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STRUCTURAL PROPERTIES OF A NEW CLASS OF 
CM-LATTICES 

JOHNNY A. JOHNSON AND GERALD R. SHERETTE 

1. Introduction. In this paper we introduce and study a class of 
multiplicative lattices called ^-lattices. A g-lattice is a principally 
generated multiplicative lattice in which each principal element is 
compact. One of our main objectives is to characterize principal elements 
in these lattices (We note that Noether lattices and r-lattices are ^-lattices 
[1, Theorem 2.1] and so our results apply to these two types of lattices). 
Among other things we determine necessary and sufficient conditions for 
globalizing local results in ^-lattices. We then apply localization to 
establish some properties of principal elements in general ^-lattices. 
Conditions equivalent to an element being principal are known for several 
different classes of multiplicative lattices. For example, Bogart [2] showed 
that if the lattice is modular, weak principal is equivalent to principal; 
Johnson and Lediaev pointed out that for Noether lattices, meet principal 

is equivalent to principal [5]; and, in an r-lattice, an element is principal if 
and only if it is compact and weak meet principal [6]. Notice that 
modularity is required for each of the instances above. In this paper, we 
obtain results similar to those cited above for our class of ^-lattices, the 
members of which are not required to be modular. 

We begin by showing in Section 2 that for ^-lattices, in the local setting, 
the concepts of principal, weak meet principal and completely join 
irreducible are all equivalent (Theorem 2.5). In Section 3 a method for 
localization of ^-lattices at prime elements is discussed. In Section 4, a 
globalization theorem (Theorem 4.1) is proved and used to obtain some 
conditions equivalent to an element being principal in a general ^-lattice 
(Theorem 4.2). Finally in Section 5 we give an example of a ^-lattice that is 
not an r-lattice. 

2. Preliminaries. In this section we introduce our terminology and 
formally state a few observations that are required later. The main result 
of this section (Theorem 2.5) gives, for the local case anyway, several 
conditions equivalent to an element being principal in a ^-lattice. 

By a multiplicative lattice, L, we shall mean a complete lattice on which 
there is defined a commutative, associative, infinitely join distributive 
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multiplication such that the greatest element, 7, of L is an identity for 
multiplication. An element E of L is called 

1) weak meet principal if (A:E)E = A A E for all A in L 

2) weak join principal if (AE):E = A V (0:£) for all A in L 

3) meet principal if (A A (B:E) )E = (yl£) A 5 for all A, B in L 

4) join principal if (.4 V (BE) ):E = (A:E) V B for all ^ , B in L. 

If £" satisfies both 1) and 2), E is said to be weak principal; E is principal if 
it satisfies both 3) and 4). An element M ¥- I is said to be maximal if 7 is a 
cover for M. An element B of a complete lattice L is called completely join 
irreducible if whenever 

[Aa\a G A} ç L and B = V { / l > G A}, 

then 7? = v4a for some a G A (where A is an arbitrary indexing set). Also 
if the indexing set is clear, we shall write {Aa} for {Aa\a G A} and VAa for 
\l{Aa\a G A}. For terminology and notation not covered here, the reader 
is referred to [3] and [4]. 

We begin our discussion by noting a fact that will be very useful later, 
namely, in a g-lattice the product of compact elements is again compact. 
This can be shown easily using the distributivity of multiplication and the 
following characterization of compact elements. 

LEMMA 2.1. Let A be a member of the q-lattice L. Then A is compact if 
and only if A is the join of a finite set of principal elements. 

Notice that the greatest element of a multiplicative lattice is always 
principal and since, in a ^-lattice, principal elements are compact, any 
^-lattice has its greatest element compact. This observation will allow us to 
make use of the following lemma. 

LEMMA 2.2. Let h be a multiplicative lattice with compact greatest 
element, 7, and suppose A G L is not equal to L Then there exists a maximal 
element M of h such that A = M. 

