
J. Aust. Math. Soc. 87 (2009), 311–323
doi:10.1017/S1446788709000111

MAXIMAL OPERATORS AND HILBERT TRANSFORMS
ALONG FLAT CURVES NEAR L1

NEAL BEZ

(Received 3 July 2008; accepted 10 November 2008)

Communicated by G. A. Willis

Abstract

For a class of convex curves in Rd we prove that the corresponding maximal operator and Hilbert
transform are of weak type L log L . The point of interest here is that this class admits curves which
are infinitely flat at the origin. We also prove an analogous weak type result for a class of nonconvex
hypersurfaces.
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1. Introduction

Given natural numbers m and d with d ≥ m + 1, let 0 : Rm
→ Rd be a smooth m

parameter surface in Rd . Let the associated maximal operator, M0 , and Hilbert
transform, H0 , be given by

M0 f (x) := sup
h>0

1
hm

∣∣∣∣ ∫
|t |∈(0,h)

f (x − 0(t)) dt

∣∣∣∣,
H0 f (x) := p.v.

∫
Rm

f (x − 0(t))K (t) dt,

for appropriate functions f on Rd . Here, K : Rm
→ R is a Calderón–Zygmund

kernel; that is, K is C∞ away from the origin, homogeneous of degree −d and∫
|t |∈[a,b] K (t) dt = 0 for each 0< a < b. In this paper we are concerned with the

mapping properties of M0 and H0 on Orlicz spaces near L1 and, in particular, with
estimates of the form

|{x ∈ Rd
: |T f (x)|> α}| ≤

∫
Rd
8

(
C | f (x)|

α

)
dx ∀α > 0, (1.1)
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312 N. Bez [2]

where 8 : [0,∞)→ [0,∞) is a convex function and T ∈ {M0, H0}. As in [13], we
shall say that T is of weak type 8(L) if (1.1) holds for all simple functions f on Rd .

Even for model cases of 0 possessing nonvanishing Gaussian curvature, such as
m = 1, d = 2 and 0(t)= (t, t2), it is unknown whether M0 and H0 are of weak
type L . Currently, the most progress on this question for the parabola is a weak type
L log log L estimate due to Seeger, Tao and Wright [13]; that is, with the usual abuse of
notation, the estimate in (1.1) holds for both operators with8(t)= t log log(100+ t).
For closely related results, we note that both operators map the parabolic Hardy space
to L1,∞ (Christ [7]) and map the smaller product-type Hardy space to the smaller
Lorentz space L1,2 (Seeger and Tao [12]). Christ [8] has also shown that both operators
are not of weak type L if 0 is a ‘piecewise linear parabola’ (see also [3] for further
results in this direction).

The main theorem in [13] which we state below covers a large class of hypersurfaces
in Rd for d ≥ 2, of which the parabolic plane curve is a special case.

THEOREM 1.1. [13] Let 60 be a smooth compact hypersurface of Rd whose
Gaussian curvature does not vanish to infinite order and let ν be a smooth and
compactly supported density on 60. Then the operator f 7→ supk∈Z |νk ∗ f | is of
weak type L log log L, where

〈νk, ψ〉 := 〈ν, ψ(δ2k · )〉, δt := exp((log t)P),

and P is a real d by d matrix whose eigenvalues each have positive real part.
Moreover, if the cancellation condition ν̂(0)= 0 holds then f 7→

∑
k∈Z νk ∗ f extends

to an operator of weak type L log log L.

It is important for us to observe that weaker L log L estimates for the operators in
Theorem 1.1 are true under weaker hypotheses. For the maximal operator, this is the
case if ν is a compactly supported measure whose Fourier transform satisfies a decay
estimate

|̂ν(ξ)| ≤ C(1+ |ξ |)−τ for some τ > 0 (1.2)

and, for the singular integral operator, if additionally we have the cancellation
condition ν̂(0)= 0; see [13, Corollary 3.1]. The nonvanishing curvature hypothesis
in Theorem 1.1 guarantees an estimate of the form (1.2) via van der Corput’s lemma.
This L log L result essentially reproved earlier work of Christ and Stein [9] who,
for example, considered the class of homogeneous curves in Rd given by 0(t)=
(tα1, . . . , tαd ) for positive integers α j . We emphasize, however, that even for model
cases when the codimension of 0 is high, say m = 1, d = 3 and 0(t)= (t, t2, t3),
there has been no improvement beyond L log L .

