
A THEOREM ON RINGS 
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In a recent paper, Kaplansky [2] proved the following theorem: Let R be a 
ring with centre Z, and such that xn(x) Ç Z for every x £ R. lî R, in addition, is 
semi-simple then it is also commutative. 

The existence of non-commutative rings in which every element is nilpotent 
rules out the possibility of extending this result to all rings. One might hope, 
however, that if R is such that xn{x) Ç Z for all x Ç R and the nilpotent elements 
of R are reasonably "well-behaved," then Kaplansky's theorem should be true 
without the restriction of semi-simplicity. 

This is in fact what we obtain in this paper. More precisely, we prove the 
following two theorems : 

THEOREM. Let R be a ring with centre Z such that xn(x) Ç Z for all x Ç R. 
Then R is not commutative only if every element in the commutator ideal of R is 
nilpotent. 

THEOREM. Let R be a ring with centre Z such that xn{x) Ç Z for all x £ R. 
Then if R possesses no non-zero nil-ideals it is commutative. 

Since every nil-ideal of a ring is in the radical of that ring, these results 
contain that of Kaplansky which we have cited. Any restriction on a ring which 
will forbid the commutator ideal from being a nil-ideal, in the presence of xn{x) Ç Z, 
will force commutativity on the ring in question. 

Henceforth every ring R which we consider will have centre Z and the 
property that xn{x) is in Z for every x in R, where n(x) is a positive integer 
depending on x. Whenever we use the word ideal we mean a two-sided ideal. 

We begin with 

THEOREM 1. Suppose that in R, 
(i) Z possesses no divisors of zero of R, 

(ii) there is an a Ç Z, a 9e 0, so that, given any non-zero ideal U of R, then for 
some integer m{U), aw(w) £ U. Under these conditions R is commutative. 

Proof. Consider the set of ordered pairs (r, s) where r Ç R, s ^ 0 £ Z. 
We define (ru Si) ~ (r2, s2) if and only if rx s2 = r2 Si. Clearly this is a proper 
equivalence relation. We denote the equivalence class of (r, s) by [r, s]. Let R* 
be the set of all these equivalence classes. In R* we define an addition and 
multiplication by 

(1) [b,c] + [d,g] = [bg + dc,cg] 

(2) [6, c] [d, g] = [bd, eg]. 
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Since Z is free of divisors of zero of i?, these operations are meaningful and 
independent of the particular representatives of the classes. Moreover R* 
forms a ring under these operations. If we denote [rs, s] by [r, 1], then the 
set R = {[r, 1] 6 R* | r € i?} is a ring isomorphic (in the obvious way) to R. 
Let Z* be the centre of R*. A simple computation shows that [r, s] Ç Z* if 
and only if r € Z. Moreover Z* is now a 7^/d. 

We wish to show that R* is a simple ring. Suppose [7* 9e (0) is an ideal of R*. 
Let 

Z7= {* 6 i e | [*, 1] 6 £/*}. 

J7 is not merely (0), for if [b, z] 6 U*, b j* 0, then [z, 1] [6, 2] = [6, 1] € U*. 
A simple verification shows that U is an ideal of R. Since this is so, by our 
hypothesis (2), am{u) Ç [/for an appropriate integer m (u) ; that is [am(w), 1] Ç £/*. 
But since [am(u\ 1] 6 Z* it has an inverse in R*, whence U* = R*. Hence R* 
is a simple ring, and so is semi-simple. In R* we also have xn{x) £ Z* for each 
x Ç i?*, and so, by Kaplansky's theorem, i£* is commutative. Since R* Z) R 
an isomorphic replica of R we immediately have that R is commutative. 

We next proceed to 

THEOREM 2. Suppose in R that c 9e 0 is an element of the commutator ideal 
of R. Then if U is any non-zero ideal of R there exists an integer m{u) so that 
cm(u) ç. u 

Proof, Suppose that there exists an ideal U or R such that 

(3) U*(0), 

(4) c* i U for all i = 1, 2, . . . . 

By Zorn's lemma there exists an ideal V of R possessing the properties (3) and 
(4) of U and such that if W is any ideal of R with WD V and W 9* V then 
for some integer K, c* £ W. Consider R = R/V. In Ë, from the choice of V, 
we have 

xnŒ) 6 Z for each x <E R; 

and if â = cw(c) ^ 0 f Z, then for any non-zero ideal ? of R some power of â 
is in T. 

