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Integral Points on Elliptic Curves and
Explicit Valuations of Division Polynomials

Katherine E. Stange

Abstract. Assuming Lang’s conjectured lower bound on the heights of non-torsion points on an ellip-
tic curve, we show that there exists an absolute constant C such that for any elliptic curve E/Q and
non-torsion point P ∈ E(Q), there is at most one integral multiple [n]P such that n > C . The proof
is a modification of a proof of Ingram giving an unconditional, but not uniform, bound. The new
ingredient is a collection of explicit formulæ for the sequence v(Ψn) of valuations of the division poly-
nomials. For P of non-singular reduction, such sequences are already well described in most cases, but
for P of singular reduction, we are led to define a new class of sequences called elliptic troublemaker
sequences, which measure the failure of the Néron local height to be quadratic. As a corollary in the
spirit of a conjecture of Lang and Hall, we obtain a uniform upper bound on ĥ(P)/h(E) for integer
points having two large integral multiples.

1 Introduction

A famous theorem of Siegel states that there are only finitely many integral points on
any elliptic curve E/Q . Of course, this implies that among the multiples [n]P of any
particular point P, only finitely many may be integral. In this context there are two
natural ways to give a bound: on the number of such points, and on the size of n. If
one assumes either the abc Conjecture of Masser and Oesterlé or Szpiro’s Conjecture
and restricts attention only to elliptic curves in minimal Weierstrass form, then the
number of integral points among the multiples of P is bounded uniformly according
to Hindry and Silverman [16]. This is also known unconditionally for curves of
integral j-invariant [26].

The best known result bounding the size of n is due to Ingram [17], who uses lower
bounds on linear forms in elliptic logarithms to bound n in terms of the height of E,
and the quantity M(P), defined as the smallest m such that [m]P has non-singular
reduction modulo all primes (note that M(P) can be bounded above in terms of E
alone). Using a gap principle, Ingram goes on to find a constant C , depending only
on M(P) (and not the height of E) such that at most one multiple [n]P is integral
for n > C . At the moment, analogous results bounding integral points among linear
combinations [n]P + [m]Q seem to be out of reach.

In this paper, we obtain a similar result in which the constant depends only on the
ratio of heights h(E)/ĥ(P), defined as follows. The canonical height of a point P is

Received by the editors August 13, 2013; revised January 5, 2015.
Published electronically July 14, 2016.
The author’s research has been supported by NSERC PDF-373333 and NSF MSPRF 080291.
AMS subject classification: 11G05, 11G07, 11D25, 11B37, 11B39, 11Y55, 11G50, 11H52.
Keywords: elliptic divisibility sequence, Lang’s conjecture, height functions.

1120

https://doi.org/10.4153/CJM-2015-005-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2015-005-0


Integral Points on Elliptic Curves and Explicit Valuations of Division Polynomials 1121

given by

ĥ(P) :=
1

2
lim

n→∞

h([2n]P)

4n
,

where h(P) := h(x(P)), the logarithmic height of the x-coordinate. The height of E
is

h(E) := max{h( j), log |∆|, 1}.
See Section 11 for more detail.

Theorem 1.1 There are uniform constants C and C ′ such that for all elliptic curves
E/Q in minimal Weierstrass form, and non-torsion points P ∈ E(Q), there is at most
one value of

(1.1) n > max

{
C

h(E)

ĥ(P)
log
( h(E)

ĥ(P)

)
,C ′
}

such that [n]P is integral. Furthermore, this one value is prime.

The bulk of the proof consists of giving complete closed formulæ for the valua-
tions of elliptic divisibility sequences at primes of bad reduction, which ingredient
is combined with established methods of Ingram [17]. The formulæ themselves are
considered a principal goal of this paper, but we will first discuss the implications of
Theorem 1.1.

The restriction to minimal elliptic curves is necessary, since otherwise there exist
methods of constructing examples with arbitrarily many integral points. Throughout
the paper we compare this result to [17, Theorem 1], which differs only in that the
bound (1.1) is replaced by n > CM(P)16. These bounds are quite different. For
example, one does not expect curves of large height necessarily to have large M(P).
The quantity M(P) divides the least common multiple of the Tamagawa numbers of
E, which measure the number of components in the fibres of the Néron model.

Unfortunately, the constants C and C ′ in Theorem 1.1, while effective, are quite
large. More details can be found in Section 11.

The bound becomes uniform if one assumes a well-known conjecture of Lang,
given here in a slightly strengthened form (for details, see Section 11).

