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On homotopy nilpotency of loop spaces of
Moore spaces
Marek Golasiński

Abstract. Let M(A, n) be the Moore space of type (A, n) for an Abelian group A and n ≥ 2. We show
that the loop space Ω(M(A, n)) is homotopy nilpotent if and only if A is a subgroup of the additive
group Q of the field of rationals. Homotopy nilpotency of loop spaces Ω(M(A, 1)) is discussed as
well.

1 Introduction

In group theory, if we consider only nilpotent groups, the nilpotency class is the
one which measures a distance from commutativity. Already Whitehead [21] had the
insight that the (J.H.C.) Whitehead products satisfy identities which reflect commu-
tator identities for groups. Berstein and Ganea [3] adapted the nilpotency to H-spaces
as follows. Let X be an H-space, φX ,1 = idX and φX ,2 ∶ X2 → X the commutator map.
Put φX ,n+1 = φX ,1 ○ (idX × φX ,n) for (n + 1)-fold commutator map of X with n ≥ 2.
An H-space X is called homotopy nilpotent of class n if φX ,n+1 ≃ ∗, is null homotopic
but φX ,n is not [3]. In this case, we write nil X = n.

Then, Berstein and Ganea [3] introduced a concept of the homotopy nilpotency
of a pointed space by means of its loop space. In particular, the m-iterated Samelson
products vanish in the loop space Ω(X), or equivalently, the m-iterated Whitehead
products vanish in X provided m > nil Ω(X). We refer to [22, Chapter X] for details
on Samelson and Whitehead products.

The homotopy nilpotency classes nil X of associative H-spaces X has been exten-
sively studied as well as their homotopy commutativity. Work of Hopkins [12] drew
renewed attention to such problems by relating this classical nilpotency notion with
the nilpotence theorem of Devinatz et al. [5]. In particular, Hopkins [12] made
substantial progress by giving cohomological criteria for homotopy associative finite
H-spaces to be homotopy nilpotent. For example, he showed that if a homotopy
associative finite H-space has no torsion in the integral homology, then it is homotopy
nilpotent. Later, Rao [16] showed that the converse of the above criterion is true in the
case of groups Spin(n) and SO(n). Eventually, Yagita [23] proved that, when G is a
compact, simply connected Lie group, its p-localization G(p) is homotopy nilpotent
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if and only if G has no torsion in the integral homology. Finally, Rao [17] showed that
a connected compact Lie group is homotopy nilpotent if and only if it has no torsion
in homology.

Although many results on the homotopy nilpotency have been obtained, the
homotopy nilpotency classes have been determined in very few cases. It is well-known
that for the loop space Ω(Sm) of the m-sphere Sm , we have nil Ω(Sm) = 1 if and only
if m = 1, 3, 7 and

nil Ω(Sm) = { 2 for odd m and m /= 1, 3, 7 or m = 2;
3 for even m ≥ 4.

Write KPm for the projective m-space for K = R, C, the field of reals or complex
numbers and H, the skew R-algebra of quaternions. Then, the homotopy nilpotency
of Ω(KPm) has been first studied by Ganea [8], Snaith [19], and then their p-
localization Ω((KPm)(p)) by Meier [13]. The homotopy nilpotency of the loop spaces
of Grassmann and Stiefel manifolds, and their p-localization have been extensively
studied in [9].

Let S2m−1
(p) be the p-localization of the sphere S2m−1 at a prime p. The main result of

the paper [10] is the explicit determination of the homotopy nilpotence class of a wide
range of homotopy associative multiplications on localized spheres S2m−1

(p) for p > 3.
The paper grew out of our desire to develop techniques in the study of the

homotopy nilpotency classes nil Ω(M(A, n)) for Moore spaces M(A, n) with n ≥ 1.
In Section 1, we set stages for developments to come. This introductory section is
devoted to a general discussion and establishes notations on the homotopy nilpotency
of H-spaces used in the rest of the paper.

