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A model for obtaining scaling laws for Rayleigh–Bénard convection (RBC) at high
Rayleigh numbers in tall, slender cells (cells with low aspect ratio, Γ = d/H � 1) is
presented. Traditional RBC (Γ � 1) is characterised by large-eddy circulation scaling
with the height of the cell, a near-isothermal core and almost all the thermal resistance
provided at the horizontal walls. In slender RBC cells, on the other hand, away from
the horizontal walls, tube-like convection with eddies scaling with the tube diameter
and a linear temperature gradient driving the convective flow is present. The crux of our
approach is to split the cell into two components: (i) ‘wall convection’ near the top and
bottom horizontal walls and (ii) ‘tube convection (TC)’ in the central part away from the
walls. By applying the scaling relations for both wall convection and TC, and treating
the total thermal resistance as a sum of their contributions, unified scaling relations for
Nusselt number, Reynolds number and mean vertical temperature gradient in slender RBC
cells are developed. Our model is applicable for high enough Rayleigh numbers, such that
convection both at the wall and in the tube are turbulent. Our model predictions compare
well with the data from various studies in slender RBC cells where these conditions are
satisfied. In particular, the effects of Γ and Prandtl number are well captured. We propose
a scaled aspect ratio using which we obtain ‘universal’ correlations for the heat flux
and for the fractional temperature drop in the tube that include the effects of Rayleigh
and Prandtl numbers. The profiles of suitably scaled horizontal and vertical velocity
fluctuations, along with estimates for boundary layer thickness near the horizontal walls,
and the radial distribution of the velocity fluctuations in the tube part are also presented.
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1. Introduction
Natural or free convection or buoyancy-driven flows are caused by differences in
temperature, concentration, etc. and are often turbulent, owing to the low viscosities of
the most common fluids – air and water. Examples of buoyancy-driven flows in nature
include convection in the atmosphere, in clouds, in oceans and in the Earth’s mantle.
In industry, thermal convection is often encountered in boilers, food processing and chem-
ical industries, cooling of electronic equipment, heat exchangers, HVAC, etc. One of the
simplest and widely studied configurations of (natural) thermal convection is Rayleigh–
Bénard convection (RBC) (see figure 1a) where a layer of fluid sandwiched between
two horizontal walls is heated from the bottom and cooled from the top. The forcing
responsible for this convection is often expressed non-dimensionally by the Rayleigh
number Ra = gβ�T H3/(να). Here, β is the thermal expansion coefficient, ν and α are
the diffusivities of momentum and temperature, �T is the temperature difference between
the bottom hot and top cold plates, H is the vertical separation between the plates and g
is the acceleration due to gravity. Convection sets in above a critical Rayleigh number of
Raons = 1708 (for laterally unbounded domain), with the formation of laminar convection
rolls. With increasing Ra, the flow transitions to unsteady rolls, followed by chaos and
finally at high enough Rayleigh numbers, the flow becomes turbulent. Even in the turbulent
regime, the flow is characterised by coherent structures: large-scale circulation (LSC)
scaling with the height of the cell and sheet-like plumes originating from the top and
bottom walls. Almost all the temperature drops occur near the two walls, with the core
being nearly isothermal with heat being convected by the LSC offering near-zero thermal
resistance.

The variation of the non-dimensional heat flux, Nusselt number Nu, as a function of
the forcing Ra is of particular interest. This relation is usually expressed in the form
Nu = C Ran Pr p, where Prandtl number Pr = ν/α is a fluid property representative of
the ratio of diffusivities of momentum and heat. Several scaling relationships based
on theoretical arguments or on empirical fits to data from experiments or simulations
have been proposed. The so-called ‘classical turbulent regime’ with the scaling exponent
n = 1/3 was proposed by the marginal stability argument of Malkus (1954) which was
corroborated by some early experiments (Globe & Dropkin 1959). This scaling essentially
means that the fluxes are independent of the length scale H , since the entire thermal
resistance is localised at the thermal boundary layers at the top and bottom walls which
are unaffected by the vertical separation. Later, based on certain assumptions, a slightly
smaller exponent of n = 2/7 was proposed (Castaing et al. 1989; Shraiman & Siggia 1990).
In general, datasets from various experiments (Funfschilling et al. 2005; Sun et al. 2005)
for 107 � Ra � 1012, known as the hard turbulence regime, generally agree with each
other. A scaling exponent of 2/7 � n � 1/3 is generally accepted in this regime, with the
scaling exponent slowly changing from n = 2/7 at low Ra to n = 1/3 at higher Ra. Note
that the Prandtl number dependency of Nu is very weak for Pr � 1 so that p is usually
very small (Ahlers, Grossmann & Lohse 2009). In a series of papers (Grossmann & Lohse
2000, 2001; Stevens et al. 2013), Grossmann and Lohse suggested that pure power laws
may not exist in the entirety of the Ra−Pr parameter space and developed a unified model
with a set of implicit equations involving Nu(Ra, Pr) and Reynolds number, Re(Ra, Pr)

with certain ‘free parameters’ that had to be obtained empirically. The central idea
was to segregate the volume–averaged kinetic and thermal energy dissipation rates into
contributions from the bulk and boundary layers and to demarcate the Ra−Pr parameter
space into different regimes based on the relative dominance of these contributions.

At extremely high Rayleigh numbers, beyond some critical value believed to lie between
Ra∗

u ∼ 1013 and 1015 (for cells of aspect ratio Γ = d/H ∼ 1), it is expected that there
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Figure 1. Schematic of (a) regular RBC (Γ ∼ 1); (b) Tube Convection (TC); and (c) slender RBC. For each
case, the left-hand side shows a schematic and the right-hand side shows the expected mean temperature profile
at high Rayleigh numbers.

will be another transition with a change in value of the scaling exponent n. Kraichnan
(1962) predicted that this transition is due to transition to turbulence in the boundary
layers and a scaling exponent of n = 1/2 would be observed with logarithmic correction
in the prefactor. This regime came to be known as the ultimate regime, marking the
highest attainable heat transport in a system and the flux and the turbulence intensities
becoming independent of the molecular diffusivities (ν and α) of the fluid. There is no
consensus on the values of Ra∗

u and of n in the ultimate regime. At very high Rayleigh
numbers, while experiments from some groups – Grenoble (Chavanne et al. 1997, 2001;
Roche et al. 2010) and Göttingen (He et al. 2012) – have observed evidence of transition
to the ultimate regime (mostly with an effective scaling exponent of n ≈ 0.38 due to
logarithmic corrections) above some specific critical Rayleigh numbers, some others –
Chicago (Castaing et al. 1989; Wu & Libchaber 1992), Eugene/Oregon (Niemela et al.
2000; Niemela & Sreenivasan 2006a), Trieste (Niemela & Sreenivasan 2003, 2006b) and
Brno (Urban, Musilová & Skrbek 2011) – do not find any evidence for the transition. The
apparent contradiction between different groups of experiments is still debated in the RBC
community (Skrbek & Urban 2015; Doering 2020a; He et al. 2020b), and the disparity
may be attributed to the fact that at such high Ra, the details of the experimental setup,
fluid properties, sidewall conduction effects and aspect ratio seem to matter and the system
is extremely sensitive to the boundary conditions (Chilla & Schumacher 2012). In an
attempt to reconcile the disparity between different high-Ra experiments, Roche (2020)
proposed a phenomenological model in which the transition to the ultimate regime was
modelled as a subcritical transition with ‘hard turbulence’ and ‘ultimate regime’ branches
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that is controlled by the boundary condition details of the RBC cell. Recently, based on
the assumption that the velocity and thermal boundary layer thickness are controlled by
the dissipation (Kolmogorov and Batchelor) scales outside the boundary layer, Lindborg
(2023) proposed that even in the limit of very high Ra, the classical scaling n = 1/3 is
still valid. For an extensive review of the literature on the subject, the reader is referred to
the articles by Siggia (1994), Ahlers et al. (2009) and Chilla & Schumacher (2012) and the
recent ones by Doering (2020b), Sreenivasan & Niemela (2023) and Lohse & Shishkina
(2024).

While the debate around the existence of the ultimate regime in regular RBC remains
unresolved, the n = 1/2 power scaling has been shown to exist in the bulk region by
decoupling the bulk flow from the boundary layers, and the convection is driven by a
sustained temperature gradient (Lohse & Toschi 2003; Calzavarini et al. 2005). Whereas
RBC may be considered to be a simple prototype model of natural convection, and has
been extensively studied, another equally simple but less studied case is what may be
termed as TC (figure 1b). In TC, the aspect ratio is small (Γ � 0.2) and the bottom and
top walls are removed and replaced by two reservoirs. The first experiments to demonstrate
TC were performed by Arakeri et al. (2000) by connecting a long vertical tube between
two reservoirs containing salt and fresh water to create a density difference (essentially
making it a high-Prandtl-number convection). With increasing Rayleigh number, the
authors reported four different regimes: a half-and-half flow regime with steady exchange
flow of uniform unmixed streams; a helical regime where the streams take a helical
steady structure; an unsteady laminar regime with unsteady mixing of lighter and heavier
fluid; and finally a fully turbulent flow regime where the mixing was completely three-
dimensional and random. Subsequent experiments (Cholemari & Arakeri 2005, 2009)
characterised some of the salient features of TC in the high-Ra turbulent regime:
the existence of a linear mean density gradient along the vertical direction; axially
homogeneous turbulence away from the ends; negligible mean velocities; Reynolds shear
stress ≈ 0; and the turbulence generated entirely due to buoyancy. Most importantly,
1/2 power scaling (Nu ∼ Ra1/2 Pr1/2) or the ultimate regime was shown to be easily
achievable in TC. Further experiments with similar configurations at Lyon (Gibert et al.
2006, 2009; Tisserand et al. 2010) and Bangalore (Pawar & Arakeri 2016) and simulations
(Schmidt et al. 2012) confirmed the existence of such scaling. At Grashof number less
than a critical value, a second regime, viscous turbulent regime, was identified with a very
different Nusselt number scaling (Nu ∼ Ra0.3 Pr0.7). We discuss these two regimes in TC
in detail in § 3.2, but the main point to note is that in both of them, the Nu dependence on
Pr is strong, compared with RBC where it is weak.

For RBC, direct numerical simulations (DNS) serve as a viable alternative to
experiments; nevertheless, three-dimensional simulations continue to struggle in achieving
the expected critical Rayleigh number for the transition to the ultimate regime (Roche
2020). An intelligent workaround would be to cut short the lateral dimensions of the
simulation domain, since the Rayleigh number by definition depends only on the vertical
size of the domain. Simulations in such slender configurations have been attracting
increased attention in the past few years in attempts to reach extreme Rayleigh numbers.
Usually, for RBC cells of Γ � 1, the aspect ratio has only a minor effect on the Nu
scaling (Ahlers et al. 2009). However, some studies (Huang et al. 2013; Chong et al.
2015; Chong & Xia 2016) have reported that confinement of RBC in one lateral direction
(quasi-two-dimensional RBC) can be used to manipulate thermal plumes enhancing the
heat transport efficiency. Inspired by this, Hartmann et al. (2021) performed DNS of
slender RBC cells severely confined both in one or both lateral directions (1 < Γ −1 < 64;
107 < Ra < 1010; Pr = 4.38; with rectangular, square and circular cross-sections) to reach
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a similar conclusion: moderate confinement in one or both lateral directions can result in
slight heat transport enhancement due to formation of vertical coherent plumes; further
reduction in Γ from the optimum value resulted in a steep drop in Nu. Subsequently,
Shishkina (2021) and Ahlers et al. (2022) derived expressions for the critical Ra for the
onset of convection as a function of Γ , and showed that when Ra is appropriately re-
scaled, the Nu data from various simulations and experiments with different Γ collapse
and agree with each other. Further simulations and experiments by Zhang & Xia (2023a,b)
also confirm the slight heat transfer augmentation due to severe lateral confinement.
Recently, Iyer et al. (2020a) performed three-dimensional DNS of RBC in a slender
cylindrical domain of Γ = 0.1 with Pr = 1 to cover an extensive range of Ra = 108–1015

and found that the classical scaling n = 1/3 holds satisfactorily in the entire range.
These are some of the highest Ra achieved in three-dimensional DNS of RBC. Samuel,
Samtaney & Verma (2022) performed Large Eddy Simulations (LES) of slender RBC in a
cell with a square base over a broad range 106 < Ra < 1015 and found good match of the
data with DNS of Iyer et al. (2020a) with a similar scaling. In subsequent works (Pandey &
Sreenivasan 2021; Pandey et al. 2022), the Prandtl number dependency was also explored
and it was concluded that for Pr � 1, the Nu scaling in slender cells was close to that
in wide cells (Γ ∼ 1), although flow velocities were lower. Once again, there have been
debates in the RBC community about the validity of such slender domains to predict the
transition to the ultimate state (He et al. 2020a; Iyer et al. 2020b).

Despite the emerging attention to convection in slender geometries, there have been no
studies (except Ahlers et al. 2022) that look into the aspect ratio dependence of heat flux
and velocity scalings at such low aspect ratios. In this paper, we look at the RBC problem
in such slender geometries with severe confinement in the two lateral directions from a
different perspective. We combine the results from TC with those from traditional RBC,
and derive the scaling relations for heat transport and velocities in slender RBC cells.
The rest of the article is organised as follows. In § 2, we introduce the basic approach
of our model and its application to slender RBC. In § 3, we discuss the mechanism of
heat transfer and existing scaling relations for turbulent free convection near the walls
and tube part of the slender RBC. In § 4, we derive the scaling relations for Nusselt
number and temperature gradient in slender RBC along with their aspect ratio and Prandtl
number dependence, and compare with some of the recently published data. We discuss
the velocity/Reynolds number scaling for slender RBC in § 5. In § 6, we discuss the near-
wall variations of the turbulence quantities and compare them with the DNS results of Iyer
et al. (2020a). Finally, we compare the fluxes in a slender RBC cell with those of a TC cell
of the same dimensions in § 7. We summarise the work and give our concluding remarks
in § 8.

2. Slender RBC
A schematic of a slender RBC cell and the expected mean temperature profile are shown in
figure 1(c). The width or diameter of the cell d is much smaller compared with the height
of the cell H , so that the aspect ratio Γ = d/H � 1. Total temperature difference between
the bottom hot (Th) and top cold (Tc) plates is �T = Th − Tc. The sidewalls are assumed
to be adiabatic. The governing parameters are Rayleigh number Ra = gβ�T H3/(να),
aspect ratio Γ and Prandtl number Pr . For slender RBC, an alternative Rayleigh number
based on d is sometimes more convenient, Rad = gβ�T d3/(να) = RaΓ 3. The non-
dimensional heat flux Nu = q ′′/q ′′

cond = q ′′H/(k�T ) will depend on the three parameters
Nu = f (Ra or Rad , Γ, Pr). Here q ′′ is the total heat flux across any horizontal cross-
section (which is also equal to the conductive heat flux at the walls), q ′′

cond is the
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hypothetical conductive flux across the height of the cell in the absence of any fluid motion
and k is the thermal conductivity of the fluid. The purpose of this paper is to propose a
model that gives Nu as a function of the three parameters, for Γ � 1 and for high enough
Ra when the convection is turbulent.

At high enough Rayleigh numbers, the mean temperature profile T (z) can be considered
to have two parts – two temperature drops near the two horizontal walls, and a linear
variation (Iyer et al. 2020a; Pandey & Sreenivasan 2021) over much of the central height
of the cell (see figure 1c). This is in contrast to what is observed in regular RBC (Γ � 1),
where similar temperature drops are observed at the walls, but the core is essentially
isothermal (figure 1a). Figure 1(b) shows a schematic of TC, that which occurs in a
long vertical tube separated by two tanks containing heavier and lighter fluid at the top
and bottom, respectively. The density difference can be created by species concentration
difference (e.g. brine and fresh water (Cholemari & Arakeri 2005), when Pr ∼ 600) or
by temperature difference (Pr ∼ 6) (Pawar 2015). When L/d � 1, the (unstable) density
gradient is necessarily linear, and the convection is axially homogeneous with eddies
scaling with tube diameter at the higher range of Ra in which our model is applicable.
In slender RBC, the part where the temperature varies linearly is akin to TC, where the
flow is axially homogeneous.