Lang’s Height Conjecture ([19, p. 92], [29, Conjecture 9.9]) There is a uniform
constant CL such that for any elliptic curve E/Q in minimal Weierstrass form, and point
P ∈ E(Q) of infinite order,

ĥ(P) > CLh(E).

Lang’s conjecture follows from the abc Conjecture, via Szpiro’s Conjecture [16].
The bound on n in Theorem 1.1 becomes uniform if we assume any of these conjec-
tures. In particular, the bound is uniform if we restrict to elliptic curves of integral
j-invariant, or curves for which the denominator of the j-invariant is divisible by a
bounded number of primes, for which Lang’s conjecture is known to hold [16, 25].
The uniformity of the bound in Theorem 1.1 in the case of integral j-invariant is al-
ready a result of Ingram’s original argument [17] (but this does not extend to curves
whose j-invariant is divisible by a bounded number of primes).
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The following is an immediate corollary to the main result.

Corollary 1.2 There are uniform constants c and c′ such that for any elliptic curve
E/Q in minimal Weierstrass form, and point P ∈ E(Q) of infinite order having at least

two integral multiples [n]P and [m]P satisfying n > m > c′, then ĥ(P) ≤ ch(E).

Call a triple (P, n,m) satisfying the hypotheses of Corollary 1.2 far-out for the
constant c′. Then the theorem and corollary state that Lang’s Height Conjecture is
incompatible with the existence of far-out triples for arbitrarily large c′; in essence,
sufficiently far-out triples would generate examples of points P with large ratio
h(E)/ĥ(P) (i.e., extreme examples for Lang’s Height Conjecture).

Compare to another conjecture of Hall and Lang, which posits an upper bound
on the height of an integral point in terms of the height of the curve. Note that any P
with integral multiples is necessarily integral.

Hall-Lang Conjecture ([20, Conjecture 5]) There is a uniform constant CHL such
that for any elliptic curve E/Q in minimal Weierstrass form, and integral point P ∈
E(Q) of infinite order, ĥ(P) < CHLh(E).

This conjecture generalises a conjecture of Hall for elliptic curves of the form y2 =
x3 + b [15]. In [20], Lang used a slightly different definition of h(E) than we use here;
see Section 11 for a justification that they are equivalent. The conjecture seems out
of reach; the best known bounds with a uniform constant are exponential in h(E)
([2, 23, 32, 34], but see also [22]).

In this light, Corollary 1.2 states roughly that far-out triples satisfy a Hall-Lang
bound (even if Lang’s Height Conjecture holds, it may allow “moderately” far-out
triples). More interestingly, a strengthening of Theorem 1.1 would lead to a Hall-
Lang result in cyclic subgroups. Specifically, if (1.1) could be strengthened to

n > max

{
C
( h(E)

ĥ(P)

) 1
2
,C ′
}
,

then one would obtain the following statement: There are uniform constants D1 and
D2 such that for any integral point P, all integral multiples Q = [n]P of P satisfying
n > D1, except at most one, satisfy h(E)/ĥ(Q) > D2. To derive this, one uses the fact
that h([n]P) = n2h(P) + O(1) (see, for example, [29, §VIII.6].

Theorem 1.1 is proved using the following estimate for P such that [n]P is integral
(Proposition 11.6):

ĥ(P) ≤ log n + 16
3 h(E).

Ingram’s argument depends upon a similar estimate, which in turn depends upon an
examination of the division polynomials Ψn of an elliptic curve. In particular, for a
point P, he bounds the size |Ψn(P)| in relation to the denominator Dn of [n]P, by
considering the valuations vp(Ψn(P)) for each prime. The sequence Wn = Ψn(P) is
called an elliptic divisibility sequence, or EDS.

As one might expect, the arithmetic geometry of the underlying curve and point
shows itself in the number theory of the elliptic divisibility sequence, which is a sub-
ject of interest in its own right. In fact, if one pursues an analogy to the relationship
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between an EDS and its underlying curve, replacing the elliptic curve with a twist of
the multiplicative group, then one obtains, instead of an EDS, a Lucas sequence of
the first kind such as the Mersenne or Fibonacci numbers. The centuries-old num-
ber theoretic questions about Lucas sequences such as the prime factorisation of their
terms, when asked about elliptic divisibility sequences, translate to questions about
the arithmetic geometry of P and E such as the orders of P under reduction to finite
fields. A great many of these questions have been studied for EDS: appearance of
prime terms [7, 10], primitive divisors [12, 18, 38], squares and powers [11, 14, 21],
and the sign of terms [31], to name a few.

