,'

Thus R,° has the matrix

0

flew, B)
_f(e_lv Ol)

—f(em Ol)

0
f(e.ly B)

flen, B)
—f(e.lr a)

—_f(em O()

241 - - -2a,

fley, B) —2x0 0---0

0 0---—2x
2t911: t ‘2tq1n

thnl. . .2tqnn

2{]%3

25?11' v '25P1n

25Pn1 * * * 2SPun
2x0 0: -0

0 0--02x

—2b, ---—2b,

25Ky

2.’)60[

where I is the #n X # identity matrix and R. denotes the matrix for right
multiplication by = in 4 relative to the basis {e1, ..., e} of 4. Now if

-

Yo Y > € 2[0’
) —%Yo

where v = Y ce; and 6 = Y dqe;, then R, has the matrix

0
fes, 0)

M(y) = flen, 8)

—fley, v)

v_~f(enr 'V)

%12, —2di---—2d,

—2_’)’0[

2R,
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Next R,® R,® has as its matrix the product

a1

M)M(y) = [ A )
* Ass
where
an = 2(f(e, 8) + (8, 7)),
Ase = 2[f(es, Bcs] + 4xqyel + 4stR.Rs,
Ass = 2[f(€i, a)d/] + 4960}'0[ + 4StRBR7,

where [f(es, B)c;] and [f(e;, @)d;] are n X n matrices with the (7, j)-element
as indicated. Therefore

F(x,y) = trace R, R,°
=2(f(e, 8) + (f(B, 7)) + 2 Z:f(es, Bcs + 4nxoyo + 4st traceR.R,
+ 23 fles @)d; + 4dnxoye + 4st trace RsR,
= 4[f(e, 8) + f(B, v) + st trace(RaRs + RsRy) + 2nx0Yo].

Now assume that the invariant form f(e, 8) is given by f(a, 8) = u trace R, R,
where p is some element in F; then

) F(x,y) = 4[(u =+ st) trace(ReRs + RsR,) + 2nxyo].
If u satisfies u + st — nu = 0, we shall show that for all x,y € °,
F(x,x0y) =0,

and therefore F(x,y) is an invariant form on A° If R(w) also denotes R,
using (4) and (7) we have

(8) F(x,x 0y) = 4[(u + st) trace R,R(—2x¢0 + 2yo8 + 2sa7)
+ (u + st) trace RgR(—2yo0x 4+ 2x0y + 2£86)
+ 2nx0(u trace R,Rs — u trace R,Rg)]
= 4[(—2x¢(u + st) 4+ 2nux,) trace R R;
+ 2yo(p + st) — 2yo(u + s2)) trace R.Rg
+ 25(u + st) trace RoRay + 2t(u + st) trace RgRgs
+ (2xo(u + st) — 2mux,) trace R,Rp)
=0

also using u + st — nu = 0 and that f(a, B) = u trace R,Rs is invariant.

Next suppose the anti-commutative algebra .1 has an invariant form
g(a, B) = X trace R,Rs, N\ # 0, where X\ need not satisfy A + st — n\ = 0;
then the bilinear form

fla, B) = p/Ng(a, B) = ptrace R.Rg

is also an invariant form for 4 which is non-degenerate if and only if g(e, 8)
is non-degenerate. So from the start of the construction we can assume that
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if f(a, B) = utrace R,Rg, then u + st — nu = 0, and call such a bilinear form
normalized. This proves part of the following theorem.

THEOREM 2. If f(a, B) = u trace R Rg 1s a normalized invariant form on A,
then F(x,y) = trace R,° R,* 1s an invariant form on A°. Conversely if
F(x,y) = trace R,° R,° is an invariant form on A° and f(a, B) = u trace R,Rps
(not mecessarily normalized) satisfies (u + st)(s + t) # 0, then f(a, 8) is an
invariant form on A. Furthermore, when u + st # 0, F(x, y) s non-degenerate
if and only if f(a, B) is non-degenerate.

Proof. First we show that trace RyRas = 0 for all o, 8 € A and therefore
f(a, B) is an invariant form. Since F(x, v) is assumed invariant, F(x,x oy) = 0
and from (8) with xo = 0, « = 8, and v = § we obtain

(u 4 st)(s + ¢) trace RyRey = 0,

which implies that f(e, 8) is an invariant form. Next let

_ (Yo Y 0
y—<5 —3’0> €l

_ X0 [0 0
= <ﬁ ——x0> €¥ ’
0 = F(x,y) = 4[(u + st) trace (ReRs + RgR,) + 2nxeys].