Our first result in this note is an L log L estimate for a class of convex curves
in Rd for d ≥ 2 considered by Carbery et al. in [6] (see also [11] for very closely
related work). Before describing this class, we highlight that certain curves which are
infinitely flat at the origin are admitted into this class and therefore fall outside the
scope of previous work.
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Suppose that 0(t)= (t, γ2(t), . . . , γd(t)), where each γ j belongs to Cd(0,∞).
The next definition makes precise exactly what we mean by convex.

DEFINITION 1.2. The curve (t, γ2(t), . . . , γd(t)) is said to be convex if, for all
j = 1, . . . , d, D j (t) > 0 for all t > 0, where

D j (t) := det


1 γ ′2(t) · · · γ ′j (t)
0 γ ′′2 (t) · · · γ ′′j (t)
...

...
...

0 γ
( j)
2 (t) · · · γ

( j)
j (t)

 .
Carbery et al. [6] showed that M0 and H0 are bounded on L p for all p ∈ (1,∞)

if 0(t)= (t, γ2(t), . . . , γd(t)) is convex, odd, 0(0)= 0 and a certain curvature
condition holds, namely,

th′j (t)≥ Cdh j (t) ∀t > 0 and j = 1, . . . , d, (1.3)

where h j (t) := N j (t)/D j−1(t), D0(t) := 1 and

N j (t) := det


t γ2(t) · · · γ j (t)
1 γ ′2(t) · · · γ ′j (t)
...

...
...

0 γ
( j−1)
2 (t) · · · γ

( j−1)
j (t)

 .
This result is an extension of earlier work in [4] for plane curves. Our first main result
is as follows.

THEOREM 1.3. Suppose that 0(t)= (t, γ2(t), . . . , γd(t)) is convex, odd, 0(0)= 0
and (1.3) holds. Then M0 and H0 are of weak type L log L.

Our second result concerns the class of nonconvex plane curves and associated
hypersurfaces considered recently in [1].

THEOREM 1.4. For d ≥ 2, let 0 : Rd−1
→ Rd be a hypersurface of the form 0(y)=

(y, P(γ (|y|))) where P is a real polynomial of degree no less than 2 and γ satisfies
the following conditions:

γ ∈ C2(0,∞), convex on [0,∞), γ (0)= 0 and γ ′(0)≥ 0. (1.4)

If γ is extended to be either even or odd, then the operators M0 and H0 are of weak
type L log L if either (1) d ≥ 3 or (2) d = 2 and P ′(0)= 0.

REMARKS. (1) In [1] it was shown that if d = 2 and P ′(0) is nonzero then M0

and H0 are bounded on L p for all p ∈ (1,∞) under the additional hypothesis that γ ′

is doubling; that is, there exists a constant D ∈ (1,∞) such that γ ′(Dt)≥ 2γ ′(t) for
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each t > 0. See [3] for certain negative results near L1 when P(s)= s and for a certain
class of γ for which γ ′ is doubling.

(2) The reason for the more relaxed hypothesis when d ≥ 3 is that the curvature
of Sd−2 plays a significant role in the proof.

NOTATION. For nonnegative numbers A and B, we write A . B and B & A if
A ≤ C B, where the constant C depends on at most d and 0. If A . B . A then we
may write A ∼ B.

For y ∈ Rd and r > 0, let B(y, r) denote the open Euclidean ball with centre y and
radius r given by

B(y, r) := {x ∈ Rd
: |x − y|< r}.

2. Proof of Theorem 1.3

We begin with the observation that if

M0 f (x) := sup
k∈Z

1
λk

∣∣∣∣ ∫ λk+1

λk
f (x − 0(t)) dt

∣∣∣∣
for some fixed λ ∈ (1,∞) depending on d and 0 to be determined later in the proof,
then M0 f ∼M0 f for nonnegative functions f ; thus, for the maximal operator, it
suffices to consider M0 . The main idea is to follow the arguments in [13] which led
to the weaker L log L version of Theorem 1.1 under the weaker Fourier transform
decay hypothesis, as described in the Introduction here. Further key ingredients to
the proof are an appropriate Calderón–Zygmund theory and suitable control on the
dilations in hand. In our flat setting determined by the curvature condition (1.3), we
rely on [4] and [6] to provide these ingredients.