In this paper, we give a full, explicit description of the possible sequences of valua-
tions v(Wn) for an EDS over a p-adic field or a number field. Ingram’s result depends
on work of Cheon and Hahn on such sequences of valuations [3], and it is here that
the dependence on M(P) arises. Cheon and Hahn describe the sequence of valua-
tions recursively, determining a growth rate. In contrast, this paper provides a closed
form whose parameters depend on the reduction properties of P and E. It is this that
allows us to prove the estimate of Proposition 11.6 and therefore Theorem 1.1. How-
ever, it is the intention of this paper to give a complete description of these valuation
sequences for its own sake, and this work makes up the bulk of the paper.

Proposition 11.6 is obtained from Lemma 11.4, which is the moment at which
the EDS results are used to feed into the proof of Theorem 1.1. It came to the au-
thor’s attention after this paper was written that the same result appears in Mahe
[21, Proposition 4.2.3], with a proof by different methods.

For primes of good reduction for the associated elliptic curve, the sequence of
valuations at a prime place is well understood and has a simple, pleasing description
that has become a sort of “folk theorem”, although its first appearance in print is due
to Cheon and Hahn [3, 4] (but see Remark 6.5).

Theorem 1.3 (Introductory form of Theorem 6.1; see Section 6 for references to
other versions appearing in the literature) Let E be an elliptic curve with good reduc-
tion over a p-adic field K with valuation v. Let nP > 1 be the order of P ∈ E0(K)/E1(K).
Suppose that E is a minimal Weierstrass model and that v(WnP ) > v(p)

p−1 . Then

v(Wn) =

{
v(WnP ) + v(n/nP) nP | n,

0 nP - n.

In Theorem 6.1, we give a more complete characterisation than has, to our knowl-
edge, appeared in the literature. In particular, we remove the assumption that
v(WnP ) > v(p)

p−1 at the cost of some extra complication to the formula.
In contrast to the good reduction case, the primes of bad reduction often pop

up in great quantity in an EDS, in frequency depending on the reduction of P on
the Néron model. We now state an introductory theorem combining all types of
reduction (each treated separately in the paper).

Theorem 1.4 (Introductory combination of Theorems 3.3, 6.1, 7.1, 9.3 and 10.1)
Let K be an unramified extension of Qp, p 6= 2. Let Wn be an EDS associated with an
elliptic curve E/K in Weierstrass form and non-torsion P ∈ E(K). There exist integers
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a, `, c1, c2, c3, c4, c5 such that

v(Wn) =
1

c1

(
Rn(a, `) + c2n2 + c3 +

{
c4 + v(n) c5 | n

0 c5 - n

)
,

where

Rn(a, `) =

⌊
n2â(`− â)

2`

⌋
−
⌊

n̂a(`− n̂a)

2`

⌋
,

and x̂ denotes the least non-negative residue of x modulo `.
Furthermore,

a = 0 ⇐⇒ Rn(a, `) ≡ 0 ⇐⇒
{

E has potential good reduction or
P has non-singular reduction

}
.

The full results in this paper apply to all p-adic fields and to torsion points at
the cost of some complication to the final term of the formula. They also provide
much more detail about the significance and possible values of the parameters. The
sequences Rn(a, `), here dubbed elliptic troublemaker sequences, satisfy a host of prop-
erties examined in Section 8.

For P such that [n]P 6= O, the valuations of Wn are connected to Néron–Tate local
heights by the following relationship [28, Exercise VI.6.4(e)]:

λv

(
[n]P

)
= n2λv(P)− log |Wn|v +

n2 − 1

12
log |∆|v.

Some portions of the results in this paper can be viewed as results about local heights
and could be proved by recourse to the established theory of such.

In the case of good reduction in minimal Weierstrass form, Theorem 1.3 im-
plies that v(Wn) is asymptotically equal to v(n) as a function of n (on the non-zero
terms). Cheon and Hahn show, using a recurrence relation for EDS (see (3.1)), that
for P non-torsion having singular reduction, v(Wn) is asymptotically equal to Cn2

for some constant C [3]. Everest and Ward use the elliptic Jensen formula to give a
growth rate in this situation of

log |Ψn(P)|v =
(
λv(P) + log |∆|v/12

)
n2 + O(nC ),

for some constant 0 < C < 2, which may depend on P [9, Theorem 3]. Here, λv(P)
is the Néron local height (note that [9] uses a different normalisation than ours; we
follow Silverman [28, Chapter VII]). Everest and Ward use this result to give an
algorithm for computing the canonical height of a point. Theorem 12.1 improves
the error term on this estimate to O(log n); see Section 12.1.