Section 2, takes up the systematic study of the homotopy nilpotency of
Ω(M(A, n)) for n ≥ 1. First, given a space X, we consider the iterated Samelson
product sk ∶ X∧k 
→ ΩΣ(X) to show in Proposition 3.2 that the space ΩΣ(X) is
not homotopy nilpotent provided the homology H̃∗(X ,F) has at least two primitive
generators, where F is a field. Then, we state the main result

Theorem 3.8 If M(A, n) is a Moore space with n ≥ 2 then

nil Ω(M(A, n)) < ∞

if and only if A is a torsion-free group with rank r(A) = 1 or equivalently, A is a subgroup
of Q.

Unfortunately, Moore spaces of type (A, 1) are not determined uniquely (up to
homotopy) by an Abelian group A. At the end, we present constructions and analyse
the homotopy nilpotency of some loop spaces Ω(M(A, 1)).

2 Prerequisites

All spaces and maps in this note are assumed to be connected and based with
the homotopy type of CW-complexes unless we assume otherwise. We also do not
distinguish notationally between a continuous map and its homotopy class. We write
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Ω(X) (resp. Σ(X)) for the loop (resp. suspension) space on a space X and [X , Y] for
the set of homotopy classes of maps X → Y .

Given a space X, we use the customary notations X ∨ X and X ∧ X for the wedge
and the smash square of X, respectively.

Recall that an H-space is a pair (X , μ), where X is a space and μ ∶ X × X → X is a
map such that the diagram

X × X
μ �� X

X ∨ X
��

��

∇

�������������������

commutes up to homotopy, where ∇ ∶ X ∨ X → X is the folding map. We call μ a
multiplication or an H-structure for X. Two examples of H-spaces come in mind:
topological groups and the loop spaces Ω(X). In the sequel, we identify an H-space
(X , μ) with the space X.

An H-space X is called a group-like space if X satisfies all the axioms of groups
up to homotopy. Recall that a homotopy associative H–CW-complex always has a
homotopy inverse. More precisely, according to [24, 1.3.2. Corollary] (see also [1,
Proposition 8.4.4]), we have

Proposition 2.1 If X is a homotopy associative H–CW-complex then X is a group-like
space.

From now on, we assume that any H-space X is group-like.
Given spaces X1 , . . . , Xn , we use the customary notations X1 ×⋯× Xn for

their Cartesian and Tm(X1 , . . . , Xn) for the subspace of X1 ×⋯× Xn consisting
of those points with at least m coordinates at base points with m = 0, 1, . . . , n.
Then, T0(X1 , . . . , Xn) = X1 ×⋯× Xn , T1(X1 , . . . , Xn) is the so called the fat wedge
of spaces X1 , . . . , Xn and Tn−1(X1 , . . . , Xn) = X1 ∨⋯∨ Xn , the wedge products of
spaces X1 , . . . , Xn . We write jm(X1 , . . . , Xn) ∶ Tm(X1 , . . . , Xn) → X1 ×⋯× Xn for the
inclusion map with m = 0, 1, . . . , n and X1 ∧⋯∧ Xn = X1 ×⋯× Xn/T1(X1 , . . . , Xn)
for the smash product of spaces X1 , . . . , Xn .

Let fm ∶ (Xm , ⋆m) → (Ym , ∗m) be continuous maps of pointed topological
spaces for m = 1, . . . , n. The map f1 ×⋯× fn ∶ (X1 ×⋯× Xn , (⋆1 , . . . ,⋆n)) → (Y1 ×
⋯× Yn , (∗1 , . . . ,∗n)) sends the point (x1 , . . . , xn) into ( f1(x1), . . . , fn(xn)) for
(x1 , . . . , xn) ∈ X1 ×⋯× Xn and restricts to maps Tm( f1 , . . . , fn) ∶ Tm(X1 , . . . , Xn) →
Tm(Y1 , . . . , Yn) with m = 0, 1, . . . , n. If Xm = X and fm = f for m = 1, . . . , n then we
write Xn = X1 ×⋯× Xn , X∧n = X1 ∧⋯∧ Xn , f n = f1 ×⋯× fn and f ∧n = f1 ∧⋯∧ fn .
The identity map of a space X involved is consistently denoted by ιX .