The approach we take to model slender RBC, or confined convection, is to break up the
convection into two parts, the wall part and the tube part. These two parts offer different
resistances to the heat flow; the heat flux is determined by the sum of these resistances in
series. We use known correlations for the wall and tube parts. Our model works for certain
ranges of Rayleigh numbers and aspect ratios, for which these correlations are valid.

The heat flux in slender RBC is determined by three thermal resistances in series, two
at the two walls (both equal to Rw) and the other in the tube (Rtub):

q ′′ = �T

Rtot
= �Tw

Rw

∣∣∣∣
bot

= �Ttub

Rtub
= �Tw

Rw

∣∣∣∣
top

, (2.1)

where Rtot is the total thermal resistance. The temperature drops at the top (�Th = Th −
Tkh) and bottom (�Tc = Tkc − Tc) walls are assumed to be equal due to symmetry so that
�Th = �Tc = �Tw, where �Tw is the mean temperature drop at either wall. Here Tkh and
Tkc are the ‘knee’ temperatures near the bottom and top walls, respectively (see figure 1c).
The total temperature difference �T is thus the sum of the temperature drops at the two
walls (�Tw) and in the tube part (�Ttub = Tkh − Tkc):

�T = �Th + �Ttub + �Tc = 2�Tw + �Ttub. (2.2)

We use the correlations at the wall and in the tube to determine �Tw and �Ttub, and Rw

and Rtub. The linear variation of the mean temperature in the tube part is (dT /dz)|tube =
�Ttub/Htub, where Htub = H − 2δT is the height which has the linear temperature gradi-
ent. For rest of the paper, we suppress the subscript ‘tube’ for the temperature gradients so
that (dT /dz)|tube ≡ (dT /dz), with the understanding that temperature gradients are of the
tube part, unless otherwise stated. Since the thermal boundary layer thickness δT � H ,
Htub ≈ H and the temperature gradient in the tube may be approximated as

dT

dz
= �Ttub

H
. (2.3)
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Parameter Definition Remarks

Ra gβ�T H3/(να) Conventional Rayleigh number based on total height
Rad gβ�T d3/(να) Rayleigh number based on cell width
Raw gβ�Twd3/(να) Rayleigh number at the walls
Rag gβ dT

dz d4/(να) Gradient Rayleigh number in the tube
RaδT gβ�Twδ3

T /(να) Rayleigh number based on thermal boundary layer thickness
Raλp gβ�Twλ

3
p/(να) Rayleigh number based on plume spacing λp

dT̃ /dz̃ dT
dz

(
�T
H

)−1
Non-dimensional temperature gradient in the tube; also the ratio of
temperature drop in the tube to the total temperature difference
(= �Ttub/�T )

Nu q ′′ H/(k�T ) Conventional Nusselt number
Cqw Ra−1/3

δT
Alternative non-dimensional heat transfer coefficient at the walls

Nug q ′′/
(

k dT
dz

)
Gradient Nusselt number in the tube

Re urms H/ν Conventional Reynolds number based on r.m.s. velocity and total
height

Red urmsd/ν Reynolds number based on r.m.s. velocity and cell width

Table 1. List of some non-dimensional parameters relevant to slender RBC.

We may non-dimensionalise the temperature as T̃ = (T − Tc)/�T and height as z̃ = z/H .
The dimensionless temperature gradient in the tube is thus given by

dT̃

dz̃
= dT

dz

(
�T

H

)−1

= �Ttub

�T
. (2.4)

Since �Tw = (�T − �Ttub)/2, using (2.4) we may write

�Tw

�T
= 1

2

(
1 − dT̃

dz̃

)
. (2.5)

It is sometimes useful to define a wall Rayleigh number based on the temperature jump at
the wall �Tw and the width (or diameter) of the cell d as Raw = gβ�Twd3/(να). This
definition comes in handy in our analysis of the slender RBC especially when dealing with
the near-wall dynamics of plumes and the boundary layer, as we shall see later. The wall
Rayleigh number Raw can be expressed in terms of Ra using (2.5) as

Raw = 1
2

Ra

(
1 − dT̃

dz̃

)
Γ 3 = 1

2
Rad

(
1 − dT̃

dz̃

)
. (2.6)

Note that for a regular RBC with Γ ∼ 1, Rad ≈ Ra and either can be used interchangeably.
For slender RBC, Rad can be perceived as an equivalent Rayleigh number of a regular
RBC with domain height d instead of H . Definitions of some of the non-dimensional
parameters discussed in this section along with some that are introduced in the subsequent
sections are given in table 1 for quick reference.

3. Heat transport in a slender RBC cell
Having set some of the basic definitions, we now proceed to analyse the heat transport in a
slender RBC cell. The time-averaged heat flux is same at all horizontal cross-sections, and
the temperature drops at the (top and bottom) walls and in the tube part are determined by
the thermal resistance offered by each.
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3.1. Thermal resistance at the walls
The temperature drop at the wall �Tw in RBC occurs across the thermal boundary
layer thickness, which is defined as δT = �Tw/(dT /dz)|w, where (dT /dz)|w is the
mean temperature gradient at the wall. Thus, δT /H = (�Tw/�T )Nu−1. For turbulent
convection in a regular RBC cell with a nearly isothermal core, �Tw = �T/2 and
δT /H = (1/2)Nu−1. However, for a slender RBC cell, we need to account for the drop
in the tube part. Using (2.5), the thermal boundary layer thickness for slender RBC can be
written as

δT

H
= 1

2

(
1 − dT̃

dz̃

)
Nu−1. (3.1)

To obtain the resistance at the walls, we use the correlations for heat flux in classical
RBC (Γ � 1). Instead of Nusselt number Nu, however, we use an alternative parameter
as proposed by Theerthan & Arakeri (2000) to non-dimensionalise the heat flux, which is
more convenient and meaningful:

Cqw = q ′′

k�Tw

(
gβ

να
�Tw

)−1/3

= Ra−1/3
δT

. (3.2)

This proposal is an outcome of the observation that in turbulent natural convection,
Nu scales roughly as Ra1/3, making the heat flux nearly independent of the length scale.
By assuming the heat flux to be dependent only on �Tw, the temperature difference
across the wall boundary layer, and the fluid properties, dimensional analysis gives the
above expression for Cqw . It turns out that Cqw = Ra−1/3

δT
, where RaδT = gβ�Twδ3

T /(να)

is the Rayleigh number based on conduction-layer thickness δT . The advantage of such
a representation is the fact that unlike Nu which changes by orders of magnitude with
changing Ra, the value of Cqw lies between 0.1 to 0.3 not just for RBC, but for various
configurations (see Arakeri 2012; Arakeri, Kumar & Mahapatra 2024) involving natural
convection in the presence of a wall. The heat flux q ′′ = k(dT /dz)|w = k�Tw/δT in terms
of Cqw is thus given by

q ′′ = Cqwk

(
gβ

να

)1/3

�T 4/3
w . (3.3)

In ‘standard’ RBC (Γ � 1) since �Tw ≈ �T/2, using (3.3) we get an expression for Cqw in
terms of Nu and Ra as Cqw = 24/3 Nu Ra−1/3. Using the usual representation of scaling for
RBC, Nu = C Ran Pr p, we can obtain Cqw = 24/3C Ran−1/3 Pr p. For the classical scaling
regime (n = 1/3), we get Cqw = 24/3C Pr p; Cqw is only a function of Pr and not Ra.
For example, the scaling proposed by Globe & Dropkin (1959), Nu = 0.069Ra1/3 Pr0.074

gives Cqw = 0.1739Pr0.074. Note that Cqw is not just a compensated Nusselt number,
it is a different and more suitable non-dimensional measure of heat flux than Nu. The
physical significance of Cqw is the fact that Cqw = const. implies that for different Ra, the
conduction layer thickness δT adjusts itself to compensate for the temperature difference
across it (�Tw) to keep RaδT a constant, which fits in with the argument of Malkus (1954)
and forms the basis for the models for turbulent RBC by Howard (1966) and Theerthan &
Arakeri (1998). For more discussion on Cqw and its advantages, the reader is referred to
Theerthan & Arakeri (2000), Puthenveettil & Arakeri (2005), Arakeri (2012) and Arakeri
et al. (2024).

For free convection over heated horizontal flat plates, at high enough Rayleigh numbers
Nu = 0.15Ra1/3

w for 8 × 106 < Raw < 1.6 × 109 (Lloyd & Moran 1974) with the length
scale equal to the width of the plate d and temperature scale �Tw as the temperature
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Figure 2. (a) Variation of the dimensionless wall heat transfer coefficient Cqw with Rad = RaΓ 3 in a slender
RBC cell, calculated using (3.4) for Iyer et al. (2020a) (Γ = 0.1 and Pr = 1). Red curve shows Cqw calculated
from the Grossmann–Lohse (GL) theory (Stevens et al. 2013) for regular RBC with Γ = 1, Pr = 1 and black
dotted line is the corresponding least-squares fit given by Cqw = 0.1328 + 1.235Ra−0.18

d . Blue dashed line
shows a constant Cqw = 0.1739 approximation from Globe & Dropkin (1959). (b) Scaling of gradient-based
dimensionless quantities Nug versus Rag in the tube region of Iyer et al. (2020a), calculated using (3.5)
and (3.6) and compared with the two regimes of scaling in Pawar & Arakeri (2016). In both panels, the data from
Iyer et al. (2020a) are calculated from Nusselt number averaged at the top/bottom plates Nu (black markers)
and that averaged in the whole volume Nuv (light-green markers).

difference between the plate and the ambient. From this correlation, we get Cqw = 0.15.
In both the above examples, the Nu−Ra scaling laws follow the classical 1/3 power
law which gives a constant value (with a weak function of Pr ) for Cqw . For a non-
classical scaling, for example, Nu = 0.15Ra0.29 for Pr = 0.7 in a RBC container of Γ = 1
(Scheel & Schumacher 2017), we obtain Cqw = 0.378Ra−0.0433, a weak function of Ra.

We next check the values of Cqw obtained in the slender RBC cell using the Nu versus
Ra data presented in Iyer et al. (2020a). For a slender RBC cell, using (2.5) in (3.3) the
expression for Cqw becomes

Cqw = Ra−1/3
δT

= 24/3 Nu Ra−1/3
(

1 − dT̃

dz̃

)−4/3

. (3.4)

The values of Cqw so calculated for slender RBC with Γ = 0.1 and Pr = 1 from Iyer et al.
(2020a) data are shown in figure 2(a) and plotted against Rad = RaΓ 3. Two versions of
Cqw are shown: one calculated from Nusselt number averaged over the top/bottom walls
(Nu) and other averaged in the whole domain (Nuv). To compare this with that of a regular
RBC, we show for a cell with Γ = 1 and Pr = 1, the Cqw prediction from the GL theory
with the updated prefactors (Stevens et al. 2013). A least-squares curve fit to the GL curve
gives Cqw = 0.1328 + 1.235Ra−0.18

d for Pr = 1. Ideally, we should be using Raw instead
of Rad for comparing the Cqw values for regular and slender RBC cases, because �Tw is
the forcing at the wall and not �T as is assumed in the figure. However, Rad = 2Raw(1 −
(dT̃ /dz̃)−1 and for the cases we are considering, the values of dT̃ /dz̃ are small, and since
Cqw is a very weak function of Raw, the plot of Cqw versus Raw closely resembles that
of Cqw versus Rad . It can be seen that both versions (from Nu and Nuv) of the Iyer et al.
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(2020a) data follow the prediction of GL theory very closely, validating our hypothesis
that the heat transfer mechanism at the walls of both regular and slender RBC cells is the
same. Also shown is the constant approximation of Cqw = 0.1739 based on the Globe &
Dropkin (1959) fit for reference. The main conclusion is that heat transfer at the walls of
slender RBC is conveniently obtained by using the non-dimensional heat transfer measure
Cqw , whose value is nearly constant.

3.2. Thermal resistance in the tube part
Convection in the tube part of the slender RBC cell, which we term as TC, has a very
different character compared with the convection near the walls. At high enough Rayleigh
numbers the flow is axially homogeneous and the turbulence is entirely buoyancy-driven
(Cholemari & Arakeri 2009).

A conventional definition of Rayleigh number for the tube part would be given by
Ratub = gβ�Ttub H3/(να), where Ttub is the difference between the knee temperatures
at the tube ends. However, since the convection is axially homogeneous and driven by a
linear temperature gradient, it is more appropriate to use what we call the gradient-based
Rayleigh number (Arakeri et al. 2000), based on the vertical temperature gradient in the
tube and the tube diameter: Rag = gβ�Tdd3/(να) = gβ(dT /dz)d4/(να), where �Td =
(dT /dz)d is the temperature difference in the tube part over a diameter height. Essentially,
away from the top and bottom ends, the convection is driven by the local temperature
gradient and the length scale is the tube diameter (Cholemari & Arakeri 2005, 2009). The
relation between Rag and Ra in slender RBC is obtained using (2.3) and (2.4) as

Rag = Ra

(
dT̃

dz̃

)
Γ 4. (3.5)

Again, for the tube part of slender RBC, a gradient-based Nusselt number can be defined
as Nug = q ′′d/k�Td = q ′′/(k(dT /dz)) which depends only on the local temperature
gradient in the tube. Taking the ratio Nug/Nu and using (2.4), we have

Nug = Nu

(
dT̃

dz̃

)−1

. (3.6)

A general scaling relation for heat flux in the tube region may be written as

Nug = Ctub Raa
g Prb. (3.7)

Several regimes, depending on Rag and Pr , exist in TC. Some have been documented
for high Pr in Arakeri et al. (2000). At high enough Rag , the convection becomes
turbulent with no mean flow. For the turbulent flow itself, two regimes have been identified
(Pawar & Arakeri 2016). Combining all the experimental and numerical data that were
reported until then at different Prandtl numbers, Pawar & Arakeri (2016) argued that the
correlations for the two turbulent regimes are best given in terms of the gradient-based
Grashof number Grg = gβ(dT /dz)d4/ν2 = Rag/Pr , and proposed for the two regimes
the following relations:

Nug = C0.3Gr0.3
g Pr = C0.3 Ra0.3

g Pr0.7 for Grg0 < Grg < Grgc, (3.8a)

Nug = C0.5Gr0.5
g Pr = C0.5 Ra0.5

g Pr0.5 for Grg > Grgc, (3.8b)

where Grgc 	 1.6 × 105 is the critical gradient Grashof number where the flow transitions
from 0.3 to 0.5 power regime and Grg0 is a possible unknown lower critical limit below
which the scaling is unexplored. The empirically determined values for the prefactors
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Ra 108 109 1010 1011 1012 1013 1014 1015

dT̃
dz̃ 0.2877 0.3369 0.3051 0.2310 0.1533 0.1275 0.1095 0.0903

Rad 105 106 107 108 109 1010 1011 1012

Raw 3.56×104 3.32×105 3.47×106 3.85×107 4.23×108 4.36×109 4.45×1010 4.55×1011

Rag 2.88×103 3.37×104 3.05×105 2.31×106 1.53×107 1.28×108 1.10×109 9.03×109

Nu 29.94
±0.04

58
±10

107
±11

229
±13

503
±25

1075
±44

2228
±100

4845
±200

Nuv 29.94
±0.01

59
±5

107
±11

222
±25

510
±70

806
±120

2000
±200

4500
±300

Cqw,s 0.2555
±0.0003

0.2528
±0.0436

0.2033
±0.0209

0.1765
±0.0100

0.1582
±0.0079

0.1508
±0.0062

0.1412
±0.0063

0.1385
±0.0057

Cqw,v 0.2555
±0.0001

0.2571
±0.0218

0.2033
±0.0209

0.1711
±0.0193

0.1604
±0.0220

0.1131
±0.0168

0.1267
±0.0127

0.1286
±0.0086

Nug,s (1.04
±0.00)×102

(1.72
±0.30)×102

(3.51
±0.36)×102

(9.91
±0.56)×102

(3.28
±0.16)×103

(8.43
±0.35)×103

(2.03
±0.09)×104

(5.37
±0.22)×104

Nug,v (1.04
±0.00)×102

(1.75
±0.15)×102

(3.51
±0.36)×102

(9.61
±1.08)×102

(3.33
±0.46)×103

(6.32
±0.94)×103

(1.83
±0.18)×104

(4.98
±0.33)×104

Red 6.01×101 1.92×102 5.57×102 1.70×103 5.25×103 1.33×104 4.10×104 1.09×105

λp/d 1.5805 0.7513 0.3433 0.1541 0.0693 0.0318 0.0147 0.0068
d/λp 0.63 1.33 2.91 6.49 14.4 31.4 68.1 147.9

Table 2. Summary of different non-dimensional parameters at different Ra calculated for Iyer et al. (2020a)
data (Pr = 1, Γ = 0.1). The subscripts s and v are used to represent quantities calculated from the Nusselt
number data of the reference evaluated at the top/bottom plates (Nu) and evaluated in the domain volume
(Nuv), respectively.

are C0.3 = 8.3 ± 3 and C0.5 = 0.75 ± 0.1. The scaling exponents in (3.7) take the values
a = 0.3, b = 0.7 for the 0.3 regime (Grg < Grgc) and a = 0.5, b = 0.5 for the 0.5 regime
(Grg > Grgc).