For any torsion point P, the Wn are supported only on primes of bad reduction
(see Remark 6.3). Gezer and Bizim give some explicit descriptions of these valuations
over Q for N < 13 [13, Theorem 2.2]. Their formulæ can be restated in terms of
elliptic troublemaker sequences. See Section 12.2.

Sections 2 and 3 provide background. Section 5 generalises the central lemma on
formal groups that lies at the core of Theorem 1.3. Sections 6, 7, 9, and 10 describe
the valuation sequence v(Wn) for each type of reduction. Section 8 considers the
properties of elliptic troublemaker sequences. Section 11 proves Theorem 1.1, while
Section 12 examines a few other connections and applications. Finally, Section 13
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gives some detailed examples of elliptic divisibility sequences and their sequences of
valuations.

2 Preliminaries on Division Polynomials

In this section, we briefly catalogue some of the standard properties of division poly-
nomials. The proofs are largely computational, and are omitted. For background, see
especially [1, Section 2], but also [8, Chapter 9] and [29, Exercise III.3.7]. Division
polynomials are usually defined for elliptic curves, but here we will suppose only a
cubic curve E (possibly singular) given in standard Weierstrass form

E : y2 + a1xy + a3 y = x3 + a2x2 + a4x + a6.

The division polynomials Ψn ∈ Z[a1, a2, a3, a4, a6, x, y] for the curve E are defined
recursively using the initial values

Ψ1 = 1,

Ψ2 = 2y + a1x + a3,

Ψ3 = 3x4 + b2x3 + 3b4x2 + 3b6x + b8,

Ψ4 = Ψ2 ·
(

2x6 + b2x5 + 5b4x4 + 10b6x3 + 10b8x2

+ (b2b8 − b4b6)x + (b4b8 − b2
6)
)
,

(here bi are the usual quantities [29, Section III.1]) and the recurrences

(2.1)
Ψ2m+1 = Ψm+2Ψ

3
m −Ψm−1Ψ

3
m+1, for m ≥ 2

Ψ2mΨ2 = Ψ2
m−1ΨmΨm+2 −Ψm−2ΨmΨ2

m+1, for m ≥ 3.

If Ψ2 = 0, then let Ψ2m = 0 for all m. For an elliptic curve E, the n-th division
polynomial vanishes at all non-trivial n-torsion points: it has divisor

∑
Q∈E[n](Q) −

n2(O). (We will use O for the identity of an elliptic curve.)

Proposition 2.1 Let E be an elliptic curve. Then P is a non-trivial n-torsion point if
and only if Ψn(E, P) = 0.

There exist φn, ωn ∈ Z[a1, a2, a3, a4, a6, x, y] such that the multiplication-by-n
formulæ for an elliptic curve are given by

[n]P =
( φn

Ψ2
n

,
ωn

Ψ3
n

)
.

In fact, φn and ωn can be given by the following relations:

φn = xΨ2
n −Ψn−1Ψn+1,

4yωn = Ψ2
n−1Ψn+2 −Ψn−2Ψ

2
n+1.

If we assign the natural weights

(2.2) w(x) = 2, w(y) = 3, w(ai) = i,
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then the Weierstrass equation is homogeneous of weight 6. Any change of coordi-
nates between Weierstrass equations of the form

x′ = u2x, y′ = u3 y

changes the coefficients according to a′i = uiai and ∆′ = u12∆. These weights are
useful in determining the valuations of division polynomials.

Proposition 2.2 The division polynomials Ψn have the following properties.

(i) Using the natural weights (2.2), Ψn, φn, and ωn are homogeneous of weight n2−1,
2n2, and 3n2, respectively.

(ii) As polynomials in x,

Ψ2
n = n2xn2−1 + (lower order terms) ∈ Z[a1, a2, a3, a4, a6, x],

φn = xn2

+ (lower order terms) ∈ Z[a1, a2, a3, a4, a6, x].

(iii) If E is given by a v-integral Weierstrass equation, where v is a non-archimedean
valuation, and v(x), v(y) < 0, then v(φn) = n2v(x).