2.1. Dilations and decay estimates All of the work on the choice of dilations and
proving the decay estimates that follow was done in [6] and thus we simply state their
results; for motivation and proofs we refer the reader to [6]. The dilation matrices
{A(t) | t > 0} are given by

A(t) :=


t R1t · · · Rd−1 Rd−2 · · · R1t

γ2(t) R1γ2(t) · · · Rd−1 Rd−2 · · · R1γ2(t)
...

...
...

γd(t) R1γd(t) · · · Rd−1 Rd−2 · · · R1γd(t)

 ,
where the differential operators R1, . . . , Rd−1 are given by

R j f :=

(
f

h j

)′ h2
j

h′j
for j = 1, . . . , d − 1.

We remark that the convexity hypothesis on 0 ensures that A(t) is well defined
because all h j and h′j are positive; see [11]. By [6, Lemma 5.3], A(t) is lower
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[5] Maximal operators along flat curves near L1 315

triangular with A(t)1,1 = t and A(t) j, j = h j (t) for j = 2, . . . , d; hence A(t) is
invertible. Moreover, the curvature hypothesis (1.3) implies that the following Rivière
condition holds (in fact, the full strength of the curvature hypothesis (1.3) is not needed
to prove Proposition 2.1, and the assumption that each h j is doubling suffices; see [6]).

PROPOSITION 2.1 [6]. There exist positive constants C, ε depending on 0 and d such
that ‖A(s)−1 A(t)‖ ≤ C (t/s)ε for all s ≥ t > 0.

For each k ∈ Z, we now define the normalized curves 0k by

0k(t) := A(λk)−10(λk t) for each |t | ∈ [1, λ].

Also, let the measures µ(k), µ(k)k , H (k) and H (k)
k be given by

〈µ(k), ψ〉 :=

∫ λ

1
ψ(0k(t)) dt, 〈µ

(k)
k , ψ〉 := 〈µ(k), ψ(A(λk) · )〉,

〈H (k), ψ〉 :=

∫
|t |∈[1,λ]

ψ(0k(t))
dt

t
, 〈H (k)

k , ψ〉 := 〈H (k), ψ(A(λk) · )〉,

so that M0 f = supk∈Z |µ
(k)
k ∗ f | and H0 f =

∑
k∈Z H (k)

k ∗ f . The notation µ
(k)
k

and H (k)
k may seem heavy-handed at first. The intention is to maintain the notation

from [13] in the sense that µ(k)k and H (k)
k are A(λk)-dilates of the measures µ(k) and

H (k). In general, µ(k) and H (k) will not be fixed as k varies yet have the property that
their Fourier transforms satisfy decay estimates independent of k, and in this sense are
‘essentially’ fixed. These crucial decay estimates are the content of the subsequent
lemma. This was proved in [6, Section 5] via a variant of van der Corput’s lemma (see
[6, Proposition 3.1] for this variant).

LEMMA 2.2 [6]. There exists τ ∈ (0, 1) depending on d such that

|µ̂(k)(ξ)| + |Ĥ (k)(ξ)|. (1+ |ξ |)−τ

for all k ∈ Z and all ξ ∈ Rd .

2.2. Calderón–Zygmund theory In order to use the Calderón–Zygmund theory
developed in [4], we shall define balls {Bk}k∈Z satisfying the following conditions:

(B1)
⋃

k∈Z Bk = Rd ;
(B2)

⋂
k∈Z Bk = {0};

(B3) each Bk is open, balanced, convex and bounded;
(B4) Bk ⊂ Bk+1 for each k ∈ Z;
(B5) for each k, |Bk+1| ∼ |Bk |.

It follows from Proposition 2.1 that ‖A(λk+1)−1 A(λk)‖< 1 uniformly in k if we
choose λ := 4d1+(log2 C)/(2ε)e, where C and ε are those constants appearing in
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Proposition 2.1. Let B̃k := A(λk)B(0, 1); one can check that (B1)–(B4) hold for
the B̃k . We then define the collection of Bk by

{Bk}k∈Z :=
⋃
k∈Z

n(k)−1⋃
l=1

{E l
k} (2.1)

where, for each k ∈ Z, {E1
k , . . . , En(k)

k } is a finite set of open, balanced, convex and
bounded sets such that

B̃k = E1
k ⊂ E2

k ⊂ · · · ⊂ En(k)
k = B̃k+1

and |E l
k | ≤ 2|E l−1

k | for l = 1, . . . , n(k)− 1.
For each k ∈ Z, observe that property (B3) allows us to define a norm ‖ · ‖k such

that Bk = {x ∈ Rd
: ‖x‖k < 1}.