The 0.5 regime (Grg > Grgc) corresponds to the ‘ultimate regime’ where heat flux
becomes independent of the viscosity and thermal diffusivity of the fluid, and is easily
and unambiguously achievable with ordinary fluids at laboratory scales in TC as compared
with RBC. For the 0.3 regime (Grg < Grgc), it was shown (Pawar & Arakeri 2016) that
viscous effects start affecting the flux, and we obtain a ‘viscous turbulent’ regime in TC.
It is important to note that the nature of the correlations is very different from those for
regular RBC, in particular the dependence on Pr is strong.

The plot of Nug versus Rag (figure 2b) shows that the data from Iyer et al. (2020a)
closely follow the TC correlations ((3.8a), (3.8b)), including the flow transitioning from
0.3 to 0.5 regime at the critical gradient Grashof number Grgc. Equations (3.5) and (3.6)
were used to calculate Nug and Rag from the simulation data (from both versions of
Nusselt number, Nu and Nuv). The close match between data and prediction validates our
hypothesis that the flow in the tube part of the slender RBC is very similar to or the same
as that in TC.

The values of all the non-dimensional parameters calculated for the simulations of Iyer
et al. (2020a) at Pr = 1 and Γ = 0.1 are given in table 2. The equations used for dT̃ /dz̃,
Raw, Cqw , Rag and Nug have been discussed in §§ 2 and 3. The calculation of Reynolds
number Red and the mean plume spacing λp/d are discussed later in the paper.

4. Correlations for heat flux in slender RBC
In this section, we combine the scaling relations for the wall and the tube parts to derive a
generalised Nusselt–Rayleigh scaling relation for slender RBC. The total temperature drop
is �T = 2�Tw + �Ttub (2.2); and we use the correlation for the wall part to calculate �Tw
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and that for the tube part to calculate �Ttub. The temperature drops are directly related to
the relative resistances in each of the two parts.

Equation (3.3) gives the relation between heat flux q ′′ and temperature drop at the wall
�Tw in terms of Cqw . We may invert this relation and write

�Tw = C−3/4
qw

(
q ′′

k

)3/4 (gβ

να

)−1/4

= K −3/4
w (q ′′)3/4, (4.1)

where Kw = Cqwρcp(gβ)1/3ν−1/3α2/3, a temporary constant.
The general scaling law for TC is given by (3.7). Using the definitions of Nug , Rag and

Pr in this, we have

q ′′

k dT
dz

= Ctub

⎛⎝gβ dT
dz d4

να

⎞⎠a ( ν

α

)b
. (4.2)

Using (2.3) and Γ = d/H and rearranging, we have

q ′′ = Ctubρcp(gβ)aνb−aα1−a−bΓ 4a H3a−1�Ttub
1+a . (4.3)

Inverting this relation, we have

�Ttub = K
−1

1+a
tub (q ′′)

1
1+a Γ

−4a
1+a H

1−3a
1+a , (4.4)

where Ktub = Ctubρcp(gβ)aνb−aα1−a−b, another temporary constant.

4.1. The generalised Nu–Ra correlation for slender RBC
Substituting (4.1) and (4.4) to (2.2), we get

�T = 2K −3/4
w (q ′′)3/4 + K

−1
1+a

tub (q ′′)
1

1+a Γ
−4a
1+a H

1−3a
1+a . (4.5)

We can non-dimensionalise this equation by multiplying throughout by (gβ/να)H3:

gβ�T H3

να
= 2

(
gβ

να

)
K −3/4

w (q ′′)3/4 H3 +
(

gβ

να

)
K

−1
1+a

tub (q ′′)
1

1+a Γ
−4a
1+a H

1−3a
1+a H3. (4.6)

Substituting for Kw and Ktub and rearranging terms:

gβ�T H3

να
= 2C−3/4

qw

(
gβ�T H3

να

)3/4 (
q ′′H
k�T

)3/4

+ C
−1

1+a
tub

(
gβ�T H3

να

) 1
1+a

(
q ′′H
k�T

) 1
1+a ( ν

α

) −b
1+a

Γ
−4a
1+a . (4.7)

Thus, we have the generalised Nu–Ra correlation for slender RBC cells as

2C−3/4
qw

Nu3/4 Ra3/4 + C
−1

1+a
tub Nu

1
1+a Ra

1
1+a Pr

−b
1+a Γ

−4a
1+a = Ra. (4.8)

Instead of the familiar power-law form, we have an implicit equation between Nu, Ra, Pr
and Γ . The first term on the left-hand side corresponds to the wall part and second term
corresponds to the tube part. Due to the implicit nature of the equation, the Nu value has to
be calculated iteratively. The values of Ctub, a and b depend on the regime of TC scaling
in the tube part of the slender RBC. For the two regimes for the tube part mentioned
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in (3.8), (4.8) becomes

2C−3/4
qw

Nu3/4 Ra3/4 + C−10/13
0.3 Nu10/13 Ra10/13 Pr−7/13Γ −12/13 = Ra

for Grg0 < Grg < Grgc, (4.9a)

2C−3/4
qw

Nu3/4 Ra3/4 + C−2/3
0.5 Nu2/3 Ra2/3 Pr−1/3Γ −4/3 = Ra

for Grg > Grgc, (4.9b)

where Ctub = C0.3, a = 0.3, b = 0.7 for the 0.3 regime and Ctub = C0.5, a = b = 0.5 for
the 0.5 regime. Depending on whether the gradient-based Grashof number Grg in the
tube part of the slender RBC cell is below or above the critical value Grgc = 1.6 × 105,
one has to solve either (4.9a) or (4.9b) to obtain Nu at a particular Ra, Pr and Γ . In
order to determine the regime into which the convection in the tube part falls, we need
to know the value of Grg , which is unknown a priori. Hence, we need to find the critical
Grashof number Grc (or the critical Rayleigh number Rac) based on the total temperature
difference and cell height when the convection regime in the tube part changes from the
0.3 to 0.5 regime. The procedure to determine Grc or Rac is given in Appendix A.

4.2. Comparison of model predictions with data
Next, we explore the validity of our model by comparing it against some of the recent
studies involving convection in slender cells. We use only those data from the different
studies that satisfy the restrictions on Ra placed by our model. We will see that in several
cases, the flow was not ‘turbulent’ in the tube or at the wall or both, and thus did not satisfy
the conditions required by the model.

The variation of Nu (compensated by Ra1/3) with Ra for a slender RBC cell of aspect
ratio Γ = 0.1 and Pr = 1 obtained using (4.9a) and (4.9b) is shown in figure 3(a). The
Nusselt number data from Iyer et al. (2020a) (both versions, Nu and Nuv along with
the corresponding error bars) and the data-fit proposed by them are shown, along with
the LES results of Samuel et al. (2022) for the same Rayleigh numbers and conditions
(Γ = 0.1, Pr = 1). We note here that the wall heat flux values from Iyer et al. (2020a)
may not be fully converged for Ra > 1013, but it it is unlikely that the converged
values will be significantly different. The differences in the Nu and Nuv data, as well
as between the two studies, highlight the challenges in simulations at these extreme
Rayleigh numbers. The blue and red curves correspond to the predictions using the
current model with a constant (Cqw = 0.1739 from the Globe & Dropkin (1959) fit)
and variable (Cqw = 0.1328 + 1.235Ra−0.18

d from GL theory) approximations for Cqw ,
respectively. For this configuration, the value of the critical Rayleigh number where the
regime changes in the tube part is determined to be Rac ≈ 5.3 × 109 (see Appendix A).
Below the critical Rayleigh number (the exact value of which depends very weakly on the
choice of Cqw), (4.9a) corresponding to the 0.3 regime is used, and above which (4.9b)
corresponding to the 0.5 power regime is used. Also shown are some other well-known
correlations in the literature for RBC, none of which fit well with the slender RBC data.
The classical scaling relation given by Globe & Dropkin (1959) and the fit proposed by Iyer
et al. (2020a) appear as horizontal lines in the compensated plot. We may mention that the
predictions using the classical RBC correlations become worse as the cells become taller,
as Γ reduces. It can be seen that while our model with the constant Cqw approximation
does not faithfully reproduce the given trend of data points, the model with variable
Cqw approximation follows the data remarkably well. It should be noted that even with
the constant Cqw = 0.1739 approximation, the error in the estimate is less that 20 %.
In fact, a Cqw = 0.15 approximation (from the horizontal flat plate) gives a better
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Figure 3. (a) Compensated Nu versus Ra for slender RBC using the current model (4.9) at Γ = 0.1
and Pr = 1 with constant Cqw = 0.1739 (blue solid line) and variable Cqw = 0.1328 + 1.235Ra−0.18

d (red
solid line). Prediction is compared with the Nusselt number data from Iyer et al. (2020a) averaged at the
top/bottom plates Nu (black markers), averaged in the whole volume Nuv (light-green markers) and the
data-fit proposed by them (black dashed line). Data from Samuel et al. (2022) (orange markers), scaling
proposed by Shraiman & Siggia (1990) (dashed green line), Globe & Dropkin (1959) (dashed pink line) and
the estimate from GL theory with updated prefactors from Stevens et al. (2013) (dashed brown line) are shown.
(b) Compensated Nu versus Ra at lower Rayleigh numbers for different Γ (shown in different colours). Pr = 1
for Γ = 0.2 and Pr = 4.38 for all other Γ values. Solid lines show current model estimate and dashed lines
show the Ahlers et al. (2022) model. Markers show data from DNS of Zhang (2019) (open circles) and
experiments of Zhang & Xia (2023b) (open triangles) at Pr = 4.38; and no-tilt case of Zwirner & Shishkina
(2018) (filled diamonds) at Pr = 1. Dotted lines showing GL theory for each Pr are almost overlapped. For
the current model estimates, Cqw = 0.1328 + 1.235Ra−0.18

d is used, and each truncated at a lower limit of
Grg = 5×103.

prediction at higher Ra, although the departure is higher at lower Ra. However, given
that the agreement is best captured with the variable Cqw , we choose to use this option
further in our analysis. It is evident that the change of regime from 0.3 to 0.5 power law in
the tube is responsible for the sharp change in the slope at the critical Rayleigh number.

In figure 3(b), we show the results of DNS and experimental studies from Zhang
(2019) and Zhang & Xia (2023b) for different aspect ratios in the range 0.05 � Γ � 0.16
at relatively low Rayleigh numbers and Pr = 4.38. Data from the ‘non-tilted cases’
of Zwirner & Shishkina (2018) at Γ = 0.2 and Pr = 1 are also shown. Zhang & Xia
(2023b) found delayed onset of convection with decreasing aspect ratio, in line with
the predictions of Shishkina (2021) and Ahlers et al. (2022). Further to the onset, they
observed a steep rise in Nu, followed by an enhanced heat transfer in slender cells
compared with the Γ = 1 (base) case. An estimate using our model for each of the
cases is shown in figure 3(b), each trimmed at a lower limit for Grg at Grg0 = 5×103

(see (3.8) and the discussion in § 4.5). That is why the curves corresponding to our
model appear to start mid-way in the plot. In particular, the regime of validity of our
model starts far from the onset, after the compensated Nu starts to decrease for each
case. Ahlers et al. (2022) showed that results from various studies with different Γ

collapse and lie close to the GL theory estimate, when the Rayleigh number is re-scaled
as Ra	 = Ra(1 + 1.49Γ −2)−3/2. The modified GL theory estimate for each Γ , based on
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Figure 4. (a) Plots of Nu versus Γ for slender RBC using the current model at Pr = 4.38 for different Ra,
compared with data for cylindrical domain (circular markers) and square-base domain (open square markers)
from Hartmann et al. (2021). Here Cqw = 0.1328 + 1.235Ra−0.18

d was used for current model. The prediction
by the Ahlers et al. (2022) model is shown with dashed lines. Dot-dashed lines show iso-lines of Grg = 1×103

(grey) and Grg = 5×103 (black), the lower limit of the current model applicability. (b) Plots of Nu versus Pr for
four different values of Ra at Γ = 0.1 compared with the DNS data of Pandey & Sreenivasan (2021) (circular
markers). Solid lines show current model estimate, dashed lines show GL estimate (Γ = 1) and dotted lines
show the Ahlers et al. (2022) model estimate at the same Ra values. Current model is trimmed at a lower
bound of Grg = 5×103 shown by black dot-dashed curve. The value of Cqw for each case was obtained from
GL theory at corresponding Rad and Pr (see discussion).

this re-scaling, is shown as the Ahlers model in figure 3(b), along with the actual GL
theory (Stevens et al. 2013) estimate for Γ = 1. It is worth mentioning that there are no
other models that account for the Γ dependence of Nu at such low aspect ratios. It can
be seen that within its regime of applicability, our model follows the data from various
aspect ratios closely, and that they lie closer to the data than the predictions of the Ahlers
model.

Figure 4(a) shows the variation of Nu as a function of aspect ratio for different Rayleigh
numbers at Pr = 4.38 from the DNS studies of Hartmann et al. (2021). Data with both
cylindrical and square-base domains are shown. The authors reported enhanced heat
transfer for small-aspect-ratio cells, and found that there was an optimal aspect ratio
Γopt that maximised the Nusselt number. The Nu augmentation and Γopt were found
to be a function of Rayleigh number and the shape of the container, as can be seen in
the figure. Also shown are the Nu predictions of the Ahlers et al. (2022) model and the
current model for each Ra. Current model is extended to a lower limit of Grg = 1×103,
although we do not know if the 0.3 scaling regime in the tube part is applicable below
Grg = 5×103. Iso-lines of both these Grg limits are also shown. We have also extended
the model for aspect ratios to Γ = 1, as the tube resistance becomes negligible and the
flux will be controlled entirely by the wall convection. It can be observed that the current
model prediction is very close to that of the data even beyond its regime of applicability.
In fact, our estimates lie somewhere in between the data for cylindrical and square-base
domains. The model predicts a mild maximum for Nu and that this Γopt is a function of
Ra, though the value of this Γopt is different from that found by Hartmann et al. (2021)
and the reason is also likely to be different. The model predictions are close to the data
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in the range where it is applicable, Grg > 5×103, and reasonably close even beyond the
range to Grg = 1×103. In general, the predictions are better than that of the Ahlers et al.
(2022) model, which predicts monotonically increasing Nu with decreasing Γ . At higher
aspect ratios (0.2 � Γ � 1) the predictions from our model and the Ahlers model converge.
As mentioned above, as Γ approaches unity, the relative contribution of the tube part
approaches 0, and the overall model prediction is still accurate.