Given an H-group X, the functor [−, X] takes its values in the category of groups.
One may then ask when those functors take their values in various subcategories of
groups. For example, X is homotopy commutative if and only if [Y , X] is Abelian for
all Y.
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Given an H-space X, we write φX ,1 = ιX , φX ,2 ∶ X2 → X for the basic commutator
map and φX ,n+1 = φX ,2 ○ (φX ,n × ιX) for n ≥ 2.

2.1 The nilpotency class

The nilpotency class nil (X , μ) of an H-space (X , μ) is the least integer n ≥ 0 for which
the map φX ,n+1 ≃ ∗ is nullhomotopic and we call the homotopy associative H-space
X homotopy nilpotent. If no such integer exists, we put nil (X , μ) = ∞. In the sequel,
we simply write nil X for the nilpotency class of an H-space X. Thus, nil X = 0 if and
only if X is contractible and, as is easily seen, nil X ≤ 1 if and only if X is homotopy
commutative.

The set π0(X) of all path-components of an H-space X is known to be a group.
The following result is easy to prove:

Lemma 2.2 If X is an H-space and the path component of the base-point ⋆ ∈ X is
contractible then nilπ0(X) = nil X .

The definition of the nilpotency classes may be extended to maps. The nilpotency
class nil f of an H-map f ∶ X1 → X2 is the least integer n ≥ 0 for which the map f ○
φX ,n+1 ∶ Xn+1

1 → X2 is nullhomotopic; if no such integer exists, we put nil f = ∞.
In the sequel, we need

Lemma 2.3 If X is an H-space then the composite map

T1(X , . . . , X) j1(X , . . . ,X)
→ Xn φX ,n
→ X

is nullhomotopic.

Since the space X∧n , the nth smash power of X is the homotopy cofiber of the
map j1(X , . . . , X) ∶ T1(X , . . . , X) → Xn , the result above implies an existence of a
map φ̄X ,n ∶ X∧n → X for n ≥ 1 with φ̄X ,1 = φX ,1.

It is well known that the quotient map Xn → X∧n has a right homotopy inverse
after suspending for n ≥ 1, and the fact that X is an H-space means that the suspension
map [Y , X] → [ΣY , ΣX] is a monomorphism for any space Y. Thus, we may state

Proposition 2.4 Let X be an H-space. Then φX ,n ≃ ∗ if and only if φ̄X ,n ≃ ∗ for n ≥ 1.

Then, [3, 2.7. Theorem] and Proposition 2.4 lead to

Theorem 2.5 If X is an H-space then

nil X = sup
m

nil[Xm , X] = sup
m

nil[X∧m , X] = sup
Y

nil[Y , X],

where m ranges over all integers and Y over all topological spaces.
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Furthermore, in view of [24, Lemma 2.6.1], we may state

Corollary 2.6 A connected H-space X is homotopy nilpotent if and only if the functor
[−, X] on the category of all spaces is nilpotent group valued.

Proof Certainly, the homotopy nilpotency of a connected associative H-space X
implies that the functor [−, X] on the category of all pointed spaces is nilpotent group
valued.

Now, suppose that the functor [−, X] is nilpotent groups valued and
nil [∏∞1 X , X] < n. Then, for the projection map ∏∞1 X → Xn on the first n factors,
the composite map

∞

∏
1

X → Xn φX ,n
→ X

is null-homotopic. Since, the projection∏∞1 X → Xn has a retraction, we deduce that
the map φX ,n ∶ Xn → X is also null-homotopic and the proof is complete. ∎

Next, notice that for a map f ∶ X → Y of H-spaces, we have the commutative (up
to homotopy) diagram

X∧n

f ∧n

��

φ̄X ,n �� X

f

��
Y∧n φ̄Y ,n �� Y

with n ≥ 1.
This yields

Remark 2.7 If X′ is an H-subspace of an H-space X and r ∶ X → X′ its a homotopy
H-retract then one can easily derive from the above that

nil X′ ≤ nil X .