NOTATION. For each y ∈ Rd , k ∈ Z and r > 0, let B(y, k, r) be the open ball with
centre y and radius r with respect to ‖ · ‖k given by

B(y, k, r) := {x ∈ Rd
: ‖x − y‖k < r}. (2.2)

For each k ∈ Z, x ∈ Rd and nonempty subset S of Rd , define

distk(x, S) := inf{‖x − s‖k : s ∈ S}.

We now state the Whitney-type decomposition relative to the balls in (2.2).

PROPOSITION 2.3 [4]. There exists a constant A depending on 0 and d such that the
following conditions hold.

(1) If � is any nonempty proper open subset of Rd , then �=
⋃

B∈W B, where

W := {B(x, k, 1) | x ∈�, k ∈ Z, 5< distk(x, ∂�) < A}.

(2) If in addition |�| is finite, then we can find a sequence of disjoint balls Qi :=

B(xi , ki , 1) ∈W such that �=
⋃

i B(xi , ki , 3).

If B := {B(y, k, A) | y ∈ Rd , k ∈ Z}, define the associated Hardy–Littlewood-type
maximal function MH L by

MH L f (x) := sup
B∈B
x∈B

1
|B|

∫
B
| f (y)| dy,

where A > 0 appears in Proposition 2.3.

https://doi.org/10.1017/S1446788709000111 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788709000111
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2.3. Conclusion of the proof of Theorem 1.3 Fix α > 0 and set

� := {x ∈ Rd
| MH L f (x) > α}.

By [4, Proposition 2.2], MH L is of weak type L and therefore |�|. ‖ f ‖1/α. Next,
apply Proposition 2.3 to obtain sequences {xi } ⊆�, { ji } ⊆ Z and disjoint Whitney
cubes {Qi } such that:

(W1)�=
⋃

i Qi ;
(W2) B(xi , ji , 1)⊆ Qi ⊆ B(xi , ji , 3);
(W3) 5< inf{‖xi − y‖ ji : y ∈ ∂�}< A.

Also define �∗ :=
⋃

i B(xi , ji , C + 10), where C is the constant appearing in the
statement of Proposition 2.1. Observe that (W1) implies that |�∗| ∼ |�|; in particular,
|�∗|. ‖ f ‖1/α.

By an analogue of the Lebesgue differentiation theorem, | f (x)| ≤ α for x /∈�. Our
first decomposition is f = g +

∑
i fQi , where

fQi (x) :=

{
f (x) if x ∈ Qi and | f (x)|> α,
0 otherwise.

This decomposition is akin to that of classical Calderón–Zygmund theory. Next,
decompose fQi further by letting

f n
Qi
(x) :=

{
fQi (x) if λ(n−1)τα < | fQi (x)| ≤ λ

nτα,

0 otherwise,

where τ is the decay exponent from Lemma 2.2. Notice that fQi =
∑

n≥1 f n
Qi

and∑
n≥1

1
|Qi |

∫
| f n

Qi
(x)| dx . α. (2.3)

Now let gn
Qi
:= χQi |Qi |

−1
∫

Qi
f n
Qi

and bn
Qi
:= f n

Qi
− gn

Qi
. Furthermore, define gn

:=∑
i gn

Qi
, bn
:=
∑

i bn
Qi

and f n
:=
∑

i f n
Qi

. Observe that (2.3) implies that∑
n≥1

|gn
Qi
(x)| ≤ χQi (x)

∑
n≥1

1
|Qi |

∫
Qi

| f n
Qi
(y)| dy . αχQi (x). (2.4)

Moreover, by (2.3) and (2.4), ∑
n≥1

‖bn
Qi
‖1 . α|Qi |. (2.5)

We first consider M0 , and the next step is to decompose the measures µ(k), first
by the following localization. Let φ ∈ S(Rd) have compact support in B(0, 1/2) with∫
φ(x) dx = 1, and

∫
xkφ(x) dx = 0 for all k = 1, . . . , d . Also define

µ(k),0 := µ(k) and µ(k),n := φn ∗ µ
(k),
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where φn(x) := λndφ(λnx) for each n ≥ 1. For each k ∈ Z and n ≥ 1 define the dilates

µ
(k),n
k := det A(λk)−1µ(k),n(A(λk)−1

· ).