In figure 4(b), the variation of Nu with Pr at different Rayleigh numbers is shown
for an aspect ratio of Γ = 0.1 from the simulations of Pandey & Sreenivasan (2021).
The authors report that for Pr � 1 and high Ra, the heat transfer in slender cells is
very similar to that in regular cells with Γ ∼ 1. At lower Pr , they found that Nu
values in slender cells are much lower than those in wider cells, with steep variation
of Nu with Pr especially for the low-Ra cases. The expected behaviour of wide cells
(Γ � 1) is shown in the figure by the GL theory for each Ra, along with the modified
GL prediction adjusted for Γ dependence using the Ahlers et al. (2022) model. The
current model estimate for each Ra is also shown, once again trimmed at a lower
limit of Grg = 5×103. The values of Cqw used for the current model were obtained
as functions of Pr from curve fits to GL theory at Rad values of 105, 106, 107 and
3×107 as 0.2616Pr0.01238 + 0.03251×0.9189Pr , 0.2498Pr−0.03176 − 0.01478Pr−0.9368,
0.2183Pr−0.03471 − 0.01787Pr−0.7077 and 0.2761Pr0.05626 − 0.08877Pr0.1557 corre-
sponding to Ra of 108, 109, 1010 and 3×1010, respectively (although a Pr -independent
Cqw = 0.1328 + 1.235Ra−0.18

d also gives reasonable estimates). It can be seen that
our model follows the data points remarkably well, except for the lowest Ra of 108.
In particular, the steep change in Nu at low Pr values is also well captured. This behaviour
is due to the strong Pr dependence in the Nu correlations for the tube part. In regular
RBC, the Prandtl number effect for Nu scaling is not significant (low or negligible values
of exponent p in the usual power-law form Nu = C Ran Pr p), as can be seen by the flat
profiles of GL curves. However, in TC, the Pr dependency is very strong, in both the 0.3
and 0.5 regimes (see (3.8)). Thus, in slender RBC, especially at low Ra and Pr values,
the tube part plays a dominant role. It should be noted that the TC scaling we adapted from
Pawar & Arakeri (2016) has used data that existed in TC only for Pr � 1; however, we see
that the capability of the model well surpasses its expected applicability regime (§ 4.5),
even giving accurate estimates for Pr as low as 0.1.

4.3. Temperature drop in the tube part
One of the main objectives of this paper is to uniquely determine the non-dimensional
temperature gradient dT̃ /dz̃ in the tube part which is also equal to the ratio of temperature
drop in the tube to the total temperature difference �Ttub/�T (2.4) as a function of the
total forcing Ra and the aspect ratio of the cell Γ . For turbulent convection in a regular
RBC setup, as mentioned above, the core is isothermal due to the efficient mixing by LSC.
For slender RBC, we get a linear temperature profile in the tube part, away from the ends,
which adds to the overall thermal resistance. This was indeed one of the assumptions we
made to derive the generalised Nu–Ra correlation in the previous section. We can get the
value of this linear temperature gradient in the core using our model. Using (3.5) and (3.6)
to substitute for Nu and Ra with Nug and Rag in the generalised Nu–Ra correlation (4.8),
we have

2C−3/4
qw

Nu3/4
g Ra3/4

g Γ + C
−1

1+a
tub Nu

1
1+a
g Ra

1
1+a
g Pr

−b
1+a = Rag

(
dT̃

dz̃

)−1

. (4.10)
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Now, using the scaling for TC (3.7) and writing Nug in terms of Rag and simplifying,
we get

dT̃

dz̃
=
(

1 + 2C−3/4
qw

C3/4
tub Ra

3a−1
4

g Pr
3b
4 Γ

)−1

. (4.11)

This relation gives dT̃ /dz̃ at a particular Rag . To rewrite this equation in terms of Ra, we
use (3.5):

2C−3/4
qw

C3/4
tub Ra

3a−1
4 Pr

3b
4 Γ 3a

(
dT̃

dz̃

) 3(1+a)
4

+ dT̃

dz̃
= 1. (4.12)

Similar to the generalised Nu–Ra correlation, we have an implicit relation for the non-
dimensionalised temperature gradient in the tube part in terms of Ra, Pr and Γ . The
values of a and b depend on whether the convection in the tube belongs to the 0.5
(ultimate) or 0.3 (viscous turbulent) regime. For the two regimes of TC, the above relation
becomes

2C−3/4
qw

C3/4
0.3 Ra−1/40 Pr21/40Γ 9/10

(
dT̃

dz̃

)39/40

+ dT̃

dz̃
= 1 for Grg0 < Grg < Grgc,

(4.13a)

2C−3/4
qw

C3/4
0.5 Ra1/8 Pr3/8Γ 3/2

(
dT̃

dz̃

)9/8

+ dT̃

dz̃
= 1 for Grg > Grgc. (4.13b)

The variation of non-dimensional temperature gradient for a slender RBC cell of Γ =
0.1 and Pr = 1 estimated using the current model (4.13a,b) is shown in figure 5(a) for the
two different choices of Cqw . The data from Iyer et al. (2020a) for the same parameter
set are also shown for comparison. It can be seen that while the model with variable Cqw

approximations shows excellent match with the data, even the constant Cqw approximation
gives very reasonable estimates, especially at high Rayleigh numbers. Below the critical
Rayleigh number for regime change in the tube part, (4.13a) is used, while for above (4.13b)
is used. The change in regime can be seen as a sudden change in the slope at the critical
Rayleigh numbers corresponding to both the Cqw choices. It is also evident that in the
0.5 regime, dT̃ /dz̃ decreases more rapidly compared with that in the 0.3 regime, with
increasing Ra. Since dT̃ /dz̃ is also the fraction of the total temperature in the tube, it can
be seen that for the current configuration (Γ = 0.1 and Pr = 1), around 10% to 30 % of
the temperature drop is in the tube, depending on Ra. The temperature drop in the tube
part becomes smaller with increasing Ra, suggesting lower thermal resistance values in
the tube part compared with the wall part. As we show in § 4.6, the fraction of temperature
drop in the tube depends strongly on aspect ratio and Pr . For Pr = 1, Γ = 0.01, the ratio
can be as much as 80 %, and for high Pr it becomes negligible.

In figure 5(b), we show the variation of dT̃ /dz̃ with Prandtl number for two different
Rayleigh numbers, Ra = 108 and 1010, for an aspect ratio Γ = 0.1 predicted using the
current model with a lower limit of Grg = 5×103. The data from the simulations of
Pandey & Sreenivasan (2021) are shown for comparison. Again, it is seen that the model
predicts the variation of temperature gradient in the tube quite well, even for Prandtl
number as low as 10−2, showing the beyond-the-expected capability of the model. As
shown by Pandey & Sreenivasan (2021), the temperature gradient and hence the relative
temperature drop in the tube part is as high as 1 at low Prandtl numbers, and reduces to very
low values with increasing Pr . As discussed above, the strong Prandtl number dependence
of scaling in TC results in this behaviour. It is worth mentioning that to the best of our
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Figure 5. (a) Non-dimensional temperature gradient dT̃ /dz̃ (equal to the relative temperature drop in the tube
�Ttub/�T ) in the tube part of slender RBC versus Ra for Γ = 0.1 and Pr = 1 calculated using the current
model (4.13), compared with Iyer et al. (2020a) data (black circular markers). Estimates using both a constant
Cqw = 0.1739 (blue solid line) and variable Cqw = 0.1328 + 1.235Ra−0.18

d (red solid line) are shown. The
regime changes from 0.3 to 0.5 power scaling at the critical Rayleigh number Rac ≈ 5.3×109 with a sharp
change in slope. (b) Plot of dT̃ /dz̃ as a function of Pr using the current model (solid lines) at two different Ra
values for Γ = 0.1, compared with the simulation results of Pandey & Sreenivasan (2021) (circular markers).

knowledge, there are no correlations in the literature that predict the temperature gradient
or drop in the core for slender RBC, and hence for the figures discussed above, we do
not have any correlations or data to compare with; except the DNS data from Iyer et al.
(2020a) and Pandey & Sreenivasan (2021).

An alternative expression for the non-dimensional temperature gradient in the tube can
be obtained if the value of Nu is known a priori, say from experiments. For this, we note
that the ratio of temperature drop in the tube to the total temperature difference is the same
as the ratio between the second term of the left-hand side and the right-hand-side term of
the generalised Nu−Ra correlation (4.8). That is,

dT̃

dz̃
= �Ttub

�T
= C

−1
1+a
tub Nu

1
1+a Ra

1
1+a Pr

−b
1+a Γ

−4a
1+a

Ra
= C

−1
1+a
tub Nu

1
1+a Ra

−a
1+a Pr

−b
1+a Γ

−4a
1+a .

(4.14)
For the two regimes of TC scaling, the above relation becomes

dT̃

dz̃
= C−10/13

0.3 Nu10/13 Ra−3/13 Pr−7/13Γ −12/13 for Grg0 < Grg < Grgc, (4.15a)

dT̃

dz̃
= C−2/3

0.5 Nu2/3 Ra−1/3 Pr−1/3Γ −4/3 for Grg > Grgc. (4.15b)

Thus, we have explicit relations for dT̃ /dz̃ which might be useful if the value of Nu is
known beforehand.

The entire procedure described in the previous sections to characterise the heat flux
and temperature gradient for a slender RBC configuration (i.e. given Ra, Pr and Γ ) can
be summarised as follows. The first step is to plot the Ra–Γ parameter space for the
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Figure 6. (a) Critical Rayleigh number Rac of transition between the 0.3 and 0.5 regimes in the tube part, as
a function of aspect ratio Γ for different Pr . (b) Critical Rayleigh number Ra∗

u of transition to the ultimate
regime in the entire cell as a function of aspect ratio Γ for Pr = 1 estimated using the current model, such
that a critical shear Reynolds number Res is achieved. Two estimates with Res = 420 (red markers) and with
Res = 300 (green markers) are shown. Red and green solid lines are curve fits to these data; grey line is the
extrapolation of the estimate by Bodenschatz et al. (2015); blue line the estimate by Ahlers et al. (2022).

particular Pr , and determine whether the given configuration falls inside the region of
applicability (ROA) of the current model (explained in § 4.5). If it does, then the next step
is to establish whether it belongs to the 0.3 or the 0.5 regime of TC by finding the critical
Rayleigh number Rac = Grc Pr of transition between the two regimes, corresponding to
Grgc = 1.6 × 105 (see Appendix A for details). The next step is to select an expression for
Cqw at the particular Pr for wall convection, using any existing scaling relations such as
GL theory, as we did in § 3.1. Now, Nu can be estimated by solving (4.9a) or (4.9b), and
dT̃ /dz̃ by solving (4.13a) or (4.13b), depending on the scaling regime.

4.4. Critical Rayleigh numbers and transition to ultimate regime
There are different critical Rayleigh numbers that may be linked to transition between
the various convection regimes in slender RBC, and Rac is only one among them. The
first is the the critical Rayleigh number for onset of convection Raons . The aspect ratio
dependency of Raons is discussed in detail by Shishkina (2021), Ahlers et al. (2022) and
Zhang & Xia (2023b), and we do not discuss this aspect here. Next is Ra0, marking
the transition of convection in the tube part from an (yet) unknown regime to the 0.3
regime, marked by Grg = Grg0 (see § 4.5). We do not have enough information about the
TC scaling and hence slender RBC scaling below this limit. The next is Rac (= Grc Pr )
that we discussed in the previous section, that demarcates the 0.3 (viscous turbulent) and
0.5 (ultimate) regimes in the tube part of the convection. And lastly, Ra∗

u , which gives the
value of Ra above which the ultimate regime of convection is obtained in the whole RBC
cell, both the tube and wall parts.

The variation of the critical Rayleigh number Rac (see Appendix A) with aspect ratio
is shown in a log–log plot in figure 6(a) for different Prandtl numbers. Only Γ values up
to 0.2 are shown since above this limit, the correlations used for the tube part may not be
valid. From the figure, it can be seen that the value of Rac increases considerably with
decreasing aspect ratio for all Prandtl numbers. When the aspect ratio decreases by two
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orders of magnitude, the critical Rayleigh number increases by seven orders of magnitude.
Thus, for highly slender cells, one cannot expect the 0.5 or the ultimate regime scaling
in the tube part until very high Rayleigh numbers, as taller cells lead to lower values of
Grg for the same Gr ((A4a) and (A4b)). Variations for four different Prandtl numbers are
shown. It can be seen that Rac increases considerably with Pr , and high-Pr fluids require
extremely high Rayleigh numbers for this transition.

As mentioned above, Ra > Rac only implies that the convection in the tube part alone
has reached ultimate-regime-type scaling; however, the boundary layer at the walls may
not have transitioned to turbulence and the scaling of the global heat flux Nu for the
entire cell would not have reached the ultimate regime. Although the existence of such
scaling is still debated, it has been proposed that the cross-over to ultimate scaling
is achieved when the shear Reynolds number Res = δvu/ν crosses a critical limit of
Res ≈ 420 (Grossmann & Lohse 2000, 2002; Ahlers et al. 2009), u being the mean
wind velocity of the LSC and δv the velocity boundary layer thickness (discussed in
detail in § 6.4). For slender RBC, we may estimate the critical Rayleigh number for this
transition Ra∗

u by finding the Ra at which Res crosses the value of 420. For this, we define
the shear Reynolds number as Res = δvurms/ν, where, in the absence of LSC, shear is
induced on the boundary layer by the fluctuating velocity from the tube part urms ∼ wm .
Thus, Res = (δv/d)(urmsd/ν) = 0.3655Re0.5

d (Red is the Reynolds number based on tube
width, see § 5), where we used a Blasius-type scaling for the velocity boundary layer
δv/d ∼ Re−0.5

d and a prefactor of 0.3655 obtained from a curve fit to Iyer et al. (2020a)
data (see § 6.4). For a slender RBC cell with Γ = 0.1 and Pr = 1, we use our model (5.7)
and (4.9) and find that the critical Ra for Res = 420 is Ra∗

u = 4.8×1017. For lower aspect
ratios, the Ra∗

u estimates are higher, and plotted against Γ in figure 6(b). A curve fit to
our model prediction gives Ra∗

u = 2.2×1014 × Γ −3.24. Also shown is an extrapolation of
the fit given by Bodenschatz et al. (2015), based on their experiments at higher aspect
ratios (Γ = 0.33, 0.5 and 1), and that proposed by Ahlers et al. (2022). It can be observed
that our exponent B = −3.24 in the scaling Ra∗

u ∼ Γ B is close to the value of B = −3.26
by the former and to the exponent B = −3 of Roche (2020) and Ahlers et al. (2022) for
Γ � 1, based on theoretical arguments. It is interesting that the different approaches give
similar aspect ratio dependencies.

It should be noticed, however, that our estimate of Ra∗
u is solely based on the assumption

that ultimate regime transition in the entire cell is triggered at Res = 420. In particular, this
approach is valid when the turbulent boundary layer is triggered by the shear of the wind
above. The value of 420 is usually used for regular RBC, where the steady wind of LSC
is expected to be dominant, even at high Ra. For slender RBC, the time-averaged flow
above the boundary layers at high Ra is very weak, as is the case for high-aspect-ratio
(Γ = 4) periodic domains reported recently (Samuel et al. 2024). For these cases, the
transition to the (potential) ultimate regime could be triggered by a possible destruction
of the kinetic boundary layer by turbulent fluctuations (Ahlers et al. 2009). If that is the
case, the transition could be triggered at even low values of Res (based on root mean
square (r.m.s.) of fluctuations), since unsteady boundary layers are known to have a lower
threshold for transition to turbulence. Hence here we show an estimate of Ra∗

u using Res =
300 as well, in addition to that of 420. This again gives a very close exponent of B =
−3.26, although the prefactor has reduced. This estimate lies even closer to the estimates
of Bodenschatz et al. (2015) and Ahlers et al. (2022). It should be reiterated that this
approach of finding Ra∗

u based on a critical shear Reynolds number does not guarantee
the existence of the ultimate regime beyond this limit, which for slender RBC has not yet
been observed. However, this approach gives an estimate of a lower bound for full ultimate
transition in slender RBC cells. In summary, both the critical Rayleigh numbers Rac for
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transition to the ultimate regime in the tube part and Ra∗
u for transition to the ultimate

regime of the entire domain are strong functions of aspect ratio, and the more slender the
geometry, the higher is the Rayleigh number needed for transition. The above calculation
is for Pr = 1. It is expected that the value of Ra∗

u will depend on Pr , and may be easily
calculated using the same approach.