Proof This follows easily from Zorn's Lemma. 

For the same setting as in Lemma 2.2, D. D. Anderson proved a result 
which we restate here for future reference ( [1], Theorem 1.3). 

LEMMA 2.3. Let h be a multiplicative lattice with compact greatest 
element, 7, and let A G L be weak principal. If A = V{Aa\a G A} for some 
arbitrary A, then there exists a finite set of indices {a,, . . . , an) Q A such 
that 

A=AaV...V Aa. 
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Since a ^-lattice is principally generated, applying Lemma 2.3 shows 
that any weak principal element of a g-lattice can be expressed as a finite 
join of principal elements. By Lemma 2.1 such an element is compact. 
Thus we have proved the following result. 

LEMMA 2.4. Let h be a q-lattice and A e L be weak principal. Then A is 
compact. 

We conclude this section with a result about g-lattices in the local case 
but first let us make clear what is meant here by the phrase "the local 
case". A complete lattice L with greatest element / is said to be totally 
quasi-local if L has a unique maximal element M and M has the property 
that, for all A e L, A j= I implies A â M. 

THEOREM 2.5. Let h be a totally quasi-local q-lattice. For each A e L, the 
jollowing are equivalent: 

1) A is principal 
T) A is meet principal 
3) A is weak principal 
4) A is weak meet principal 
5) A is completely join irreducible. 

Proof. Clearly 1 => 2 =̂> 4, and 1 =̂> 3 => 4. Also, since L is principally 
generated, 5 => 1. Thus to complete the proof we need only show 
4 ^ 5 . 

Suppose A is weak meet principal and 

A = V{Aa\a G A} 

for some {Aa\a G A} Q L. If A = 0, A is trivially join irreducible, so 
assume A > 0. For each a G A, 

(Aa.A)A = A AAa = Aa. 

Since A > 0 and L is principally generated, we can find B ^ 0 such that B 
is principal and B ^ A. Then 

B = A A B = (B:A)A 

= (B:A)Çs/Aa) 

= (B:A)(V((Aa.A)A)) 

= (B:A)(A(V(Aa.A))) 

= ((B:A)A)(V(Aa:A)) 

= B(V(Aa:A)). 

Hence 

/ = B:B = (B(V(A„:A)):B 

https://doi.org/10.4153/CJM-1986-027-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1986-027-0


CM-LATTICES m 

= ( 0 : 5 ) V ( V ( ^ ) ) . 

Since L is totally quasi-local, the above join can equal / only if some 
term is equal to /. But 0:5 ^ / since 5 ^ 0 , thus Aa :A = I for some 
Aa

 G {Aa}- Hence A ^ Aa, so A = Aa . Thus A is completely 
join-irreducible and we have 4 >̂ 5. 

3. Localization of ^-lattices. Here we shall show, by elaborating upon a 
method introduced by P. McCarthy [7], that, given a prime element of a 
^-lattice L, we can construct a totally quasi-local ^-lattice whose structure 
is related in a useful way to that of L. This localization approach differs 
from that of Dilworth [3] for Noether lattices and Anderson [1] for 
r-lattices, both of which produce lattices consisting of equivalence classes, 
in that the elements of our localization lattice are in fact also members of 
L. Actually it can be proved that for the case in which each method 
mentioned above is applicable (localization of a Noether lattice at a 
prime) the lattices obtained are all isomorphic. A nice way of showing this 
is through the use of closure operations. To do so in this paper would 
entail the introduction of a great deal of unnecessary machinery, but the 
interested reader may refer to [8]. 

The construction of our localization lattice begins with a mapping 
which can be defined in a very general setting. Suppose P is a prime of a 
multiplicative lattice L. Let 

M(P) = {X e L\X is principal and X ^ P}. 