2.2 Homotopy nilpotency of spaces

With any based space X, we associate the integer nil Ω(X) called the nilpotency class
of X. Evidently, nil π1(X) ≤ nil Ω(X). We give an extension of this result involving
Whitehead products, generally denoted by [α1 , α2] ∈ πm1+m2−1(X) if α i ∈ πm i (X) for
m i ≥ 1 with i = 1, 2.

We define (n + 1)-fold Whitehead products [α1 , . . . , αn+1] as [[α1 , . . . , αn], αn+1]
if α i ∈ πm i (X) for m i ≥ 1 with i = 1, . . . , n + 1 agreeing that, for n = 0, [α] = α.

Recall that W-length X, the Whitehead length of a space X is the least integer n ≥ 0
such that [α1 , . . . , αn+1] = 0 for all α i ∈ πm i (X), m i ≥ 1; if no such integer exists, we
put W-length X = ∞.
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Then, according to [3, 4.6. Theorem], we by have:

Theorem 2.8 W-length X ≤ nil Ω(X).

Example 2.9 (1) It is well-known that

W-lengthSn = nil Ω(Sn) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

3 for n even with n /= 2;
2 for n odd with n /= 1, 3, 7 or n = 2;
1 for n = 1, 3, 7.

(2) For the wedge Sm ∨ Sn of two spheres with m, n ≥ 2, there is an iterated nontrivial
Whitehead product of any length. Therefore, by Theorem 2.8, we conclude that

nil Ω(Sm ∨ Sn) = ∞.(2.1)

The concept of a nilpotent space is due to Dror [6]. Recall that a pointed path-
connected space X is said to be nilpotent if its fundamental group π1(X) acts
nilpotently on the higher homotopy groups πn(X) for n ≥ 1. Since, the action of π1(X)
on πn(X) for n ≥ 1 may be written in terms of Whitehead products, the nilpotency
of a space X is a lower bound of its homotopy nilpotency nil Ω(X). Therefore, by
Theorem 2.8, the space X is nilpotent if Ω(X) is homotopy nilpotent. But, by Example
2.9(2), not every space Ω(X) is homotopy nilpotent if X is nilpotent or even simply
connected.

Dror [6] has also published a far-reaching generalization of a classical theorem of
J.H.C. Whitehead useful in the next section.

Theorem 2.11 If f ∶ X → Y is a map of connected, pointed, CW-complexes which
induces an isomorphism on integral homology, and if X and Y are nilpotent spaces, then
f is a homotopy equivalence.

3 Moore spaces

We take up the systematic study of the homotopy nilpotency of Moore spaces M(A, n)
for n ≥ 1. In Eckmann–Hilton duality, Moore spaces play the role of dual objects of
Eilenberg–MacLane CW-complexes.

Let A be an Abelian group and n any integer ≥ 1. A CW-complex X (if one such
exists) satisfying π j(X) = 0 for j < n, πn(X) ≈ A and H i(X) = 0 for i > n is known
as a Moore space of type (A, n), or simply an M(A, n) space. By [15], it is known
that a Moore space M(A, n) with n ≥ 2 exists and, in view of [11, Example 4.34], the
homotopy type of a Moore space M(A, n) is uniquely determined by A and n ≥ 2. This
implies that every Moore space M(A, n) with n ≥ 3, is the suspension ΣM(A, n − 1).
Furthermore, in [2, Section 2], it was shown that also M(A, 2) is a suspension ΣL(A)
for some CW-complex L(A).