4.5. Parameter space
Next we look at the boundaries of the Ra–Γ –Pr parameter space within which our model
is valid. One is the lower limit of applicability of the 0.3 regime in TC, Grg0 (3.8a),
below which no correlations are available for Nug . Based on study reported by Pawar &
Arakeri (2016) we arrive at Grg0 = 5 × 103, and that is why in figures discussed above,
the curves do not span the entire abscissa range, and appear to start mid-way. Secondly,
the scaling relations proposed by Pawar & Arakeri (2016) were based on experiments
and simulations with Pr > 1 only, and so does the expected validity of our correlations.
The prefactor Ctub and exponents a and b of the general scaling relation for TC (3.7)
might have to be modified when studies that encompass a broader range of Grg and Pr
emerge. A third limitation arises at the wall, where the assumed Cqw scaling is expected
to be valid only for Raw values greater than around 105, i.e. when the wall convection is
turbulent and at least one plume or more is present at the wall, i.e. λp/d < 1, where λp is
the average plume spacing. Plume spacing predicted by the model of Theerthan & Arakeri
(1998) and validated by experiments is discussed in detail in § 6.2. At lower Raw values, a
modified scaling for Cqw needs to be established. And lastly, the domain has to be ‘slender’
enough for the TC scaling relations to be used. Aspect ratio Γ � 0.2 is a reasonable limit
so that fully developed, axially homogeneous TC region is present away from the walls.
For example, from the vertical profiles of temperature and velocity fluctuations in Zhang
& Xia (2023b; see their figure 5b), axial invariability was observed for Γ � 0.16, but not
for Γ = 0.3. This criterion, however, is not very stringent, since the contribution of the
tube part in our model diminishes as Γ approaches 1, and the overall scaling controlled by
the wall convection approaches that of regular RBC given by the (modified) GL theory, as
we discussed earlier (figure 4a).

In figures 7(a) and 7(b), we sketch out the Ra–Γ parameter space for Pr = 1 and Pr =
4.38, respectively, along with the parameter ranges covered by some of the low-aspect-
ratio studies with which we compared our model in the previous sections. The iso-lines
of Grg0 = 5×103; Γ = 0.2; and λp/d = 1 are shown, which form the expected boundaries
within which our model assumptions are valid. This region that we call the ROA of the
current model is highlighted using coloured regions. The iso-line of Grgc = 1.6×105 splits
the ROA into the 0.3 regime (yellow-shaded area) and the 0.5 regime (pink-shaded area)
of convection in the tube part. For Pr = 1, we have also shown the iso-line for Ra∗

u based
on Res = 420 beyond which the entire cell may transition to the ultimate regime (blue-
shaded area in the inset). The lines of Grg0 and λp/d = 1 are very close to each other and
have a very similar slope, and depending on Pr , either one of these can be the deciding
criterion. While the simulations of Iyer et al. (2020a) lie deep into the ROA of our model,
most of the cases from other studies, Zhang (2019), Hartmann et al. (2021), Zhang & Xia
(2023b) and Zwirner & Shishkina (2018), lie outside or are just inside the boundaries of
the ROA; only a few of the points lie inside our ROA. The cases of Pandey & Sreenivasan
(2021) are not shown here due to their varying Pr . In the previous sections, we showed that
despite the fact that the majority of these studies lie outside the ROA, the model was able
to reasonably well predict the Nu and temperature gradients for these cases in a wide range
of Pr (as low as 0.1) and aspect ratios (Γ → 1). Thus, the validity of the model seems to

1016 A46-21

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
42

4 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10424


M.G. Visakh and J.H. Arakeri

108

Raons

Raons

λ/d = 1

λ/d < 1Grg0 = 5×10
3

Grgc = 1.6×10
5

Rau
∗

Γ = 0.2

Γ < 0.2 Γ < 0.2

1/100

1/50

1/20

1/10

1/5

1/2

1

1/100

1/50

1/20

1/10

1/5

1/2

1

1010

Ra

Γ

Ra
1012

Region of applicability

of current model

Ra

Γ

Region of applicability

of current model

1014
108 1010 1012 1014

Grg  > 5 × 10 3

G rg  > 1.6 × 10 5

10
80.01

0.02

0.05

0.10

0.20

0.50

10
11

10
14

10
17

10
20

0.3 regime (tube)

Zwirner & Shishkina (2018)

Iyer et al. (2020)

0.5 regime (tube)

Ultimate regime (full)

0.3 regime (tube)

Zhang & Xia (2023) expts

Zhang (2019) DNS

Hartmann et al. (2021)

0.5 regime (tube)

Ultimate regime (full)

λ/d = 1

Grg0 = 5×10
3

Grgc = 1.6×10
5

Γ = 0.2

Grg  > 1.6 × 10 5

Grg  > 5 × 10 3

λ/d < 1

Γ

(a) (b)

Figure 7. Parameter space of Ra versus Γ for (a) Pr = 1 and (b) Pr = 4.38. Dashed lines are iso-lines of
Raons representing the onset of convection (based on Shishkina (2021)), Grg = Grg0, Γ = 0.2, λp/d = 1,
Grg = Grgc and Ra∗

u |Res=420. Shaded/coloured regions show the expected Region of Applicability (ROA) of
the current model. Yellow region: 0.3 (viscous turbulent) regime in the tube part; pink region: 0.5 (ultimate)
regime in tube part only; blue region: ultimate regime in the full cell. Inset for (a) shows the same figure in an
extended range of Γ . Markers indicate the parameter values from the various studies.

extend beyond its ROA. However, Grg0 seems to be a stricter criterion, as below this (yet
unknown) value, sharp changes in the kind of TC scalings are expected, evident from the
low-Ra data points (near the onset of convection) of Zhang & Xia (2023b) in figure 3(b).
At such low Grg values, one may start seeing temperature inversions and locked-flow
sublayers as shown in the temperature profiles of Hartmann et al. (2021) (see figure 5e of
their paper and figure S2 in their supplementary material), which depart from the assumed
temperature profile of our model (figure 1c). It is interesting to note that when a power-law-
type scaling is fitted on the Grg = const. lines, i.e. Grg0 and Grgc, both the corresponding
critical Rayleigh numbers Ra0 and Rac have aspect ratio dependencies close to Γ −3.8 (for
Pr = 1) and Γ −3.6 (for Pr = 4.38). These exponents are very close to the Γ −4 lines given
by Zhang & Xia (2023b) which demarcate the different regimes in their simulations (see
figure 7c of their paper). As for the ultimate regime in the entire cell, it can be seen that all
the existing studies, including Iyer et al. (2020a), lie well below the mark needed to cross
Ra∗

u = Ra|Res=420.

4.6. Effect of aspect ratio and Prandtl number
In this section, we explore the effect of varying aspect ratio and Prandtl number on
the Nusselt number and temperature gradient in the tube part for slender RBC. The
compensated plot of Nu with Ra estimated using the current model for different aspect
ratios is shown in figure 8(a) for Pr = 1 using Cqw = 0.1328 + 1.235Ra−0.18

d . Here Nu
decreases with reducing aspect ratios at all Rayleigh numbers due to the increasing
resistance in the tube part resulting in the reduction in overall heat flux. For the Rayleigh
number range considered here, there is a reduction of at least 4–5 times in Nu as Γ

decreases from 0.1 to 0.01. The change in slope in each curve corresponds to the regime
change in the tube part from 0.3 to 0.5. The delayed onset of the 0.5 regime due to the
higher critical Rayleigh number is also evident with decreasing aspect ratio. When plotted

1016 A46-22

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
42

4 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10424


Journal of Fluid Mechanics

109
0 0

0.01

0.02

0.03

0.04

0.05

0.06

0.02

0.04

0.06

0.08

1011

0.08

0.07

0.06

0.05

0.04

0.03

0.02
109 1011 1013 1015

1013 1015 10–3 10–2 10–1

0
10

–2

Γs = Γ 3/2Ra1/8Pr3/8

Γ

N
uR

a–
1
/
3N

uR
a–1

/
3

N
uR

a–1
/
3

10
0

Fit

10
2

0.02

0.04

0.06

Current model

Ahlers (2022) model

Ra = 10
9

Ra = 10
11

Ra = 10
13

Ra = 10
15

Pr = 1.0, Γ = 0.10

Γ = 1 (GL theory)

Pr = 1.0, Γ = 0.05

Pr = 1.0, Γ = 0.02

Pr = 1.0, Γ = 0.01

Ra = 10
17

Ra = 10
19

100

Ra

Ra

N
uR

a–1
/
3

Pr = 1.0, Γ = 0.10

Pr = 0.1, Γ = 0.10

Pr = 0.7, Γ = 0.10

Pr = 7.0, Γ = 0.10

Pr = 600.0, Γ = 0.10

(a) (b)

(c)

Figure 8. Compensated Nu using the current model (4.9): (a) versus Ra for different aspect ratios (Γ ) at
Pr = 1, (b) versus Γ for different Ra at Pr = 1 and (c) versus Ra for different Pr at Γ = 0.1. In (b), solid
lines show current model and dashed lines show the Ahlers et al. (2022) model. The inset in (b) shows aspect
ratio re-scaled as Γs = Γ 3/2 Ra1/8 Pr3/8, and the curves for high Ra collapsing onto a universal curve, given
by 0.0265[1 + tanh(1.18 log10(Γs) + 0.75)]. Each curve is terminated at a lower bound of Grg = 5×103.

against aspect ratio for different Rayleigh numbers (at Pr = 1) in figure 8(b), it is clear that
there exists an optimum aspect ratio Γopt at which Nu is maximum, for the lower Rayleigh
numbers. This was shown earlier for Pr = 4.38 and lower Ra values while comparing the
model with the Hartmann et al. (2021) results and the associated discussion in figure 4(a).
At higher Rayleigh numbers, beyond Ra ∼ 1013, we do not find the existence of such
augmented Nu or optimum aspect ratio: Nu seems to decrease monotonically with reducing
Γ . Another interesting observation from figure 8(a,b) is that for Pr = 1, above an aspect
ratio of Γ = 0.1, the compensated Nusselt number Nu Ra−1/3 in the 0.5 regime decreases
with increasing Ra, while below this limit, it increases with increasing Ra. At Γ = 0.1,
it appears that Nu Ra−1/3 is almost independent of Ra, and is approximately 0.05. At
higher Prandtl numbers (not shown here) this observation is consistent, although Γ at
which this inversion occurs seems to decrease with Pr .

1016 A46-23

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
42

4 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10424


M.G. Visakh and J.H. Arakeri

At lower aspect ratios, the Nu Ra−1/3 curves seem to decline rapidly. At very low aspect
ratios (Γ ∼ 10−3), the curves flatten out to exceedingly low values, the value of which
depends on Ra. For lower Rayleigh numbers, with reducing Γ , the curves terminate before
reaching very small values because of the limit on Grg reaching Grg0, beyond which they
cross-over to an unknown regime below the 0.3 regime. The family of these curves for
different Ra seem to show similarity to an S-shaped curve. When the aspect ratio Γ

is re-scaled as Γs = Γ 3/2 Ra1/8 Pr3/8, we find that the curves at different Ra collapse
to a single universal curve, especially for higher Rayleigh numbers (inset of figure 8b).
A least-squares curve fit provides an empirical expression for this universal curve as
Nu Ra−1/3 ≈ 0.0265[1 + tanh(1.18 log10(Γs) + 0.75)]. Although we show the collapse
only for Pr = 1 here, we have verified that this re-scaling is valid for different Prandtl
numbers also (Pr = 0.1–600). Note that the expression for the scaled aspect ratio Γs is the
same as the coefficients in the first term of (4.13b), corresponding to the 0.5 regime. That is
why the curves start to deviate slightly once they enter the 0.3 regime. We emphasise that
the above correlation is valid only for high Rayleigh numbers, particularly for Ra > 1013.
For lower Ra values, the Nu Ra−1/3 curves start to deviate, as seen in figure 8(b).

The (compensated) Nu−Ra plot at different (most commonly encountered) Prandtl
numbers for an aspect ratio of Γ = 0.1 is shown in figure 8(c). Note that we have
used Cqw = 0.1328 + 1.235Ra−0.18

d for Pr = 0.7, 1 and 7 as the Cqw versus Rad curves
obtained from the GL theory were very similar for these three cases. For Pr = 0.1, we
obtained Cqw = 0.1387 + 14.55Ra−0.44

d and for Pr = 600, we obtained Cqw = 0.1372 +
4.1Ra−0.287

d from curve fits to the respective GL solutions, as discussed in § 3. There is
a slight decrease in Nu with decrease in Pr from 600 to 7. As we saw above (figure 4b
and the associated discussion), Nu decreases steeply with decreasing Pr at low Rayleigh
and Prandtl numbers. The effect of Pr on the heat flux mainly comes from the tube part
scaling.

The variation of non-dimensional temperature gradient dT̃ /dz̃ (or the fraction of
temperature drop �Ttub/�T ) in the tube part with the total Ra for different aspect ratios
estimated using (4.13) is shown in figure 9(a), for Pr = 1. As the aspect ratio Γ decreases,
the increased resistance results in a higher relative temperature drop �Ttub/�T in the tube
part. With a ten-fold decrease in the aspect ratio from 0.1 to 0.01, the relative drop in the
tube part increases from about 10%−20 % to around 70 % for the Rayleigh number range
considered here. The variation of dT̃ /dz̃ with Γ for different Rayleigh numbers at Pr = 1
is shown in figure 9(b). The observations are same: relative temperature drop in the tube
increases with decreasing Γ , and the variation is pronounced for lower Rayleigh numbers.
Note that at Γ = 0.1, nothing remarkable happens for dT̃ /dz̃, in contrast to the nearly
constant behaviour of Nu Ra−1/3 (figure 8b). The value of dT̃ /dz̃ increases gradually
with reducing aspect ratio until Γ ∼ 0.2, and then increases rapidly with further reduction
in Γ for all Ra. At very low aspect ratios, however, the curves tend to flatten out such
that the majority of the temperature drop is in the tube part. Once again, when the aspect
ratio is re-scaled as Γs = Γ 3/2 Ra1/8 Pr3/8, the curves for different Ra collapse onto a
single universal curve, even for low Rayleigh numbers (figure 9b inset). A curve fit to
this universal curve gives dT̃ /dz̃ ≈ 0.5[1 − tanh(1.09 log10(Γs) + 0.88)], which is valid
for different Prandtl numbers as well (not shown). A close inspection shows departure
from the fit when the curves enter the 0.3 regime, although the deviations are extremely
small. The collapse is good even at lower Ra, unlike for Nu Ra−1/3. The existence of
such universal curves for dT̃ /dz̃ and Nu Ra−1/3 is remarkable, in our opinion. One can
very easily get reasonable estimates of the Nusselt number and the temperature gradient,
without even solving (4.9) and (4.13), the proposed scaling laws for slender RBC.
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Figure 9. Non-dimensional temperature gradient dT̃ /dz̃ or the fraction of temperature drop in the tube part
�Ttub/�T using the current model (4.13): (a) versus Ra for different aspect ratios (Γ ) at Pr = 1, (b) versus
Γ for different Ra at Pr = 1 and (c) versus Ra for different Pr at Γ = 0.1. The inset in (b) shows that as
the aspect ratio is re-scaled as Γs = Γ 3/2 Ra1/8 Pr3/8, the curves collapse onto a universal curve given by
0.5[1 − tanh(1.09 log10(Γs) + 0.88)].

The variation of dT̃ /dz̃ with Ra for different Prandtl numbers at an aspect ratio of
Γ = 0.1 shows the increasing tube resistance with decrease in Pr (figure 9c). At very
high Prandtl numbers, the temperature gradient in the tube is negligible, and the core is
near isothermal, as in the cases with Γ � 1. This behaviour of dT̃ /dz̃ was already shown
when comparing our model with the results of Pandey & Sreenivasan (2021) in § 4.3. We
reiterate that Cqw is a very weak function of Pr , meaning that heat transfer in regular RBC
is only weakly dependent on Pr for Pr � 1 and the effect of Pr on Nu in slender RBC
is chiefly due to the effect of the tube part, where the Pr dependence is strong. Note that
the Pr = 600 case has been included in the figures because it corresponds to where the
convection experiments are conducted with salt (NaCl) mixed in water to create a density
difference. A possible way to do slender RBC experiments with salt is to use permeable
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membranes as the top and bottom walls, as was done in Puthenveettil & Arakeri (2005)
for studying high-Ra, high-Pr , regular Rayleigh–Bénard-type convection.

5. Scaling of the velocities
For conventional RBC set-ups (Γ � 1), the velocity scale for the LSC at high Rayleigh
numbers scales with the velocity of free fall Uf = √

gβ�T H , which is the velocity
acquired by a parcel of relative density difference from its surroundings, �ρ/ρ0 = β�T
rising/falling across a height H under a gravitational field of strength g. The distances
are usually non-dimensionalised by the height of the cell H so that dimensionless vertical
distance becomes z̃ = z/H . Velocities, for example the magnitude of velocity fluctuations
urms = 〈u2

x + u2
y + u2

z 〉1/2
V,t

averaged in both space and time, are non-dimensionalised
with the free-fall velocity Uf and expressed as ũrms = urms/Uf . The Reynolds number
Re = urms H/ν can then be expressed in terms of the dimensionless velocity as
Re = ũrms

√
Ra/Pr . For regular RBC set-ups (Γ � 1), the usual scaling of Reynolds

number goes as Re ∼ Ra1/2. For example, Scheel & Schumacher (2017) give the scaling
at Pr = 0.7, Γ = 1 as Re = 0.24Ra0.49. Iyer et al. (2020a) give the scaling relation for
Reynolds number in the slender RBC setup as Re = 0.1555Ra0.458 for Ra � 1010.