(Notice Nl(P) ^ 0 since the greatest element of L is always a member. 
Also since the product of principal elements is principal, it follows easily 
that Ni(P) is closed under finite products.) For A e L, let 

N(P, A) = {Y e L|AT ^ A for some X e M(P) }. 

Define \pP:L —» L by 

xPP(A) = VN(P9A) for each A <= L. 

We shall need the following properties of \pP. 

LEMMA 3.1. Let P be a prime of the multiplicative lattice L. For all 
A, B e L 

1) A^*P(A) 

2) A ^ B implies ^P(A) ^ ^P(B) 

3) if A is principal then A ^f P implies ^P(A) = I 

4) if A is compact then A ^ ^P{B) implies A e N(P, B). 

Proof. Properties 1 through 3 are straightforward and we omit their 
proofs. To show 4, assume A is compact. Then 
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A g 4>P(B) = VN(P, B) 

implies we can find a finite set {Y,,. . . , Yn} Q N(P, B) such that 

A â Y, V . . . V Y„. 

For each indice /, Y, G N(P, B) implies there exists Xt e M(P) such that 
XlYl ^ 5. Then the product of the Xh call it X, belongs to M(F) and 

AX g (Y, V . . . V Y,,)* = YXX V . . . V Y„X 

^ Y , A - , V . . . V Y A ^ ^ 

For the more specialized setting where L is a ^-lattice, the following 
properties of \pp are useful. 

LEMMA 3.2. Let P be a prime of the q-lattice L. Then for all A, B e L and 

all arbitrary subsets {Aa\a £ A} C L, 

\)A ^P^^p(A) = I 

2)rl>PWP{A)) = MA) 
3 ) W A W ^ ) ) - WP(Aa) 
4)tpWP(Aa)) = tP(VA(X) 
5) AtP(B) ^ MAB) 
6)MAWP(B) ^^P(AB) 
i)MAB) = MMAWP(B)) 
8) A = ^P{A) implies xpP(A:B) = A:B 
9) B is compact implies \pP(A):B ^ \pP(A:B) 

10) B is compact implies \pP(A:B) = \pP(A):\pP(B). 

For the remainder of this section L will denote a ^-lattice and P will be a 
fixed prime of L. 

Let 

LP = {X e L\X = xPP(X) }. 

Clearly hP together with the ordering inherited from L is a poset but we 
can easily see that it is actually a complete lattice. To show this, it is 
sufficient to show every subset of hp has a greatest lower bound in LP; so 
let [Aa\a e A} be an arbitrary subset of LP. Then 

AAa = A*P(Aa) = ^P(A^P(Aa)) = xPP(AAa) 

where the first and third equalities hold since each Aa belongs to hP while 
the second is just part 3 of Lemma 3.2. Thus AAa e hP and obviously 
AAa is the greatest lower bound of {Aa} in LP. It is important to note 
that, in general, hp does not form a sublattice of L even though the 
preceding shows the meet operation is the same for both lattices. The 
problem is that, even if {Aa} Q hP, \/Aa does not necessarily belong to hP. 
However, \pP(VAa) does belong to hP and is easily seen to be the least 
upper bound of {Aa} in L^. Hence, for {Aa} Q LP, we define 
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VpAa = tP0/Aa) 

and to be consistent in notation, let 

APAa = AAa. 

Furthermore, for all A, B e LP, set 

APB = 4>P(AB). 

LEMMA 3.3. (LP; AP, VP, -p) is a multiplicative lattice. 

Proof. We first note that -p is obviously commutative; that /, the largest 
element of L, belongs to LF; and 7 = ipp(I) serves as the multiplicative 
identity. For A. B, C e LP, 

(A-PByPC = ^pdp(AB)C) 

= ^pWp(ABWp(C) ) 

= ^p((AB)C) 

= MMBC)) 

= tpWP(AWp(BC)) 

= ^p(A^p(BC) ) 

= Ap(BPC). 