By means of [20, Proposition 1.1], there exists an M(A, 1) space if and only if the
homology H2(A,Z) = 0 for the ring Z of integers. Recall also that, by [14, Theorem
3], H2(A,Z) = 0 if and only if A⊗ A coincides with its subgroup generated by the
diagonal, {a ⊗ a; a ∈ A}.

https://doi.org/10.4153/S000843952100028X Published online by Cambridge University Press

https://doi.org/10.4153/S000843952100028X


302 M. Golasiński

Remark 3.1 If X1 , X2 are Moore spaces of type (A, 1) then, like for Moore spaces of
type (A, n)with n ≥ 2, there is an integral homotopy isomorphism f ∶ X1 → X2. If the
spaces X1 , X2 are nilpotent then Theorem 2.11 implies that f ∶ X1 → X2 is a homotopy
equivalence.

However, the homotopy type of a Moore space M(A, 1) is not uniquely determined
by A. Hatcher [11, Example 4.35] constructed the space X = (S1 ∨ Sn) ∪ en+1 such that
the inclusion S1 ↪ X induces an isomorphism on all homology groups and on πk for
k < n, but not on πn . More precisely, from [11, Example 4.27] we have πn(S1 ∨ Sn) ≈
Z[t, t−1]/(2t − 1). Then, X is obtained from S1 ∨ Sn by attaching a cell en+1 via a map
Sn → S1 ∨ Sn corresponding to 2t − 1 ∈ Z[t, t−1].

3.1 Moore spaces of type (A, n) with n ≥ 2

To examine the homotopy nilpotency of M(A, n) with ≥ 2, we need to fix some
notations and recall a definition. Given a pointed space X, write i1 , i2 ∶ X → X × X
for the canonical embedding maps and Δ ∶ X → X × X for the diagonal map. If
Hm(X , A) is the mth homology group of X with coefficient in an Abelian group A
then an element α ∈ Hm(X , A) is said to be primitive if Δ∗(α) = i1∗(α) + i2∗(α) for
the induced homomorphisms i1∗ , i2∗ , Δ∗ ∶ Hm(X , A) → Hm(X × X , A).

We show that the space ΩΣ(X) is not homotopy nilpotent provided the homology
H∗(X ,F) has at least two primitive generators, where F is a field.

Proposition 3.2 If H̃∗(X ,F) has at least two primitive generators, where F is a field
then ΩΣ(X) is not homotopy nilpotent.

Proof To see this, take homology H∗(X ,F) with F-coefficients and recall that
the Bott–Samelson Theorem [4] states that H∗(ΩΣX ,F) ≈ T(H̃∗(X ,F)), the tensor
algebra on H̃∗(X ,F). This may be rewritten as UL⟨H̃∗(X ,F)⟩, where L⟨H̃∗(X ,F)⟩
is the free Lie algebra generated by H̃∗(X ,F) and UL⟨H̃∗(X ,F)⟩ is its universal
enveloping algebra. Further, the suspension E ∶ X → ΩΣX induces the inclusion of
the generating set in homology. Now, consider the iterated Samelson product

sk ∶ X∧k 
→ ΩΣ(X),

where s1 = E, sk+1 = ⟨E , sk⟩, the Samelson product of sk and E for n ≥ 2. For any x ∈
H̃∗(X) we have E∗(x) = x.

The effect of the Samelson product map on homology classes of loop spaces is
presented e.g., in [22, Chapter X, Section 6] (see also [11, Chapter 3]). If x1 , . . . , xk ∈
H̃∗(X ,F) are primitive then the class x1 ⊗⋯⊗ xk ∈ H̃∗(X ,F)⊗k ≈ H̃∗(X∧k ,F) is
sent by (sk)∗ to the iterated bracket [x1 , [x2 , . . . [xk−1 , xk]] . . .]. In particular, if x , y ∈
H̃∗(X ,F) are distinct primitive generators then the class

[x , [x , . . . [x , y]] . . .] ∈ ULH̃∗(X ,F) ≈ H̃∗(ΩΣ(X),F)

is in the image of (sk)∗. Hence, sk cannot be null homotopic.
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Notice that for the map sk ∶ X∧k 
→ ΩΣ(X) defined above, there is by the factor-
ization

X∧k

���
��

��
��

��
��

��
��

�
sk �� ΩΣ(X)

(ΩΣ(X))∧k .