We are now in a position to decompose the operator M0 as

M0 f = sup
k∈Z
|µ
(k)
k ∗ f | ≤M I,1 +M I,2 +M I,3 +M I,4 +M I I ,

where

M I,1 := sup
k∈Z
|µ
(k)
k ∗ g|,

M I,2 := sup
k∈Z

∣∣∣∣µ(k)k ∗
∑
n≥1

gn
∣∣∣∣,

M I,3 :=
∑
n≥1

sup
k∈Z
|(µ

(k)
k − µ

(k),n
k ) ∗ f n

|,

M I,4 :=
∑
m≥0

sup
k∈Z

∣∣∣∣(µ(k),m+1
k − µ

(k),m
k ) ∗

∑
n>m

gn
∣∣∣∣,

M I I :=
∑
n≥1

sup
k∈Z
|µ
(k),n
k ∗ bn

|.

In order to handle each M I,i term we shall show that

4∑
i=1

‖M I,i‖
2
2 . α‖ f ‖1, (2.6)

Chebyshev’s inequality immediately implying that the contribution from these terms
is suitably under control. Before proving (2.6), we outline how we control the more
difficult term M I I using L1 arguments. Recalling the definition of our balls B j
from (2.1), for each i let li be the integer satisfying

B̃li−1 ⊆ B ji ⊂ B̃li .

For each i and n ≥ 1, set

Sn,i := {k ∈ Z | li − 2≤ k ≤ li + ε
−1n},

where ε appears in Proposition 2.1. Then M I I ≤M I I,1 +M I I,2, where

M I I,1 :=
∑
n≥1

∑
i

∑
k /∈Sn,i

|µ
(k),n
k ∗ bn

Qi
| and M I I,2 :=

∑
n≥1

∑
i

∑
k∈Sn,i

|µ
(k),n
k ∗ bn

Qi
|.

We claim that
‖M I I,1‖L1(Rd\�∗) . ‖ f ‖1 (2.7)
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which, granted, implies that the contribution from M I I,1 is under control by
Chebyshev’s inequality. For M I I,2, notice that ‖µ(k),nk ‖1 . 1 because of ‖µ(k)‖. 1
and L1 dilation invariance. Thus, by Chebyshev’s inequality and the fact that |Sn,i |. n
for each i ,

|{x ∈ Rd
|M I I,2(x) > α/6}| .

1
α

∑
n≥1

∑
i

n‖bn
Qi
‖1

.

∫
| f (x)|

α
log

(
| f (x)|

α
+ 100

)
dx .

The rest of the proof of Theorem 1.3 is then dedicated to (2.6) and (2.7).
From [6] we know that M0 is a bounded operator on L2 and therefore

‖M I,1‖
2
2 . ‖g‖22 . α‖ f ‖1.

Moreover, by (2.4),∥∥∥∥∑
n≥1

gn
∥∥∥∥2

2
. α

∑
n≥1

∑
i

∫
|gn

Qi
(x)| dx = α

∑
n≥1

∑
i

∫
| f n

Qi
(x)| dx ≤ α‖ f ‖1.

Thus, ‖M I,2‖
2
2 . α‖ f ‖1. To handle M I,3 and M I,4 we use the following estimates

concerning our localized measures.

LEMMA 2.4. For each m ≥ 0,∥∥∥∥sup
k∈Z
|(µ

(k),m+1
k − µ

(k),m
k ) ∗ f |

∥∥∥∥
2

. λ−mτ
‖ f ‖2.

PROOF. By dominating the supremum over k ∈ Z with an l2(Z)-sum and Plancherel’s
theorem, it suffices to show that∑

k∈Z
| ̂µ(k),m+1(A(λk)∗ξ)− µ̂(k),m(A(λk)∗ξ)|2 . λ−2mτ (2.8)

for each ξ 6= 0. We claim that

| ̂µ(k),m+1(ξ)− µ̂(k),m(ξ)|. λ−mτ min(λ−m
|ξ |, (λ−m

|ξ |)−1). (2.9)

That (2.9) implies (2.8) easily follows because Proposition 2.1 allows us to estimate
the left-hand side of (2.8) by a convergent geometric series. Estimate (2.9) follows
from the uniform decay estimate on the Fourier transform of µ(k) using Lemma 2.2
and properties of φ.