We claim that there are no divisors of zero of R in Z. For suppose z Ç Z 
and that zz = 0, z 9e 0 9e #. Let 

i4(«) = {x £ R\zx = 0}. 

Clearly 4̂ (2) is an ideal of R and is not the zero ideal, hence â* £ A (z) for an 
appropriate i. Thus zaf £ V where z = z + V, â = a -{- V. Without loss of 
generality i = n(a)* for large enough /. Let 

T= {y ÇRlya* £ 7}. 

Since a* 6 Z, T is an ideal of R, and clearly T D V. U T 9* V then c' 6 T 
for appropriate j , whence aK is in T for appropriate K\ thus a*+/r Ç F and so 
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some power of c is in V, a contradiction. Hence Z has no zero-divisors of R. 
But then all the conditions of Theorem 1 are fulfilled, so R = R/Vis commuta­
tive. Hence V D commutator ideal Z) c, a contradiction, and Theorem 2 is 
established. 

We are now led to 

THEOREM 3. Suppose 0 ^ c is in the commutator ideal of R and that c is not 
nilpotent. Then c is not a divisor of zero. 

Proof. Let a = cw(c) 7̂  0; a 6 Z, and suppose that ex = 0, x ^ 0. Then 
certainly ax = 0. Let 

A (a) = {x 6 R \ax = 0}. 

Since a £ Z, 4̂ (a) is an ideal of i£ and A (a) ^ (0). So by Theorem 2, cl £ A(a) 
for a suitable /, and so aj £ A (a) for somej; then ai+1 = 0, forcing a, and so c, 
to be nilpotent, contradicting our hypothesis. Thus Theorem 3 is established. 

We are now in a position where we can prove the main theorem of the paper, 
namely, 

THEOREM 4. Suppose R is a ring with centre Z and such that xn{x) Ç Z for all 
x £ R. Then if R is not commutative, the commutator ideal of R is a non-zero 
nil-ideal. 

Proof. Suppose that R is not commutative, and that c 9^ 0 is in the commu­
tator ideal of R and is not nilpotent. By Theorem 3, c is not a divisor of zero. 
Suppose there is a z 7e 0 in Z which is a divisor of zero, say zx — 0, x 9^ 0. 
Let A (z) = {x G R | zx = 0}. A (z) is an ideal of R and is not (0). So by Theorem 
2, c* G A(z) for some i. But then clz = 0, whence z = 0 since c is not a zero-
divisor. So no 0 ^ 2 Ç Z is a divisor of zero of R. Let us list the properties of 
R: 

(a) xn^ € Z for all x f i ? . 
(b) Z has no divisors of zero of R. 
(c) There exists a b G Z which is not nilpotent such that given any non­

zero ideal U of R then ôw(w) Ç U (by the above remarks, b = cn(c) will do if c 
is any non-nilpotent element of the commutator ideal). 

Thus all the conditions of Theorem 1 are satisfied, and so R is commutative, 
contrary to our assumption. Hence we are forced to conclude that every element 
in the commutator ideal is nilpotent, proving Theorem 4. 

THEOREM 5. Suppose the ring R is such that xn(x) 6 Z, the centre of R, for 
all x 6 R. Then if R has no non-zero nil-ideals, it must be commutative. 

Theorem 5 is an immediate consequence of Theorem 4, but actually the two 
results are equivalent. For suppose R is a ring with non-zero nil-ideals, then by a 
result of Ko the [3] the sum of all nil-ideals of R is a nil-ideal T, R/T possesses 
no non-zero nil-ideals, and in R/T, xn(x) is in the centre. So by Theorem 5, R/T 
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is commutative; hence T D commutator ideal, which thus must be a nil-ideal; 
consequently Theorem 5 implies Theorem 4. 

It might be pointed out that Theorem 5 cannot be appreciably weakened. 
The only plausible weakening would be to change "no nil-ideals" to "no nil-
potent ideals" in the statement of Theorem 5, but there is an example, due to 
Baer [1], of a nil-ring with no nilpotent ideals; this rules out the possibility of 
the stronger result. 
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