φ̄ΩΣ(X),k

������������������

Consequently, the map φ̄ΩΣX ,k is not null homotopic provided the map sk is so and
the proof is complete. ∎

To apply Proposition 3.2 for computations of nil ΩM(A, n), we need

Lemma 3.3 If n ≥ 2 then

nil Ω(M(Zpm , n)) = ∞

for m = 1, 2, . . .∞ and n ≥ 2.

Proof Given an Abelian group A, write Xn(A) = M(A, n) with n ≥ 2 or X1(A) =
L(A). Then, by the Universal Coefficient Theorem, we have

H̃k(Xn(Zpm),Fp) ≈
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Zpm ⊗ Fp ≈ Fp , for k = n;
Tor(Zpm ,Fp) ≈ Fp , for k = n + 1;
0, for k /= n, n + 1

for m, n ≥ 1.
Since the Moore space M(Zpm , n) ≃ ΣXn−1(Zpm) for n ≥ 2, we can consider the

iterated Samelson product

sn ∶ (Xn−1(Zpm))∧k 
→ ΩM(Zpm , n) ≃ ΩΣ(Xn−1(Zpm)).

Thus, Proposition 3.2 implies that

nil Ω(M(Zpm , n)) = ∞(3.1)

for m ≥ 1 and n ≥ 2.
Because Zp∞ ⊗ Fp = 0, we have

H̃k(Xn(Zp∞),Fp) ≈
⎧⎪⎪⎨⎪⎪⎩

Tor(Zp∞ ,Fp) ≈ Fp , for k = n + 1;
0, for k /= n + 1

for n ≥ 1. Thus, the argument above collapses.
Therefore, we process as follows. Given n ≥ 2 and a prime p, consider the mapping

telescope T determined by the sequence of maps

Sn p→ Sn p→ Sn p→⋯.
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Recall that T is the union of the mapping cylinders Mk with the copies of Sn in
Mk and Mk−1 identified for all k. Thus, T is the quotient space of the disjoint union
⊔∞k=1 S

n × [k, k + 1] in which each point (xk , k + 1) ∈ Sn × [k, k + 1] is identified with
(p(xk), k + 1) ∈ Sn × [k + 1, k + 2]. In the mapping telescope T, let Tm be the union
of the first m mapping cylinders. This deformation retracts onto Sn by deformation
retracting each mapping cylinder onto its right end in turn. Since the maps p ∶ Sn →
Sn are cellular, each mapping cylinder is a CW-complex and the telescope T is the
increasing union of the subcomplexes Tm ≃ Sn .

If we attach a cell en+1 to the first Sn in T via the identity map of Sn , we
obtain a space X which is the increasing union of its subspaces Xm = Tm ∪ en+1

being M(Zpm , n)’s. Since, Hn(X ,Z) ≈ colimm Hn(Xm ,Z) = colimmZpm = Zp∞ and
Hk(X ,Z) = 0 for k /= n, we derive that X is the Moore space of type (Zp∞ , n).

Furthermore, Ω(X) = colimm Ω(Xm) implies a homotopy equivalence

Ω(M(Zp∞ , n)) ≃ colimm Ω(M(Zpm , n)).

Thus, the nontrivial maps

φ̄Ω(M(Zpm ,n)),k ∶ Ω(M(Zpm , n))∧k 
→ Ω(M(Zpm , n))

for k, m ≥ 1 determined by (3.1) yield the nontrivial the maps

φ̄Ω(M(Zp∞ ,n)),k ∶ Ω(M(Zp∞ , n))∧k 
→ Ω(M(Zp∞ , n))

for k ≥ 1 and n ≥ 2. Consequently,

nil Ω(M(Zp∞ , n)) = ∞(3.2)

for n ≥ 2 and this concludes the proof. ∎

Now, recall that by [7, Corollary 27.4], an Abelian group A with elements of finite
order contains a direct summand Zpm for some prime p and m = 1, 2, . . . or∞. Then,
such an Abelian group A ≈ Zpm ⊕ B for some Abelian group B and m = 1, . . . ,∞.