Hence it only remains to be shown that -p is V^-distributive. Let {Aa} Q 
Lp and A e LP. Then 

A-pO/pAJ = tP(A(VpAa)) 

= ^p{A(\/Aa)) 

= tP(V(AAa) ) 

= ^pWP(AAa) ) 

= ^p(\/(A-pAa)) 

= Vp(A-pAa) 

which completes the proof. 

If \P denotes residuation in (LP; AP, \/P, -p) then we have the following 
result. 

LEMMA 3.4. For all A, B e LP,A:PB = A:B. 

Proof. Since A e LP, A = \pP(A). Hence by part 8 of Lemma 3.2, 

xPP(A:B) = A:B 
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so at least A.B e L P . Notice 

(A:B)PB = ^P((A:B)B) S i//p(^) = A. 

Hence ,4 :£ ^ ^ f l . 
Also, in L we have 

(A:PB)B = (A:PBWP(B) 

^+P((A:PB)B) 

= (A:PB)PB 

^ A. 

Thus A:PB ^ A:B. 

We can summarize many of the results about \pP shown above by saying 
\pP is a multiplicative lattice homomorphism from L onto LP that preserves 
residuation by compact elements of L; that is for all A, B e LP 

1) ^ V B ) = tP(A)VPtP(B) 

2) tP(A AB) = ^P(A)AP^P(B) 

3) +P(AB) = +p(AyP*P(B) 

4) i? is compact in L implies \pP(A\B) = \pP(A):P\pP(B). 

Using these properties, the proof of the following lemma is straight­
forward. 

LEMMA 3.5. Let B be a compact element of hP. Then 
1) B is weak meet principal in L implies *pP(B) is weak meet principal in 

LP. 
2) B is weak join principal in L implies ^P(B) is weak join principal in 

LP. 
3) B is meet principal in L implies \pP(B) is meet principal in hP. 
4) B is join principal in L implies ^P{B) is join principal in hP. 

Since, as we saw in Lemma 2.5, weak principal elements of L are 
compact, the following is an immediate consequence. 

COROLLARY 3.6. Let B e L. Then 
1) B is weak principal in L implies ^P{B) is weak principal in LP. 
2) B is principal in L implies \pP(B) is principal in LP. 

LEMMA 3.7. Let A be a compact element of L. Then \pP(A ) is compact in 
L ; , 

Proof. Suppose ypP(A) = V/W4a for some {Aa} Q LP. Then 

A ë +P(A )^VPAa = tP(\/Aa). 

https://doi.org/10.4153/CJM-1986-027-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1986-027-0


CM-LATTICES 559 

So by property 4 of Lemma 3.1, there exists X e M(P) such that 
XA ^ \JAa. But XA is a product of compact elements and hence itself 
compact. Thus we can find a finite subset 

{Blt...,B„}ç{Aa} 

such that 

XA ^ Bx V . . . \JBn. 

Let Y be principal in L such that Y ^ ^/>(^). Again using 4 of Lemma 
3.1, there exists Z e M(P) such that Z 7 ^ A, hence ZX G M(P) and 

ZXY ^ XA ^ B^V . . . MBn. 

Thus Y <= N(P, 5j V . . . V£„), so 

Y S *M^i V . . . Vfi„) = S, VP . . . VpBn. 

Since L is principally generated, 

tP(A) S fi, VP...VPBn. 

We can now conclude that LP is the localization lattice promised at the 
beginning of this section. 

THEOREM 3.8. (Lp; AP, VP, • P) is a totally quasi-local q-lattice with 
maximal element ^P{P) = P. 

Proof. It follows easily from Corollary 3.7 that LP is principally 
generated. 

Let £ be a principal element of hp. Since L is principally generated, 
there exists {Aa} Q L such that each Aa is principal in L and E = VAa. 
Since L is a g-lattice, each Aa is compact in L. Then 

E = tP(E) = i>PQJAa) = VP^P(Aa). 