For slender RBC cells, however, we use the scaling relations from TC. This argument
originates from the idea that the characteristic LSC of regular RBC is not present in slender
RBC. Instead, the large-scale flow resemble a helical structure, as reported through iso-
surfaces of vertical velocity in Iyer et al. (2020a). Thus, the flow in the tube part of slender
RBC seems more similar to that of TC studies, which we have already established with
respect to the scaling of heat flux in the previous sections. For TC at high enough Rayleigh
numbers, the scales of temperature and velocity fluctuations proposed by a mixing length
model by Arakeri et al. (2000) and Cholemari & Arakeri (2009) are

T ′ ∼
(

dT

dz

)
d = Tm and w′ ∼

√√√√gβ

(
dT

dz

)
d2 = wm . (5.1)

However, as shown below, the above scaling relations are valid for the 0.5 (ultimate) regime
of TC, and need to be modified for the 0.3 (viscous turbulent) regime, i.e. for the data
points for the two lowest Rayleigh numbers of the Iyer et al. (2020a) simulations.

The Reynolds number in TC, Red = urmsd/ν has the tube diameter d as the
characteristic length scale. For slender RBC, a similar definition of Red for the tube part
can be related to the conventional Reynolds number based on total height as Red = ReΓ .
For very high Rayleigh numbers, based on the mixing length arguments in (5.1) and backed
by experimental observations, Pawar & Arakeri (2016) give the scaling for Reynolds
number in TC as

Red = 0.967Ra1/2
g Pr−1/2 = 0.967Gr1/2

g . (5.2)

Note that we have multiplied by a factor of
√

3/2 the original prefactor of 0.79 given by
the authors as they had used the vertical velocity component uz,rms in their definition of
Red . From the fact that uz,rms/ux,rms ≈ 2 in TC, we get urms/uz,rms ≈ √

3/2. It has to
be noticed that (5.1) and (5.2) are only valid for the very high (gradient)-Rayleigh-number
limit, essentially when the 0.5 regime of flux scaling is applicable (3.8b). For the 0.3 power
regime (3.8a) of flux scaling in TC, no Reynolds-number scaling laws are available yet.
Here we propose a scaling relationship for Reynolds number in the 0.3 regime of TC as
well.
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For obtaining the scales for temperature Te and velocity fluctuations we in the entire
turbulent flow regime of TC, Pawar (2015) follows a transfer of energy approach. They
argue that as the rate of energy production scales as 〈P〉 ∼ gβ〈w′T ′〉 and the rate of
dissipation scales as 〈ε〉 ∼ w3

e/d, a balance between the two gives

Te ∼ Nu2/3
g (Rag Pr)−1/3

(
dT

dz

)
d, (5.3a)

we ∼ α

d
(Rag Pr Nug)

1/3, (5.3b)

Red ∼ (Rag Nug)
1/3 Pr−2/3. (5.3c)

Notice that these scales are general and applicable to both the regimes of turbulent TC.
When the flux scaling relation for the 0.5 regime (3.8b) is used in (5.3), we recover (5.1)
(Te = Tm , we = wm) and (5.2) obtained from the mixing length model, which means
that they are applicable only in the 0.5 regime. For the 0.3 regime, by substituting the
expression for Nug from (3.8a) to (5.3), we get

T ′ ∼ Ra−2/15
g Pr2/15

(
dT

dz

)
d = Gr−2/15

g Tm, (5.4a)

w′ ∼ α

d
Ra13/30

g Pr17/30 = Gr−1/15
g wm, (5.4b)

Red ∼ Ra13/30
g Pr−13/30 = Gr13/30

g , (5.4c)

which are the scales of temperature and velocity fluctuations and Reynolds number for
the 0.3 regime of TC. Thus, we implicitly assume that similar to the two regimes of flux
scaling, there exist two regimes of Reynolds-number scaling, which are separated by the
same critical limit Grgc = 1.6 × 105. Matching the scaling laws given by (5.4c) and (5.2)
at Grgc, we get a prefactor of 2.15 for Reynolds-number scaling in the 0.3 regime. Thus,
the Reynolds-number scaling for the 0.3 regime of TC is given by

Red = 2.15Ra13/30
g Pr−13/30 = 2.15Gr13/30

g , (5.5)

which is appropriate when Grg < Grgc, while (5.2) gives the Reynolds-number scaling for
the 0.5 regime in TC when Gr > Grgc. Note that (5.5) and (5.2) are the general relations
for Red in TC and are not specific to slender RBC. For slender RBC, they can be re-cast
in terms of Ra and Γ by using (3.5) as

Red = 2.15Ra13/30
(

dT̃

dz̃

)13/30

Pr−13/30Γ 52/30 for Grg0 < Gr < Grc, (5.6a)

Red = 0.967Ra1/2
(

dT̃

dz̃

)1/2

Pr−1/2Γ 2 for Gr > Grc. (5.6b)

Eliminating dT̃ /dz̃ from these equations using (4.15) and noting that 2.15C−1/3
0.3 =

0.967C−1/3
0.5 = 1.06, we get a unified relation for Red that is applicable for both the

regimes as

Red = 1.06Ra1/3 Nu1/3 Pr−2/3Γ 4/3. (5.7)

Although the final relation can be expressed as a single unified expression, the two regimes
of Red are embedded within the Nu term (which obeys the two regimes of scaling as shown
before) on the right-hand side of the above equation.
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Figure 10. (a) The r.m.s. of the velocities in the tube part: ux,rms (horizontal), uz,rms (vertical) and urms (total)
of the data (averaged from z/H = 0.05–0.95) from Iyer et al. (2020a) at different Ra. Open symbols in the
top panel: scaled by free-fall velocity Uf ; filled symbols in the bottom panel: scaled by TC velocity scale
we = 2.15Gr−1/15

g wm for Ra < Rac and we = wm for Ra > Rac. (b) Variation of Red with Ra for slender
RBC using the current model (unified scaling relation (5.7)) for a case of Pr = 1, Γ = 0.1 shown in green
solid line. Black circular markers show Red = urmsd/ν = ReΓ from the Re data of Iyer et al. (2020a) and
black dashed line shows the fit proposed by them. Dashed brown curve shows the estimate from GL theory
(Stevens et al. 2013). Inset shows the compensated plot with respect to Gr1/2

g .

Figure 10(a) shows the r.m.s. velocities for the data of Iyer et al. (2020a) for different
Rayleigh numbers. The data were received through a personal communication with
the authors. The r.m.s. of individual components of the velocities, horizontal (lateral)
ux,rms, vertical (axial) uz,rms and the total magnitude urms, are shown separately. Here,
r.m.s. means

√〈v2〉A,t which is additionally averaged along the height in the tube part
z/H = 0.05 to 0.95 to exclude the end effects, where v represents any velocity component
ux , uz or the net magnitude u =

√
u2

x + u2
y + u2

z . The velocities are non-dimensionalised
by the two different choices of velocity scales. The top part of figure 10(a) shows the
velocities scaled by the usual choice for RBC, the free-fall velocity Uf based on total
height H ; and the bottom part of the figure shows the velocities scaled by we, a scale from
TC perspective. Here, we = 2.15Gr−1/15

g wm for Ra < Rac = 5.3 × 109 and we = wm for
Ra > Rac. For the first scaling choice Uf , the values of the non-dimensional velocity
components in slender RBC are very low (urms/Uf ∼ 0.06–0.03) compared with the usual
values in regular RBC (urms/Uf ∼ 0.2). Also, the values seem decreasing with increasing
Ra. When scaled with the TC velocity scale we, all the components of velocities approach
a constant value (of ∼ 1) for the range of Rayleigh numbers considered. The magnitudes
of vertical velocity fluctuations are approximately two times those of the horizontal
component. These observations are consistent with the experimental observations of
Cholemari & Arakeri (2009) and Pawar & Arakeri (2016) in TC studies, where they
observed that the fluctuations in the axial component are roughly twice those of the lateral
component. Thus, the magnitudes of velocity fluctuations and their anisotropy are very
similar in slender RBC to that of TC, confirming the hypothesis that in the tube part the
top and bottom end conditions are forgotten away from the ends.
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To verify the validity of the Reynolds-number scaling of our model, we compare it with
the data from Iyer et al. (2020a) for the sample case of Γ = 0.1, Pr = 1 in figure 10(b).
The black circular markers show the data from Iyer et al. (2020a) (also shown in table 2)
and the fit proposed by them is shown with a black dashed curve. The solid green curve
shows the prediction using the unified relation (5.7). A compensated plot with respect to
Gr1/2

g is also shown in the inset. The prediction from the model is in good agreement with
the data. Once again, the change in regime of our prediction is visible as a slight change
in the slope at Rac = 5.3 × 109 although the change in the slope is not as significant as
it was for that of the Nu and dT̃ /dz̃ plots. Also, the spread in the Red data is due to the
spread in the urms data (figure 10a) and we anticipate that longer averaging time could
resolve this issue. The estimate from GL theory (Stevens et al. 2013), shown as a dashed
brown curve, overpredicts the data. This is because for regular RBC, urms ∼ Uf and for
slender RBC, urms ∼ wm , underlining the need for separate scaling laws for slender RBC.
It is interesting to note that if we use the Nu–Ra fit proposed by Iyer et al. (2020a),
Nu = 0.055Ra1/3 in the unified scaling relation (5.7), we get Re = RedΓ −1 =
0.187Ra0.444 which is very close to the Re–Ra fit proposed by the authors:
Re = 0.1555Ra0.458.

Figure 11(a,b) shows the variation of Reynolds number Red for different Rayleigh
numbers and aspect ratios for Pr = 1 and in figure 11(c) for different Pr for Γ = 0.1
where (5.7) has been used to calculate the Red values. Similar to Nusselt number, a
significant reduction in Red is observed with decreasing aspect ratio. Reynolds number is
dependent on the aspect ratio (5.7) as Red ∼ Γ 4/3 and indirectly through the Nusselt num-
ber dependence Red ∼ Nu1/3. The dependency on Prandtl number is more straightforward
(Red ∼ Pr−2/3). It can be seen that with increasing Pr , the Reynolds number decreases
significantly. For Pr = 600, the Reynolds number is a hundredth of its value at Pr = 1.
Note that for the Reynolds number plots, the change in regime is not very evident in the
log–log plots, as the difference in the scaling exponent is very small: 13/30 versus 1/2.

6. Near-wall variations
In the previous sections, we discussed the global heat and momentum transport in a slender
RBC system. In this section, we discuss the near-wall variations of temperature and the
r.m.s. of velocity in a slender RBC cell using the data from the simulations of Iyer et al.
(2020a) received through personal communication. In the following discussion, the term
‘walls’ refers to the top and bottom horizontal plates. The term ‘sidewalls’ refers to the
vertical (lateral) boundary, which for slender RBC is much larger in area than the top and
bottom plates.

For wall-bounded turbulent free convection on horizontal surfaces, two scales exist:
the wall (or inner) scales close to the wall where transport of heat and momentum is
primarily through diffusion, and the outer (or Deardorff) scales where the LSC is the
predominant mode of transport. For a RBC system, the wall scales can be derived using
dimensional analysis based on heat flux (Townsend’s scales) or based on the temperature
difference between wall and the core. For the latter case, Theerthan & Arakeri (1998) give
the velocity and length scales as

Uw = (gβ�Tw)1/3(να)1/6 and Zw = (να)1/2

Uw

, (6.1)

respectively. These near-wall scales have been successfully used for high-Prandtl-number
convection (Puthenveettil & Arakeri 2005) and for studying the near-wall fluctuations
of temperature and velocities (Gunasegarane & Puthenveettil 2014). The relationships
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Figure 11. Reynolds number Red estimated using the current model (5.7): (a) versus Ra for different aspect
ratios (Γ ) at Pr = 1, (b) versus Γ for different Ra at Pr = 1 and (c) versus Ra for different Pr at Γ = 0.1.

between the different inner scales are given in Theerthan & Arakeri (1998). It is worth
mentioning that the ratio of the two inner length scales Zw and δT is exactly equal to the
non-dimensional heat flux measure Cqw , from their definitions, i.e.

Zw

δT
= Cqw = Ra−1/3

δT
. (6.2)

The outer scales can be derived using dimensional arguments by neglecting the
diffusivities. For a RBC system at a prescribed temperature difference �T , the outer scales
for length and velocity are the separation H and the free-fall velocity Uf = √

gβ�T H ,
or in terms of the heat flux we get the Deardorff scale.

For the slender RBC system, to see the velocity variation near the (top and bottom)
walls, one can re-scale the velocity ũ (which is already non-dimensionalised using Uf )
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by using the above wall velocity scale (6.1) as follows:

urms

Uw

= ũrms
Uf

Uw

= 21/3ũrms Ra1/6
(

1 − dT̃

dz̃

)−1/3

, (6.3)

where we used (2.5). Similarly, length scale can be re-scaled using the wall length scale as

z

Zw

= z̃
H

Zw

= 2−1/3 z̃ Ra1/3
(

1 − dT̃

dz̃

)1/3

. (6.4)

We can also choose to re-scale the length using thermal boundary layer thickness δT . For
this, we use (3.1) and get

z

δT
= 2z̃

(
1 − dT̃

dz̃

)−1

Nu. (6.5)

As we have seen in the previous section, the velocities in the tube part scale well with the
TC velocity scale we, and it would be meaningful to see if this scaling is valid near the
walls. In slender RBC, the single outer scale circulation is absent, and instead we have
the eddies in the tube, scaling with the diameter and interacting with wall convection.
Thus the relevant outer velocity scale is we and not Uf . We can simplify things by using
the mixing length velocity wm for scaling throughout the Rayleigh-number range of Iyer
et al. (2020a), since below Rac, we = 2.15Gr−1/15

g wm ≈ wm , a very weak function of
Grg , and above Rac, we = wm . This velocity scale is related to the free-fall velocity Uf

as wm = Uf (dT̃ /dz̃)1/2Γ . Hence, velocities re-scaled by the mixing length velocity in the
tube would be

urms

wm
= ũrms

Uf

wm
= ũrms

(
dT̃

dz̃

)−1/2

Γ −1. (6.6)

Note that although we use wm as the velocity scale in the following sections, ideally we
should be used which incorporates the velocity scale change with the regime change.
However, for our analysis, wm is used which gives sufficiently accurate results, while
keeping our analysis simple.

6.1. Temperature variation at the walls
For slender RBC, thermal boundary layer thickness based on the slope method
corresponds to the intersection point between the slope of mean temperature at the wall
and the linear temperature in the tube, giving (3.1). For detailed information on this
and other methods of defining thermal boundary layer thickness, the reader is referred
to Scheel, Kim & White (2012) and the discussion in Ahlers et al. (2009). The near-
wall variation of the non-dimensional mean temperature −(T (z) − T0)/�Tw along the
vertical direction for different Ra of Iyer et al. (2020a) is plotted in figure 12. Here,
T (z) = 〈T 〉A,t , with T0 = T (z = 0). The vertical distance is non-dimensionalised by the
boundary layer thickness δT using (6.5) in figure 12(a) and by the wall scale Zw using (6.4)
in figure 12(b). It can be seen that in both the figures, the plots collapse well for different
Rayleigh numbers. It can also be noticed that the wall length scale Zw is also a valid scale
near the wall, and most of the variation in mean temperature happens within Zw � 15, an
observation consistent with the literature on conventional RBC (see Theerthan & Arakeri
1998).
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Figure 12. Near-wall profiles of mean temperature of Iyer et al. (2020a) data along the vertical direction.
Temperature is non-dimensionalised by �Tw and z non-dimensionalised by (a) δT and (b) Zw .