Lemma 2.4 implies that

‖M I,3‖2 ≤
∑
n≥1

∑
m≥n

∥∥∥∥ sup
k∈Z
|(µ

(k),m+1
k − µ

(k),m
k ) ∗ f n

|

∥∥∥∥
2

.
∑
n≥1

λ−nτ
‖ f n
‖2

. α1/2
‖ f ‖1/21

∑
n≥1

λ−nτ/2 . α1/2
‖ f ‖1/21
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and, moreover,

‖M I,4‖2 .
∑
m≥0

λ−mτ
∥∥∥∥ ∑

n>m
gn
∥∥∥∥

2
. α‖ f ‖1.

This concludes the proof of (2.6).
To see (2.7), we first claim that for fixed i , those k such that k ≤ li − 2 do not

contribute to ‖M I I,1‖L1(Rd\�∗). To see this, write

A(λk) supp µ(k) = {A(λk+1)0k+1(λ
−1t) | t ∈ [1, λ]}.

By Proposition 2.1 and the fact that 0k+1(s)= A(λk+1)−1 A(λk+1s)e1, where e1 is the
first canonical basis vector of Rd , it follows that

A(λk) supp µ(k) ⊆ C B̃k+1 ⊆ C B̃li−1 ⊆ C B ji .

Here, C is the constant appearing in Proposition 2.1. Since each φn is supported in
B(0, 1/2), it follows that A(λk) supp φn ⊆ B ji and hence, supp(µ(k),nk ∗ bn

Qi
)⊆�∗.

So it suffices to prove that∑
i

∑
n≥1

∑
k≥li+ε−1n

‖µ
(k),n
k ∗ bn

Qi
‖1 . ‖ f ‖1.

For fixed x ∈ Rd we use the cancellation in bn
Qi

and Taylor’s theorem to get

det A(λk)(µ
(k),n
k ∗ bn

Qi
(x))

=

∫
Qi

bn
Qi
(y)[µ(k),n(A(λk)−1(x − y))− µ(k),n(A(λk)(x − xi ))] dy

=

∫ 1

0

∫
Qi

bn
Qi
(y)〈A(λk)−1(xi − y), ∇µ(k),n(A(λk)−1(x − xi + t (xi − y)))〉 dy dt.

For y ∈ Qi ,

A(λk)−1(xi − y) ∈ A(λk)−1 A(λli )B(0, 3).

Since k ≥ li , it follows by Proposition 2.1 that |A(λk)−1(xi − y)|. λ(li−k)ε. Also,
‖∇µ(k),n‖1 . λn because ‖µ(k)‖. 1. Therefore,∫

|µ
(k),n
k ∗ bn

Qi
(x)| dx . λ(li−k)ε+n

‖bn
Qi
‖1,

and by (2.5) this implies that∑
i

∑
n≥1

∑
k≥li+ε−1n

‖µ
(k),n
k ∗ bn

Qi
‖1 .

∑
i

∑
n≥1

‖bn
Qi
‖1 . α|�|. ‖ f ‖1

as required. This concludes the proof of Theorem 1.3 for M0 . As in [13], a very
similar argument works for H0 . Indeed, no further ideas beyond those in [13] and
those contained in our proof of Theorem 1.3 for the maximal operator are needed.
Thus we refer the reader to [13] (or to [2]) for a fleshed-out proof for H0 .
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3. Proof of Theorem 1.4

Without loss of generality P(0)= 0, so P(s)=
∑n

j=1 p j s j for some real numbers
p j . As in [1], we use a decomposition of the form

(0,∞)=
⋃
j∈J

γ |−1
(0,∞)(G j ) ∪

⋃
l∈L

γ |−1
(0,∞)(Dl),

which is based on properties of P . Here, J are those j = 1, . . . , n such that the
interval G j := (κ|z j |, κ

−1
|z j+1|) is nonempty, where κ is some constant depending

only on n and the z j are the roots of P ordered as

0= |z1| ≤ |z2| ≤ · · · ≤ |zn|

with zn+1 :=∞. We may choose the Dl to be disjoint and such that if Dl = (αl , βl)

then αl ∼ βl . Moreover, γ−1(αl)∼ γ
−1(βl) since γ is convex and passes through the

origin (see, for example, [1]). Therefore, if

M0,I f (x) := sup
k∈Z

2−(d−1)k
∣∣∣∣ ∫
|t |∈[2k ,2k+1]∩γ |−1

(0,∞)(I )
f (x − 0(t)) dt

∣∣∣∣ for I ⊂ (0,∞)

then each M0,Dl is bounded on L1 by Minkowski’s inequality. Since the cardinalities
of J and L cannot exceed n, we only need consider each M0,G j . The point is that P
is suitably under control on each G j in the following sense.