(iv) The change of variables x′ = u2x + r and y′ = u3 y + sx + t from E to E′ gives

Ψn(x′, y′, E′) = un2−1Ψn(x, y, E).

(v) Whenever n | m for n,m ≥ 1, we have Ψn | Ψm.

The division polynomials satisfy the more general recurrence equation

Ψn+m+sΨn−mΨr+sΨr + Ψm+r+sΨm−rΨn+sΨn + Ψr+n+sΨr−nΨm+sΨm = 0,

from which the recurrences (2.1) can be obtained as special cases [33, Theorem 3.7].
Finally, using the Weierstrass σ-function and the usual complex uniformization

C/Λ of an elliptic curve over C, Ward showed that [37, Theorem 12.1],

(2.3) Ψn(z,Λ) =
σ(nz,Λ)

σ(z,Λ)n2 .

3 Preliminaries on Elliptic Divisibility Sequences

Definition 3.1 An elliptic divisibility sequence, or EDS, is a sequence Wn in an
integral domain1 satisfying

(3.1) Wn+mWn−mW 2
r + Wm+rWm−rW

2
n + Wr+nWr−nW 2

m = 0.

The connection between EDS and elliptic curves is described by Ward in his orig-
inal memoir on the subject. We next state an updated version of Ward’s theorem that
applies to fields of characteristic zero and cubic curves.

Theorem 3.2 (Ward [37, Theorem 12.1], Shipsey [24, Theorem 4.5.3], S. [33]) Let
E be a cubic curve defined over a field K of characteristic zero, given by Weiestrass form,
and let P ∈ E(K). Then Wn = Ψn(P) is an elliptic divisibility sequence. Furthermore,

1One could define such sequences in a more general context, but we will be concerned only with local
and global fields.
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if Wn ∈ K is an elliptic divisibility sequence with W2W3 6= 0, W1 = 1, then there exists
a cubic Weierstrass curve E/K and P ∈ E(K) so that Wn = Ψn(P).

In other words, any non-degenerate EDS over K appears as the sequence of di-
vision polynomials for some cubic Weierstrass curve E/K evaluated at a point P ∈
E(K). (As (3.1) is homogeneous, we may first scale so that W1 = 1.) The term
“divisibility” in “elliptic divisibility sequence” refers to Proposition 2.2(v). In par-
ticular, any EDS arising from a rational point on an elliptic curve E/Q in minimal
Weierstrass form is an integer sequence with the property that n | m =⇒ Wn |Wm.

Let E be an elliptic curve defined over K (by this we will always mean that E is given
by a Weierstrass equation), and let O 6= P ∈ E(K). Let Wn be the elliptic divisibility
sequence associated with E and P. If we change the Weierstrass equation for E, we can
change the elliptic divisibility sequence. For example, it will be convenient to change
the equation to one in minimal Weierstrass form, so we can consider the reduction
type. Fortunately, the associated elliptic divisibility sequence changes in a simple
fashion, as described by Proposition 2.2(iv). This immediately gives the following
result, which will be important enough for the later results that we include it as a
theorem.

Theorem 3.3 Let E be an elliptic curve defined over a p-adic field K with valuation
v, given by Weierstrass form, and let O 6= P ∈ E(K). Let Wn be the associated elliptic
divisibility sequence. Then there exists an isomorphism φ : E → E′, defined over K,
to an elliptic curve E′ in minimal Weierstrass form. Let W ′n be the elliptic divisibility
sequence associated with φ(P). Then there exists an rP ∈ Z such that

v(Wn) = (n2 − 1)rP + v(W ′n).

4 Notation

Throughout the remainder of the paper (except for Sections 11–13), let p be a prime,
let K be a finite extension of Qp, and let R be the ring of integers of K, with maximal
ideal M. Let v be a valuation for K, let π be a uniformizer, and let k be the residue
field. Let E be an elliptic curve defined over K, let P ∈ E(K), and let Wn be the EDS
associated with E and P.

5 Central Lemma on Formal groups

For a point of non-singular reduction, the sequence of valuations v(Wn) is controlled
by the formal group of the elliptic curve. For points of singular reduction, the se-
quence of valuations is partially controlled by the formal group of either the elliptic
curve, or the multiplicative group, depending on the type of reduction. In both cases,
the results rely on a lemma describing the valuations of the multiples of a point in
an abstract formal group. Although the formula (5.1) below is quite complicated in
most cases we encounter, the variable j takes the value 0, whereupon (5.1) simply
reduces to v(z) + v(n). For background on formal groups, see [29, Chapter IV].
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Lemma 5.1 Let F be a one-parameter formal group defined over R, and let z ∈
F(M). There exist integers b, j, h, and w ∈ Z≥0 ∪ {∞} such that for all integers n,

(5.1) v([n]z) =

{
b jv(z) + b j−1

b−1 h + v(n)− jv(p) + w if v(n) > jv(p),

bv(n)/v(p)v(z) + bv(n)/v(p)−1
b−1 h if v(n) ≤ jv(p).