6.2. Plume spacing
Plumes are the near-wall coherent structures that primarily transport heat from the
conduction to the convection layer (Theerthan & Arakeri 1998; Chilla & Schumacher
2012). Very close to the wall, they appear as sheets and further away they may form
into mushroom-type structures. They originate as fragments of the thermal boundary
layer which detach due to boundary layer instability and move into the bulk followed by
broadening due to diffusion and mixing. Higher Rayleigh numbers increase the number
of these plumes. The LSC itself is driven partly by merging of groups of localised plumes
(Ahlers et al. 2009). However, the large-scale wind affects the plume motion also, often
aligning them at high enough Ra, as can be seen from the planform views. Based on
free-convection experiments on RBC and heated horizontal surfaces, Theerthan & Arakeri
(1998) observed the dominant near-wall structures to be a network of randomly spaced
and oriented line plumes that are moving about continuously on the surface. The authors
proposed a model in which these plumes are fed locally by laminar or viscous free-
convection boundary layers either side of each plume. Based on stability arguments they
obtained the average spacing of the plumes to be given by Ra1/3

λp
= λp/Zw = 52Pr−0.012,

where Raλp = gβ�Twλ
3
p/(να) is the Rayleigh number based on average plume spacing

λp and Zw is the wall length scale given in (6.1). The model has been extended to high
Pr, Ra1/3

λp
≈ 92 (Puthenveettil & Arakeri 2005). It has been shown (Theerthan & Arakeri

2000; Puthenveettil & Arakeri 2005; Puthenveettil et al. 2011) that the model predictions
of plume spacing agree well with what has been obtained in experiments. For slender
RBC, at the top and bottom walls, we may express the plume spacing non-dimensionalised
with the width of the plate d by invoking the definitions of Raλp , Raw and (2.6) as

λp

d
= 52Ra−1/3

w Pr−0.012 = 65.5Ra−1/3
(

1 − dT̃

dz̃

)−1/3

Γ −1 Pr−0.012. (6.7)

For the simulation cases of Iyer et al. (2020a) at Pr = 1, the values of Raw and plume
spacing λp/d estimated using (6.7) are given for the various Ra in table 2. The last row,
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52 Zw 52 Zw 52 Zw

(a) (b) (c)

Figure 13. Temperature field at the mid-boundary layer height δT /2 showing the plume structure at different
Ra: (a) Ra = 1011; (b) Ra = 1013; and (c) Ra = 1015 (reproduced from Iyer et al. (2020a) with permission).
The black horizontal bar below each case shows a scale of 52Zw , the expected mean plume spacing. The width
of each image corresponds to the tube diameter d.

d/λp, gives the approximate mean number of plumes contained within the plate width.
With increasing Ra, the plume spacing obviously decreases and a greater number of finer
and finer plumes are contained within the plate width. For the lowest-Ra case, notice that
λp/d > 1 which means that there is hardly one plume to be expected at any given time.
This may be considered as another lower limit for the validity of our model with respect
to the convection at the walls, as the value of Cqw might start deviating from our estimate.
Thus, from the point of view of the convection at the walls, the applicability of the model
is when λp/d � 1, or equivalently, Raw � 105. Contour images of the temperature field
near the bottom boundary layer for a few cases from Iyer et al. (2020a) are reproduced in
figure 13. Based on the temperature threshold criteria, these structures can be identified as
plumes rising from the bottom surface. An estimate of the mean plume spacing given by
52Zw/d = 52Ra−1/3

w (6.7) is shown below each case for comparison. It can be observed
that the structures are, in fact, separated roughly by a magnitude of λp ≈ 52Zw at least
for the high-Ra cases, thus proving the validity of the plume model (6.7) at the walls for
slender RBC.

6.3. Velocity variation at the walls
As discussed in § 5, in contrast to the LSC of regular-sized RBC, the large-scale structure
in slender RBC is of helical nature, which scales with the mixing length velocity wm of TC.
In the tube part, this results in an axially homogeneous turbulence, meaning the statistical
quantities are homogeneous along the vertical axis. Near the top and bottom ends of the
domain, however, we expect a transition, where this large-scale flow communicates with
the near-wall plumes and the (top and bottom) boundary layers. Thus, above the edge of
the boundary layer, one should expect velocity fluctuations of the order of the mixing
length velocity wm , and it replaces the LSC velocity scale for RBC with Γ � 1. This
is shown in figure 14 where the vertical profiles of the r.m.s. horizontal velocity, ux,rms,
near the walls are shown for different Ra from Iyer et al. (2020a) data. The data are
averaged in both horizontal plane and time, and the data corresponding to the top and
bottom walls have been combined. The velocity is non-dimensionalised using the free-fall
velocity Uf in figure 14(a) and using the mixing length scale wm in figures 14(b) and 14(c).
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Figure 14. Near-wall profiles of r.m.s. of horizontal velocity fluctuations ux,rms from Iyer et al. (2020a) data
with different choices of non-dimensionalisation for velocity and vertical distance: (a) ux,rms/Uf versus z/δv ,
(b) ux,rms/wm versus z/δv and (c) ux,rms/wm versus z/δT .
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Figure 15. Near-wall profiles of r.m.s. of vertical velocity fluctuations uz,rms from Iyer et al. (2020a) data
with different choices of non-dimensionalisation for velocity and vertical distance: (a) uz,rms/Uf versus z/δT ,
(b) uz,rms/Uw versus z/δT and (c) uz,rms/Uw versus z/δv .

The vertical distance is non-dimensionalised by the velocity boundary layer thickness δv

in figures 14(a) and 14(b) and by the thermal boundary layer thickness δT in figure 14(c).
Here, a Blasius profile is assumed to find the velocity boundary layer thickness (Sun,
Cheung & Xia 2008; Ahlers et al. 2009) δv/d = a Re−1/2

d , a = 0.3655. We discuss more
about estimating the velocity boundary layer thickness in the next section. It can be seen
that scaling the velocities with wm results in better data collapse and is obviously a better
choice for non-dimensionalising the horizontal velocity fluctuations than Uf . It can be also
be observed that while scaling with the thermal boundary layer thickness δT is not very
promising (or with the wall length scale Zw which is not shown here), scaling with the
velocity boundary layer thickness δv results in a reasonable collapse of ux,rms/wm data
for different Ra, except for slight deviations at the highest Ra. Thus, it is evident that
fluctuations of the horizontal velocity ux,rms grow from 0 at the wall to wm in the tube part
in a distance of around one boundary layer thickness.

However, the r.m.s. of vertical velocity fluctuations, uz,rms, show a different behaviour
near the walls. The variations of uz,rms/Uf with z/δT and uz,rms/Uw with both z/δT and
z/δv for Iyer et al. (2020a) data are shown in figure 15 for different Ra. While Uf is not
a good choice for scaling the vertical component of velocity, a reasonable collapse results
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when the wall velocity scale Uw (6.1) is used instead. That Uw is the relevant scale for
the vertical velocity is understandable because most of the contribution comes from the
plumes. The model proposed by Theerthan & Arakeri (1998) is based on a unit cell of a
line plume fed by a boundary layer on either side. It was shown there that in conventional
RBC also, data for uz,rms scale well with Uw. It can be noticed that the data collapse
better when the distance is scaled with the thermal boundary layer thickness (or the wall
length scale Zw not shown here) than when scaled with velocity boundary layer thickness.
This could be due to the fact that vertical velocities scale with the extent of penetration
of plumes into the bulk, which again scales with δT or Zw. Thus, we see that while the
vertical velocity fluctuations near the wall scale with δT or Zw and Uw, the horizontal
velocity fluctuations scale with δv and the outer velocity scale wm , produced by the TC.
It is worth mentioning that while moving from the wall to the tube region, the vertical
velocity fluctuations grow at a much slower rate than the horizontal components, and the
scale reaches the bulk velocity wm not after one boundary layer thickness, but only around
half-a-diameter distance from the wall.

6.4. Velocity boundary layer
Similar to the thermal boundary layer, the kinetic or the velocity boundary layer may be
defined in many ways. One can define this based on either the mean velocity profile δM

v or
the (r.m.s. of) the fluctuation velocity profile δσ

v . It could be based on local time-averaged
profiles or both area- and time-averaged profiles. It could also be based on the components
of velocity or the velocity magnitude itself. Again, the boundary layer thickness may be
defined to be based on the slope of the vertical profile at the wall δsl

v , or the distance of the
location of the maxima from the wall δmax

v .
The scale of the velocity boundary layer thickness is usually represented as a power

law of the form δv/H ∼ Reξ or δv/H ∼ Raη. A simple approximation of ξ = −1/2
resulting from laminar boundary layer of Prandtl–Blasius theory has been successful in
predicting the mean velocity boundary layer thickness. This approximation was central to
the derivation of the GL theory (Grossmann & Lohse 2000, 2004) and is justified due
to the low values of shear Reynolds number Res = δvu/ν usually encountered. Above a
critical limit of Res ≈ 420, it is believed that the laminar scaling approximations break
down and the velocity boundary layers become fully turbulent. Even below this limit
when the laminar boundary layer (Blasius) scaling is valid, the mean velocity profile itself
departs from the classical Blasius velocity profile due to the continuous chaotic and time-
dependent behaviour owing to the continuous detachment of thermal plumes (Ahlers et al.
2009). Note that since Re ∼ Ra1/2, an approximation of ξ ≈ −1/2 implies that η ≈ −1/4.
From numerical simulations of RBC with Γ = 1 and Pr = 1, Verzicco & Camussi (1999)
gave a fit δsl,M

v /H = 0.95Ra−0.23 for the area-averaged boundary layer thickness based on
the mean horizontal velocity. Sun et al. (2008) performed high-resolution measurements
in RBC experiments with water (Pr = 4.3) in a rectangular cell of Γ = 1 in the range
109 � Ra � 1010 and proposed δv/H ∼ Ra−0.27 and δv/H ∼ Re−0.50 from independently
determined Reynolds number, which was consistent with the Prandtl–Blasius scaling.
In their case, the boundary layer thickness was estimated from the mean horizontal
velocity profiles at the centre of the plate using both the slope and maxima methods,
both yielding similar scaling. Numerical simulations of Scheel et al. (2012) for 105 �
Ra � 109 and Pr = 0.4, 0.7 in a cylindrical cell of Γ = 1 yield δsl,M

v /H ∼ Ra−0.18 and
δmax,σ
v /H ∼ Ra−0.25, from the mean and r.m.s. horizontal velocity profiles, respectively.

Later, owing to the inhomogeneity of the boundary layer dynamics across the area of
the plates, Scheel & Schumacher (2014) computed fully local inner and outer scales for
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the boundary layer thickness and showed that the conventional boundary layer thickness
definition based on the slope method lay in between the averaged values of these scales. For
a detailed discussion on various definitions of boundary layer thickness and comparison of
numerical and experimental data, we refer the reader to Ahlers et al. (2009), Scheel et al.
(2012) and Scheel & Schumacher (2014).

For slender RBC, as shown in § 6.3, the horizontal velocity near the walls which scales
with the mixing length velocity (u′

x ∼ wm) acts as the streamwise ‘wind’ that interacts with
the plumes. We also saw that the vertical velocity fluctuations near the walls scale with
the wall velocity (u′

z ∼ Uw). We take the approach that it is the plumes that dictate the
growth of the boundary layer, not viscosity (Chandra 2000). We assume that the rate
of boundary layer growth along the ‘mean flow’ direction is proportional to the vertical
velocity fluctuations, i.e. dδ/dt ∼ u′

z , the time derivative being taken in the convective
sense. The convective time scale is τ = d/wm . Thus, δv(wm/d) ∼ Uw, or δv/d ∼ Uw/wm .
Using (6.1) and (5.1), and noticing that δv/H = (δv/d)Γ , we have

δv

H
∼ Uw

wm
Γ = 2−1/3 Ra−1/6

(
1 − dT̃

dz̃

)1/3 dT̃

dz̃

−1/2

. (6.8)

Notice that as the temperature drop in the tube part diminishes, i.e. dT̃ /dz̃ → 0, the above
relation implies that η ≈ −0.17. Boundary layer thickness obtained using this relation is
compared with Iyer et al. (2020a) data for slender RBC (Γ = 0.1) and a few other scaling
laws in the literature (for Γ � 1) in figure 16 for various Ra. For extracting the boundary
layer thickness from the data, we have used both the methods: based on slope (δsl,σ

v )
and based on the location of the maxima (δmax,σ

v ). Both of these are for the profiles of
the r.m.s. horizontal velocity fluctuation, as apparently there is no mean flow or wind
in the case of slender RBC. It can be observed that the curve for the boundary layer
thickness based on the slope method from the data has a trend very similar to that of
the Blasius profile δv/H = a Re−1/2

d Γ . A curve fit to the data from the slope method gives
a prefactor of a = 0.3655 for the Blasius scaling. Most of the aforementioned scalings
from the literature have a similar trend as they have an η value close to −0.25; however,
all of them overpredict the data. It also needs to be mentioned that the correlations cited
from the literature correspond to the boundary layer associated with mean flow due to
the LSC, which would be present only in the Γ ∼ 1 cells. However, it is evident that
the boundary layer thickness based on location of the local maxima, δmax,σ

v , has a very
different trend, and it follows our prediction (6.8) remarkably well with a prefactor of
0.1313 (obtained from curve fitting). Thus, even though there is no mean flow, the velocity
boundary layer thickness estimate using the slope method is well captured by Blasius-like
scaling or other predictions in the literature with η ≈ −0.25, whereas the estimate using
the maxima method is well captured by the boundary layer thickness determined by the
plume-based model (6.8). The reason for the difference in the two scalings is not clear.
From the plume structure (figure 13), it is evident that unlike in RBC with Γ ∼ 1, there is
no alignment of the plumes in slender RBC suggesting an absence of a persistent large-
scale flow. The boundary layer thickness associated with the fluctuating velocity would be
due to the fluctuating wind caused by the tube-convection eddies.

6.5. Velocity variation near the sidewalls
Although not as important as the top and bottom walls, sidewalls do play an important
role in the flow dynamics in RBC, and a predominant one in TC. Ideally, sidewalls
are insulated; however, the non-zero conductivities and heat capacities of the sidewalls
create additional complexities and the need for sidewall corrections while calculating the
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Scheel & Schumacher (2014) δ
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/H = 0.55Ra–0.21

Sun et al. (2008) δ
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sl,M
/H = 4.95Ra–0.27

Sun et al. (2008) δ
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max,M
/H = 10.84Ra–0.27
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v
/H = 0.1313ΓU

w
/wm
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v
/H = 0.3655Red
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Γ
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1011

Ra
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δ v
/
H

Figure 16. Velocity boundary layer thickness δv obtained from the data of Iyer et al. (2020a) for different Ra.
Boundary layer thickness estimates, calculated both using the methods of slope δsl,σ

v (triangle markers) and
maxima δmax,σ

v (circular markers) are shown. Red solid line shows the estimate from the current plume-based
model δv/d ∼ Uw/wm (6.8) with an appropriate prefactor of 0.1313. Blue solid line is the Blasius scaling with
an appropriate prefactor; other solid lines are various estimates from the literature. The superscripts ‘max’ and
‘sl ’ stand for the boundary layer thickness definition based on the slope and location of maxima methods,
respectively, for the horizontal velocity profile. Similarly, superscripts ‘M’ and ‘σ ’ stand for boundary layer
definition based on the mean and r.m.s., respectively, of the horizontal velocity profile.

convective fluxes in experiments (Roche et al. 2001; Verzicco 2002). In fact, performing
experiments on slender RBC would be even more challenging, due to large surface area
of sidewalls in comparison with the top and bottom walls. For TC and consequently in
the tube part of slender RBC, however, the role of the sidewalls is more passive due to
the absence of a time-average velocity in the tube at high Rag when the flow is turbulent.
Away from the sidewalls in the bulk region (towards the centre of the tube), the r.m.s.
velocities scale with the mixing length velocity wm as discussed in § 5. From the radial
velocity profile of r.m.s. velocity fluctuations, Cholemari & Arakeri (2009) showed that
as the sidewall is approached, the lateral (wall-normal) component starts diminishing
early and monotonically to zero at the wall due to kinematic blocking effect. The flow
near the wall is akin to shear-free turbulence near a wall, with splat and anti-splat events.
Unlike the lateral velocity, the axial (vertical) velocity fluctuation profile peaks near the
wall and diminishes rather quickly to zero at the walls due to viscous effects and the no-
slip boundary condition. It can be shown that the extent of this viscous affected region
may be given by a length scale lv ∼ √