Hence, M(A, n) = M(Zpm , n) ∨M(B, n) and so Remark 2.7, and Lemma 3.3
imply that

nil Ω(M(A, n)) = ∞

for n ≥ 2.
Given an Abelian group A, we have A⊗Q = ⊕r(A)

1 Q for the rank r(A) of A and
the additive group Q of the field Q of rationals. Therefore,

H̃k(Xn(A⊗Q),Q) ≈
⎧⎪⎪⎨⎪⎪⎩

⊕r(A)
1 Q, for k = n;

0, otherwise

for n ≥ 1.
Next, by for a nilpotent space X and a set of primes I, write X(I) for the

I-localization of X. Then, by [13, Proposition 3.5], we have

Proposition 3.6 Let X be a nilpotent space. If nil Ω(X) < n then nil Ω(X(I)) < n for
every set of primes I.
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Since the Moore space M(A, n) ≃ ΣXn−1(A) for n ≥ 2, we can consider the iterated
Samelson product

sn ∶ (Xn−1(A))∧k 
→ ΩM(A, n) ≃ ΩΣ(Xn−1(A)).

Furthermore, if r(A) ≥ 2 then Proposition 3.2 yields nil Ω(M(A⊗Q, n)) = ∞. Since
M(A⊗Q, n) = M(A, n)(0), the rationalization of M(A, n), Proposition 3.6 leads to
nil Ω(M(A, n)) = ∞. Thus, in view of Proposition 3.2 and Lemma 3.3, we may state

Corollary 3.7 If A is an Abelian group with elements of finite order or r(A) ≥ 2 then

nil Ω(M(A, n)) = ∞

for n ≥ 2.

If r(A) = 1 and A is a torsion-free Abelian group then by [7, Chapter IV, Section
24], we know that A is a subgroup of Q. Notice that M(Q, n) = Sn

(0) = K(Q, n), the
Eilenberg–MacLane of type (Q, n) provided n is odd. Therefore, M(Q, n) is a homo-
topy commutative and associative H-space and nil M(Q, n) = nil Ω(M(Q, n)) = 1.

Given any subgroup A < Q, we have a sequence Z
n0→ Z

n1→ Z
n2→⋯ and A =

colimnkZ. Next, for n ≥ 2, the mapping telescope T of the associated sequence of
maps

Sn n0→ Sn n1→ Sn n2→⋯

is the union of the mapping cylinders Mnk with the copies of Sn in Mnk and Mnk−1

identified for all k. In the mapping telescope T, let Tm be the union of the first m
mapping cylinders. This deformation retracts onto Sn by deformation retracting
each mapping cylinder onto its right end in turn. Since the maps nk ∶ Sn → Sn

are cellular, each mapping cylinder is a CW-complex and the telescope T is the
increasing union of the subcomplexes Tm ≃ Sn = M(Z, n). Next, by H̃n(T ,Z) ≈ A =
colimmZ and H̃k(T ,Z) = 0 for k /= n, we derive that T = M(A, n) = colimm Tm .
Then, Ω(M(A, n)) = colimm Ω(Tm) and nil Ω(Tm)) = nil Ω(Sn) ≤ 3 imply that
nil Ω(M(A, n)) ≤ 3 provided n ≥ 2 and we get the main result

Theorem 3.8 If M(A, n) is a Moore space with n ≥ 2 then

nil Ω(M(A, n)) < ∞

if and only if A is a torsion-free group with rank r(A) = 1 or equivalently, A is a subgroup
of Q.

3.2 Moore spaces of type (A, 1)

We present constructions and analyse homotopy nilpotency of some Moore spaces of
type (A, 1).