Choose %o = 0, 8 = 0; then f(a,6) =0 for all « € 4 and since f(«, 8) is
assumed non-degenerate, 6 = 0. Similarly, xo = 0 implies that v = 0 and we
finally have 0 = 8nxgyo and with xo = 1, yp = 0, so that ¥ = 0 and therefore
F(x, v) is non-degenerate on °. Conversely, suppose F(x, v) is non-degenerate
on A° and assume that for some & € A, f(a, §) = utrace RyR; = 0 for all

a € 4. Let
—_— 0 6 O-
y“<a 0> €

then for all other x € A° F(x,vy) = 0 and therefore y = 0, which implies
that f(e, 8) is non-degenerate.

be such that for all

Theorem 2 can be used to obtain a family of simple non-commutative Jordan
algebras and a corresponding family of simple anti-commutative algebras based
on a given anti-commutative algebra A4: From the algebra 4 construct
A, = A, f, s, t), where f(a, B) = u trace R,Rpis a normalized non-degenerate
invariant form for A. From 9, form ;° and construct Ay = A(A,°, F1, s, t1),
where Fi(x,y) = u;trace R," R,° is a normalized non-degenerate invariant
form on ;°. From ¥, form A, construct Az = A (A, Iy, 59, t2) and continue
this process. Now if / is the three-dimensional Lie algebra with the outer
product as multiplication, f(«, 8) the ordinary inner product (which equals
—1/2 trace RoRg) and s =1, ¢t = —1, then A = A4, f, 1, —1) is the split
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Cayley-Dickson algebra and ° the corresponding Malcev algebra. Thus
starting with the above Lie algebra as the base algebra A with s; and #;
arbitrary, we obtain a family of non-commutative Jordan algebras {%(;} which
are natural generalizations of the Cayley-Dickson algebra (4), and the corre-

sponding family of anti-commutative algebras {;,°} are generalizations of
the seven-dimensional Malcev algebra.

4. Proof of the theorem in the introduction. Let 4 be an anti-
commutative algebra over a field F of characteristic not 2 with an invariant

form f(e, 8). Construct A = A(4, f, 1/2,1/2) and let
J(a o). 1
%_l<¢x a).a €A4,a EF((,

then B is a subalgebra of I with multiplication

<ab + f(a, B) aﬁ+ba+%aﬁ>
aB + ba + a8 ab 4+ f(e, B) ’

(e «a _b{3>
x_<a a>’ y—<6 p) €3

Note that 8 = 1F @ B as a vector space sum and form $~ and 8~-/1F; then
B~—/1F is isomorphic to 4. For let

x=<a a>=<0 a>+a1€%;
a a a 0

az=<° a>+1Fe%‘/1F
@ 0

9) xy =

A

where

then

and the mapping & — a can easily be shown to be an isomorphism of $—/1F
onto 4 by noting that it is linear and

(0 « >
Tog = <a 8 0 + 1F.
Next suppose f(a, 8) is non-degenerate and the mapping o — R, is injective.
Suppose & is an ideal of B containing the element

a o
o a

—a «
y=<a _a>653,

then for

we see from (9) that
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|l ) = a’ 0 > N
= < 0 flaa)—a/ O
Thus if there exists an x € § with f(a, @) # a?, then the identity 1 € § and
therefore 3 = B. So now assume that every x € & has the property f(a, a) = a2

For any
_(® ﬁ)

X _ (ab + fle, B) a6+ba>
2(xy+yx)~< WB+ba  ab+flap)

Therefore, using the assumption for &, we have (ab + f(a, B))2 = f(aB + ba,
aB + ba) and obtain

fle, B)? = a*f (8, B) for all g € A.
A linearization of this identity yields

(10) fla, B)f (e, v) = a*f(8,v)  for all B,y € 4.

Thus if x is a non-zero element of & and ¢ =0 we have from (10),
flo, B)f (e, v) = O for every 8,y € A. Since x 0 and a = 0, @ # 0, therefore
there exists 8 € 4 with f(e, B) # 0 and from this f(a, v) = 0 for all v € 4.
This implies @ = 0, a contradiction; so we assume that x € & is such that
a # 0.

Next suppose that § € 4 is such that f(«, §) = 0; then since a # 0, we
see from (10) that f(B,8) = 0 for all 8 € A and therefore § = 0. However,
for any v € 4, 6 = ay is such that f(e, 8) = f(e,@y) = 0 and therefore
0 = ya = yR, for every v € A. This implies that R, = 0 and since a — R,

is injective, a = 0. Thus
a O
x = <0 > €3
with ¢ # 0and so & = 8.
Finally we note that if 4 is any anti-commutative algebra, the bilinear
form f(a, 8) = 0 for every «, 8 € A is an invariant form on A. Thus the
first part of the proof shows that any anti-commutative algebra A4 is iso-

morphic to 8~/1F, where 8 = 1F ® $ is the non-commutative Jordan algebra
constructed above.
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