ντ , where τ = d/wm is the eddy turnover time, and
can be expressed as lv/d ∼ Gr−1/4

g (Pawar & Arakeri 2016). In figure 17(a), the variation
in the radial direction of r.m.s. of total velocity fluctuations urms at the mid-height are
shown for Iyer et al. (2020a) data. Only the near-wall region is shown and the radius r
is non-dimensionalised with diameter d of the tube and velocity by the free-fall velocity
Uf . At the right end, r/d = r0/d = 0.5, where r0 is the radius of the tube. The dashed
vertical lines show the approximate location of the viscous affected region calculated as
lv/d = Gr−1/4

g from the wall on the right side. It can be seen that most of the variation of
the velocity profile is within this length scale for each case. The same data are re-plotted
in figure 17(b) with the velocity non-dimensionalised with the mixing length velocity wm
and the distance by the viscous length scale lv , with the coordinate shifted such that left
end corresponds to the sidewall. It can be seen that with this choice of scaling for distance
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Figure 17. Profiles of r.m.s. of total velocity fluctuations urms near the sidewall for Iyer et al. (2020a) data in
the radial direction: (a) urms/Uf versus r/d and (b) urms/wm versus (r0 − r)/ lv . Here, r0 = d/2 is the radius of
the tube and lv = √

ντ = √
νd/wm . Data are sampled at mid-height z/H = 0.5 and averaged in the azimuthal

direction and time. Dashed vertical lines in (a) show the location of lv measured from the wall (right end) for
various Ra.

and velocity, the data for different Ra collapse onto each other within a small error margin,
except for the smallest Ra. The viscous affected, boundary layer-like region falls within a
distance of r/ lv ≈ 2 from the sidewall for all the cases. Note that we have used the total
velocity fluctuation profile here and not the vertical velocity which would have shown
a peak at the edge of the viscous affected region where vertical velocity fluctuations are
maximum. The total velocity r.m.s. increases monotonically from 0 at the wall and reaches
the mixing length velocity within a few lv lengths. In fact, the reason for change in the
scaling regime from 0.3 to 0.5 in TC can be traced back to the extent of this viscous
affected region (Pawar & Arakeri 2016). For the 0.3 scaling regime, the viscous region
extends to a significant portion of the tube as in the lowest-Ra case Ra = 108 in figure 17.
Note that for this case, the entire width of the tube is around 3.5lv , meaning that the
entire tube is affected by viscosity. For the 0.5 regime, the extent of the viscous region is
very small and negligible compared with the tube width, meaning the flow in the bulk is
unaffected by diffusive effects resulting in the ultimate (1/2-power) scaling.

7. Slender RBC versus TC
It is compelling to compare the flux transport between slender RBC and TC, given that
removing the top and bottom plates of the former and replacing them with constant-
temperature reservoirs results in the latter. Consider a slender RBC and a TC setup with
the same dimensions (d, H and thus Γ ) and maintained at same temperature difference
�T = Th − Tc across its ends (and therefore same Ra) as in figures 1(b) and 1(c) in the
limit of sufficiently small aspect ratio (Γ � 1). In TC, due to the absence of the walls at
the ends, the fluid at temperatures Th and Tc can enter and exit freely and thus ideally the
linear temperature gradient in the tube (dT /dz) should approach �T/H . However, at both
the ends where tube joins the reservoirs, there exists the possibility of development regions
characterised by nonlinear temperature profiles. Consequently, the temperature gradient
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in the tube need not be equal to �T/H and the ratio of the actual temperature gradient to
the ideal temperature gradient may be expressed as (dT /dz)/(�T/H) = KTC. Cholemari
& Arakeri (2005) give this ratio in a functional form, KTC = (1 + 2(kρ − kH )Γ )−1. Here,
kρ = �ρe/(dρ/dz)d is the ratio of density drop �ρe at the tube ends to the density drop
over one-diameter distance in the tube region and kH = Le/d is the ratio of the length of
development region Le to the tube diameter. Additionally, Cholemari & Arakeri (2005)
using curve fitting to data from salt experiments showed that kρ ≈ 3.1 and kL ≈ 1, giving
KTC = (1 + 4.2Γ )−1. Now, the ratio of the (absolute) temperature gradients of TC and in
the tube part of slender RBC can be written as(

dT
dz

)
TC(

dT
dz

)
S R

= KTC�T/H

�Ttub/H
= KTC

�T

�Ttub
= KTC

(
dT̃

dz̃

)−1

S R
, (7.1)

where (dT̃ /dz̃)S R is the non-dimensional temperature gradient in the tube part of
slender RBC, which we discussed in detail earlier. In the ongoing discussion, we use
subscripts T C and SR to distinguish between TC and slender RBC, respectively. From
the definitions, it is easy to show that the ratio of the gradient Rayleigh numbers between
TC and slender RBC is

Rag,T C

Rag,S R
=
(

dT
dz

)
TC(

dT
dz

)
S R

= KTC

(
dT̃

dz̃

)−1

S R
. (7.2)

Similarly, the ratio of the gradient Nusselt numbers is

Nug,T C

Nug,S R
= q ′′

TC
q ′′

S R

(
dT
dz

)
S R(

dT
dz

)
TC

= q ′′
TC

q ′′
S R

K −1
TC

(
dT̃

dz̃

)
S R

. (7.3)

Thus, the ratio of the heat fluxes between TC and slender RBC of same dimensions
subjected to the same temperature difference is

q ′′
TC

q ′′
S R

= Nug,T C

Nug,S R
KTC

(
dT̃

dz̃

)−1

S R
. (7.4)

In a similar manner, using (5.3c), the ratio of Reynolds numbers (or velocity) in TC and
slender RBC can be obtained as

Red,T C

Red,S R
= urms,T C

urms,S R
=
(

Rag,T C

Rag,S R

)1/3 (Nug,T C

Nug,S R

)1/3

. (7.5)

To see realistic values, let us assume both TC and slender RBC are in conditions where the
scalings fall in the 1/2-power regime, so that Nug,S R ∼ Ra1/2

g,S R and Nug,T C ∼ Ra1/2
g,T C .

Thus, Nug,T C/Nug,S R = (Rag,T C/Rag,S R)1/2 = K 1/2
TC (dT̃ /dz̃)−1/2

S R which in turn means
that

q ′′
TC

q ′′
S R

= K 3/2
TC

(
dT̃

dz̃

)−3/2

S R
and

Red,T C

Red,S R
= K 1/2

TC

(
dT̃

dz̃

)−1/2

S R
. (7.6)

For example, for Γ = 0.1 and Pr = 1, KTC ≈ 0.7, at Ra = 2 × 1011, (dT̃ /dz̃)S R ≈ 0.2
gives q ′′

TC/q ′′
S R ≈ 6.54; Red,T C/Red,S R ≈ 1.87 and at Ra = 1014, (dT̃ /dz̃)S R ≈ 0.1 gives
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q ′′
TC/q ′′

S R ≈ 18.5; Red,T C/Red,S R ≈ 2.64. It should be noted that here we used the correc-
tion factor KTC = (1 + 4.2Γ )−1 from Cholemari & Arakeri (2005) which was estimated
from high-Pr (salt) experiments. For low-Pr fluids, recent TC experiments (Pawar 2015)
show that the temperature drop at the ends is negligible, so that KTC ≈ 1. If we use this
condition, we can see that at Ra = 2 × 1011, q ′′

TC/q ′′
S R ≈ 11.2; Red,T C/Red,S R ≈ 2.24 and

at Ra = 1014, q ′′
TC/q ′′

S R ≈ 31.6; Red,T C/Red,S R ≈ 3.16. Thus, we see that the ratio of the
heat flux in TC is at least an order of magnitude higher that that in slender RBC with the
same dimensions and forcing, while the velocities are a few times higher.

8. Conclusion
In this paper, we have shown that turbulent convection in slender RBC (Γ < 0.2) may be
considered to consist of two parts: one away from the two horizontal walls, where it is like
TC, and one near the horizontal walls, where it is similar to conventional (Γ � 1) RBC,
that we term wall convection. The heat flux is determined by the sum of thermal resistances
in the two parts. TC and wall convection have different flow features and scaling laws.
TC, because of lateral confinement, is characterised by linear temperature and axially
homogeneous conditions in the mean (Arakeri et al. 2000; Cholemari & Arakeri 2009).
Depending on the (gradient) Rayleigh number, at least two regimes exist for the heat flux
transport (Pawar & Arakeri 2016). For the wall convection, we showed that it is convenient
to use a ‘local’ non-dimensional heat flux parameter Cqw (Arakeri et al. 2024) which is
only weakly dependent on Ra, and can be obtained from existing scaling relations for
regular-sized RBC or other geometrically similar configurations, such as convection near
heated horizontal walls. An advantage with Cqw is that, unlike Nu, it is independent of
length scale, and is related to the Rayleigh number based on the thermal boundary layer
thickness. Based on the thermal resistance model, we derived generalised scaling laws
for the non-dimensional heat flux Nu, mean vertical temperature gradient in the tube part
dT̃ /dz̃ and Reynolds number Red in terms of Rayleigh number, aspect ratio and Prandtl
number. The predictions using this model show excellent agreement with many of the
recent studies involving convection in slender geometries (Iyer et al. 2020a; Pandey &
Sreenivasan 2021). Even though in several of the studies (Zwirner & Shishkina 2018;
Zhang 2019; Hartmann et al. 2021; Zhang & Xia 2023b) the parameters fall near the
boundaries where our model is applicable, the model predictions compare well with the
data. An important feature of slender RBC, well captured by the model, is the strong
dependence of Nu on Pr , unlike in regular (Γ ∼ 1) RBC. This Pr dependence arises
mainly from the tube part of the convection. We further observed that when plotted against
a scaled aspect ratio Γs = Γ 3/2 Ra1/8 Pr3/8, the variations of the compensated Nusselt
number Nu Ra−1/3 and the fractional temperature drop in the tube part (dT̃ /dz̃) for
sufficiently high Rayleigh numbers (Ra > 1013) and Prandtl numbers (Pr > 0.1) collapse
approximately onto two universal S-shaped curves, which are well fitted by hyperbolic
tangent functions. These correlations will be useful in estimating these quantities in
high-Ra slender RBC.

We showed that the near-wall variations of mean temperature and r.m.s. velocities
collapse for different Ra, when scaled appropriately with near-wall length and velocity
scales. In addition, we showed that for the data in Iyer et al. (2020a), the velocity boundary-
layer thickness estimated by the slope method follows the Prandtl–Blasius scaling, whereas
that based on the location of the horizontal r.m.s. velocity maxima follows the prediction
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based on a plume-based model for boundary layer growth. Finally, we compared the flux
transport in slender RBC with that of TC, and show that fluxes in the latter are much higher
than in the former.

We have seen that for most of the scaling relations for slender RBC, the width/diameter
of the domain d is the relevant length scale rather than the vertical separation H . For
example, heat flux at the walls Cqw depends on Rad ; and the flux in the tube Nug and the
Reynolds number Red depend on the gradient Grashof number Grg . This is in line with
the observations of Shishkina (2021) and Ahlers et al. (2022) that for RBC with Γ � 1,
the relevant length scale approaches the diameter of the plates 	 ≈ d. We also saw that
the critical Rayleigh number Rac (or critical Grashof number Grc) that determines the
transition between the 0.3 and 0.5 regimes of scaling strongly increases with reducing Γ .
For Ra > Rac, the (0.5) ultimate regime is achieved in the tube part, and for Ra < Rac,
the ultimate regime will not be attained in the tube part, let alone the full domain. Thus,
crossing Rac will be a necessary condition for attaining the final transition to the possible
ultimate scaling in the domain, in addition to the boundary layers at the walls becoming
fully turbulent. We also showed that the critical Rayleigh number Ra∗

u of transition of
the full domain into the ultimate regime may be estimated by using the criterion of shear
Reynolds number at the boundary layers crossing a threshold value of 420, and obtained
that Ra∗

u ∼ Γ −3 for slender RBC; for Γ = 0.1, our predicted value of Ra∗
u is 4.8×1017.

These scalings may be used for designing a slender RBC to attain an overall ultimate
regime.

We reiterate that in the Ra–Γ –Pr parameter space, the correlations on which the
current model is based are valid only when certain conditions are satisfied. The existence
of a tube part is assumed which would be reasonable for low aspect ratios (Γ < 0.2) only.
For the near-wall flow, the wall Rayleigh number Raw should be such that the at least one
or more plumes are present, i.e. Raw � 105 or λp/d � 1. For the tube part, it is required
that the gradient Grashof number Grg be above a certain, but yet unknown limit Grg0
which is expected to be approximately 5 × 103. Also, the correlations for the TC part that
we have used in the model are for moderate to high Prandtl numbers (Pr � 1). In summary,
the regime of validity of the current model is when Grg � 5 × 103, λp/d < 1, Pr � 1 and
Γ � 0.2, though the model seems to reasonably well predict data for Pr as low as 0.1,
and for Γ → 1. The approach of our model of considering slender RBC as the sum of two
thermal resistances may be extended beyond the current ROA with appropriately modified
tube and wall-scaling relations.
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Appendix A. Relation between Grg and Gr: estimating Grc

In the relations for Nu and dT̃ /dz̃ (§ 4), the critical Rayleigh (or Grashof) number of
transition between the two scaling regimes of TC is unknown to begin with. What we know
is the critical gradient Grashof number Grgc = 1.6 × 105. We need a relation between Gr
(based on the total temperature difference �T ) and Grg (based on temperature gradient
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Figure 18. Plots of Gr versus Grg for 0.3 and 0.5 power law regimes (A3) for Γ = 0.1 and Pr = 1 with
Cqw = 0.1328 + 1.235Ra−0.18

d .

dT /dz in the tube part) to find the critical Grashof number Grc. To do so, we use
dT̃ /dz̃ = (Rag/Ra)Γ −4 from (3.5) to eliminate dT̃ /dz̃ in (4.12), so that

2C−3/4
qw

C3/4
tub Ra

3a−1
4 Pr

3b
4 Γ 3a

(
Rag

Ra

) 3(1+a)
4

Γ −3(1+a) + Rag

Ra
Γ −4 = 1. (A1)

Thus,

2C−3/4
qw

C3/4
tub Ra

3(1+a)
4

g Pr
3b
4 Γ −3 + RagΓ

−4 = Ra. (A2)

In terms of Grashof number Gr = Ra/Pr , this equation becomes

2C−3/4
qw

C3/4
tub Gr

3(1+a)
4

g Pr
3(a+b)−1

4 Γ −3 + GrgΓ
−4 = Gr. (A3)

For the two regimes, we have

2C−3/4
qw

C3/4
0.3 Gr39/40

g Pr1/2Γ −3 + GrgΓ
−4 = Gr for Grg0 < Grg < Grgc, (A4a)

2C−3/4
qw

C3/4
0.5 Gr9/8

g Pr1/2Γ −3 + GrgΓ
−4 = Gr for Grg > Grgc. (A4b)

The curves traced out by (A4a) and (A4b) are plotted in a log–log scale in figure 18
for a sample case of Γ = 0.1 and Pr = 1 with variable Cqw = 0.1328 + 1.235Ra−0.18

d .
The blue and red curves correspond to the 0.3 regime and the 0.5 regime, respectively.
With increasing Grashof number Gr , the gradient Grashof number Grg follows the blue
curve for lower values less than the critical limit, and above which it follows the red curve.
As can be seen, these two curves naturally intersect at the critical gradient Grashof number
Grgc = 1.6 × 105 described by the scaling laws of Pawar & Arakeri (2016), which marks
the point of transition from the 0.3 to the 0.5 regime in TC. For the particular set of
input parameters (Γ , Pr and Cqw ) we have selected, this point corresponds to a critical
Grashof number (based on total temperature difference) of Grc = 5.3 × 109. Thus we have
the value for the critical Grashof number Grc of transition between the scaling regimes,
to replace dependency on the gradient-based Grashof number Grgc in the generalised
Nu–Ra scaling law (4.9) and in the relation for non-dimensional temperature gradient
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dT̃ /dz̃ (4.13) or (4.15). The critical Grashof number Grc is a very weak function of Cqw

which can be seen from the fact that for a choice of Cqw = 0.1729, this equation would
have yielded Grc = 5.9 × 109, and for Cqw = 0.15, Grc = 6.4 × 109, neither of which are
shown here.
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