(1) The space X = (S1 ∨ Sn) ∪ en+1 constructed by Hatcher [11, Example 4.35] is
a Moore space of type (Z, 1) for the infinite cyclic group Z⟨t⟩. Since π1(X) ≈ Z⟨t⟩
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and πn(S1 ∨ Sn) ≈ Z[t, t−1]/(2t − 1), we get that (2t − 1)α = 0 implies 2tα = α for α ∈
Z[t, t−1]/(2t − 1). Hence, the action of π1(X) on πn(X) is nontrivial.

Note that the map Z[t, t−1] → Q given by t ↦ 1/2 yields a ring isomorphism

Z[t, t−1]/(2t − 1) ≈
→ Z[1/2]

for the subring Z[1/2] ⊆ Q consisting of rationals with denominator a power of 2.
Then, π1(X) ≈ Z⟨t⟩ acts on πn(X) ≈ Z[1/2] by tα = (1/2)α for α ∈ Z[1/2]. Conse-
quently, the Whitehead product [t, α] = (−1/2)α and the (n + 1)-fold Whitehead
product [α, t, t . . . , t] = (−1/2)n α is non-trivial for n ≥ 1 provided α /= 0. Conse-
quently, in view of Theorem 2.8,

nil Ω(X) = ∞.

(2) The space RP2
m = S1 ∪m e2 is a Moore space of type (Zm , 1) for the cyclic group

Zm of order m. Then, π1(RP2
m) = Zm⟨t⟩, where t is represented by the canonical map

i ∶ S1 → RP2
m . Next, by [18], the group π2(RP2

m) can be identified with the ideal of the
group ring Z[Zm] generated by α = 1 − t, so that as an Abelian group π2(RP2

m) is free
of rank m − 1 and, as π1-module, π2(RP2

m) has a single generator α, subject solely
to the relation (1 + t +⋯+ tm−1)α = 0. Then, the Whitehead product [α, t] = tα −
α = 2α − t2α −⋯− tm−1α. Thus, we derive that the (n + 1)-fold Whitehead product
[α, t, t . . . , t] is non-trivial for n ≥ 1. Consequently, in view of Theorem 2.8, we derive
that

nil Ω(RP2
m) = ∞

for m ≥ 2.
(3) If r(A) = 1 and A is a torsion-free Abelian group then A < Q, we have a sequence

of maps Z n0→ Zn n1→ Z
n2→⋯ and A = colimk iZ. Next, the mapping telescope T of the

associated sequence of maps

S1 n0→ S1 n1→ S1 n2→⋯

is the union of the mapping cylinders Mnk with the copies of S1 in Mnk and Mnk−1

identified for all k. In the mapping telescope T, let Tm be the union of the first m
mapping cylinders. This deformation retracts onto S1 by deformation retracting each
mapping cylinder onto its right end in turn. Since the maps nk ∶ S1 → Sn are cellular,
each mapping cylinder is a CW-complex and the telescope T is the increasing union
of the subcomplexes Tm ≃ S1.

Next, by H̃1(T ,Z) ≈ colimm H1(Tm) = colimk iZ = A and H̃k(T ,Z) = 0 for k /= 1,
we derive that T = colimm Tm is a Moore space of type (A, 1). Furthermore, πk(T) =
colimm πk(Tm) implies that π1(T) = colimmZ = A and πk(T) = 0 for k /= 1. Con-
sequently, T = colimm Tm , as the Eilenberg-MacLane space K(A, 1), is a homotopy
commutative and an associative H-space. Finally, we get that

nil T = 1.
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(4) At the end, given a prime p, consider the telescope T determined by the
sequence of maps

S1 p→ S1 p→ S1 p→⋯.

If we attach a cell e2 to the first S1 in T via the identity map of S1, we obtain a space X
which is a Moore space of type (Zp∞ , 1) since X is the increasing union of its subspaces
Xm = Tm ∪ e2, which are RP2

pm ’s. Then, (2) leads to

nil Ω(X) = ∞.
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