By Lemma 3.7, each \pP(Aa) is compact in LP; and notice that by the same 
lemma, / = \pP(I) is also compact in LP, so we can apply Lemma 2.2 to 
obtain 

E = ^{Bx)VP...VP(Bn) 

where each B{ e {Aa}. Thus E is the join of a finite number of compact 
elements of Lp and hence E is compact in hP. Therefore hP is a 
^-lattice. 

Suppose 7 is a principal element of L such that Y â \pP(P). Then there 
exists X <= M(P) such that AT g P. But X e M(P) implies X ^ P and so 
since P is prime, we must have Y ^ P. It follows that 

MO = ̂  = >wn 
If /l e L P is such that A dp \pP(P), then 
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A = +p(A) £ xPp(P) = P. 

Hence, by property 1 of Lemma 3.2, 

A =^P(A) = /, 

which shows that Lp is totally quasi-local. 

4. Globalization and applications. In this section we show that identities 
which hold in every localization of a ^-lattice must also hold in the original 
lattice. In fact, in multiplicative lattices, as can easily be shown, maximal 
elements are always prime and Theorem 4.1 demonstrates that in order to 
establish an identity in a ^-lattice L, it is sufficient to show the identity 
holds in each localization of L at a maximal element. We conclude the 
section by applying Theorem 4.1 to obtain some conditions equivalent to 
an element being principal in a general ^-lattice. 

THEOREM 4.1. Let A, B be members of the q-lattice L. Then A = B if and 

only if^M(A) = \pM(B)for every maximal element M of L. 

Proof Suppose \pM(A) = $M(B) for every maximal element M of L and 
A ^ B. Without loss of generality, we may assume A ^ B. Since L is 
principally generated, there exists a principal element E of L such that 
E ^ A but E ^f B which, in turn implies B:E ¥=. L Hence by Lemma 2.1, 
there is a maximal element M e L such that B:E ^ M < 7, so that 

*M(B:E) * ^ ( 7 ) . 

Also since E ^ A, A:E = L Thus 

iM(A:E) = * w ( / ) . 

However, since E is compact, 

*PM(B:E) = ^M(B)^M(E) = ^M{A)^M(E) = ^M(A:E) 

which contradicts \pM(B:E) ^ \pM(I), so A = B. 
The reverse implication is trival. 

THEOREM 4.2. Let h be a q-lattice and A e L. Then the following are 
equivalent. 

1) A is principal 
2) A is weak principal 
3) A is compact and A is meet principal 
4) A is compact and A is weak meet principal 
5) A is compact and *pM(A ) is weak meet principal in hM J or every 

maximal element of M of L 
6) A is compact and i^M{A ) is meet principal in hM for every maximal 

element M of h 
7) A is compact and i^M(A ) is weak principal in hM for every maximal 

element M of h 
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8) A is compact and $M(A) is completely join irreducible in LMfor every 
maximal element M of L 

9) A is compact and ^M(A ) is principal in Lfor every maximal element M 
ofh. 

Proof. Clearly 1 => 2 and 1 => 3 => 4. Using Lemma 2.1 we see that 
2 => 4. Also 4 => 5 by Corollary 3.6, and 5 through 9 are equivalent by 
Lemma 2.5. Finally, Theorem 4.1 and the four properties immediately 
preceeding Lemma 3.5 allow us to conclude that 9 =̂> 1. 

5. Example. We conclude this paper with an example of a g-lattice 
which is not modular, and hence neither a Noether lattice nor an r-lattice. 
Consider the lattice L below together with the trivial multiplication 
(XI = X for all X G L; XY = 0 for all X, Y e L different from / ) : 

D ç 

The reader may easily verify that all elements of L are join principal and 
that the elements I, A, B, C, 0 are meet principal. Since L is finite, all 
elements are compact and clearly L is generated by {/, A, B, C, 0}. Thus L 
is a totally quasi-local ^-lattice which is not modular. 
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