LEMMA 3.1. There exists a constant Cn > 1 such that, for any κ ≥ Cn:

(1) |P(s)| ∼ |p j |s j for all j ∈ J and s ∈ G j ;
(2) P ′(s)/P(s) > 0 for all j ∈ J and s ∈ G j ;
(3) s P ′(s)/P(s)∼ 1 for all j ∈ J and s ∈ G j ;
(4) P ′′(s)/P(s) > 0 and s2 P ′′(s)/P(s)∼ 1 for all j ∈ J \ {1} and s ∈ G j .

Lemma 3.1 appeared in this form in [2] but the ideas originated in [5]. We fix j ∈ J
and proceed as in our proof of Theorem 1.3. The appropriate d by d dilation matrices
{A(t) | t > 0} are given by

A(t)k,l :=


t for k = l and k = 1, . . . , d − 1
|p j |γ (t) j for k = l = d
0 for k 6= l.

The convexity of γ implies that the Rivière condition in Proposition 2.1 holds. We
again use the Calderón–Zygmund theory developed in [4] with B̃k := A(2k)B(0, 1)
and an appropriately chosen supersequence of Bk to ensure that condition (B5) holds.
In fact, our only job is to verify that an appropriate decay estimate holds. We normalize
0 in the analogous way; that is, for each k ∈ Z, 0k is given by

0k(t) := A(2k)−10(2k t) for t ∈ Rd−1.
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Therefore, 0k(t)= (t, γk(|t |)) where

γk :=
P(γ (2k

· ))

|p j |γ (2k) j .

We write M0,G j f = supk∈Z |µ
(k)
k ∗ f | where

〈µ(k), ψ〉 :=

∫
|t |∈Ik

ψ(0k(t)) dt, 〈µ
(k)
k , ψ〉 := 〈µ(k), ψ(A(2k) · )〉

and Ik := [1, 2] ∩ 2−kγ |−1
(0,∞)(G j ).

LEMMA 3.2. For each k ∈ Z and each ξ ∈ Rd ,

|µ̂(k)(ξ)|. (1+ |ξ |)−1/2.

PROOF. Under hypothesis (1) of Theorem 1.4 we capitalize on the decay of the Fourier
transform of surface measure on Sd−2. The details of this argument can be found in
[1, Lemma 3.1] with the main impetus of ideas originating in [10]. Assuming that (2)
of Theorem 1.4 holds, we claim that

|γ ′′k (t)|& |γ
′

k(t)|& |γk(t)|& 1 ∀t ∈ Ik .

Given the claim, the proof of Lemma 3.2 follows from standard arguments using van
der Corput’s lemma.

To prove the claim, it is immediate that Lemma 3.1 and (1.4) give |γk(t)|& 1 for all
t ∈ Ik . Moreover, (1.4) in Theorem 1.4 implies that tγ ′(t)≥ γ (t) for all t > 0. Thus,
by Lemma 3.1,

|γ ′k(t)|

|γk(t)|
= 2k |P

′(γ (2k t))|

|P(γ (2k t))|
γ ′(2k t)& 2k γ

′(2k t)

γ (2k t)
& 1,

which implies that |γ ′k(t)|& 1. For the remaining assertion, observe that

P ′′(γ (2k t))γ ′(2k t)

P ′(γ (2k t))
and

γ ′′(2k t)

γ ′(2k t)

are both positive on Ik by Lemma 3.1. Therefore,

|γ ′′k (t)|

|γ ′k(t)|
= 2k

∣∣∣∣ P ′′(γ (2k t))γ ′(2k t)

P ′(γ (2k t))
+
γ ′′(2k t)

γ ′(2k)

∣∣∣∣≥ 2k P ′′(γ (2k t))γ ′(2k t)

P ′(γ (2k t))
& 1,

where the last bound follows from another application of Lemma 3.1. This completes
the proof of Lemma 3.2.

One can easily verify that the corresponding decay estimates also hold for the
normalized measures associated with H0 . Thus, Theorem 1.4 now follows from the
argument used to prove Theorem 1.3.

REMARK. It follows from the proof of Theorem 1.4 that the conclusion holds with a
finite constant C which one can take to be independent of the coefficients of P .
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