Furthermore:

(i) b is the smallest power of T with a coefficient not divisible by p in the series [p]T,
and h is the valuation of said coefficient. If no such integer exists, then b = 1 and
h = 0. Otherwise, p | b and b > 1.

(ii) If b = 1, then j = 0. If b 6= 1, then j is the smallest non-negative integer such
that

v(p) ≤ b j
(

(b− 1)v(z) + h
)
.

(iii) w = 0 unless b > 1 and v(p) = b j((b− 1)v(z) + h), in which case

w = v
( [p j+1]z

([p j]z)p

)
− h,

which may be equal to∞.

Remark 5.2 For the formal additive group, given by f (X,Y ) = X + Y , the series
for multiplication-by-m is [m]T = mT, so b = 1, h = j = w = 0, and therefore
(5.1) simplifies to v([n]z) = v(z) + v(n).

For the formal multiplicative group, given by f (X,Y ) = (X + 1)(Y + 1) − 1,
multiplication-by-m is

[m]T = (T + 1)m − 1 = Tm + mTm−1 +

(
m

2

)
Tm−2 + · · · + mT,

so b = p and h = 0.
The formal group of an elliptic curve in standard Weierstrass form is given by

f (X,Y ) = X + Y − a1XY − a2(X2Y + XY 2)

+ 2a3(X3Y + XY 3) + (a1a2 − 3a3)X2Y 2 + · · · .

In particular, it may occur that one or more of the conditions h > 0, b > p, and
j 6= 0 may hold, for example, over a highly ramified 2-adic field. See Examples 13.2
and 13.5.

Proof of Lemma 5.1 By [29, Proposition IV.2.3(a)], multiplication-by-n has the
form

[n]T = nT + O(T2).

Suppose n is coprime to p. Since v(z) > 0, we obtain v([n]z) = v(z). Since
[m1m2]T = [m1]([m2]T), it therefore suffices to consider only n equal to a power of
p. Let ak = v([pk]z) for all non-negative k.

By [29, Corollary IV.4.4], the formal group law for [p] has the form

(5.2) [p]T = p f (T) + g(T p),
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where f and g have no constant term. We may also assume that the coefficients in g
are not divisible by p. By [29, Proposition IV.2.3(a)],

f (T) = T + O(T2).

Let b ∈ Z be the smallest power of T in g(T p) with a non-zero coefficient, and let h be
the valuation of that coefficient (so, in particular, 0 ≤ h < v(p)). Let us momentarily
skip the case where g ≡ 0, so that we have p | b and b ≥ p > 1. Define j to be the
smallest non-negative integer such that

v(p) ≤ b j
(

(b− 1)v(z) + h
)
.

For the moment, let us also assume that the inequality is not an equality.
From (5.2),

(5.3) v([p]z) ≥ min
{

v(z) + v(p), bv(z) + h
}
.

Suppose that j > 0. Then, since v(p) > (b − 1)v(z) + h, the second option
determines the minimum in (5.3), in which the inequality is an equality, and so a1 =
ba0 + h.

Repeating this argument for all k ≤ j, we find

a1 = ba0 + h =⇒ a2 = b2a0 + bh + h =⇒ · · · =⇒ a j = b ja0 +
b j − 1

b− 1
h.

For k = j + 1, we again obtain (5.3) (where we replace z with [p j]z), but v(p) <
b j((b − 1)v(z) + h), so the first option determines the minimum, again where in-
equality is equality, which implies that

a j+1 = a j + v(p) = b ja0 +
b j − 1

b− 1
h + v(p).

Repeating this argument, we find that for all k > j,

ak = b ja0 +
b j − 1

b− 1
h + (k− j)v(p),

from which the result follows with w = 0.
Now suppose that v(p) = b j((b − 1)v(z) + h). This gives v(p) = (b − 1)a j + h.

The only place in which this affects the proof is the application of (5.3) for k = j + 1.
In this case, the minimum in (5.3) compares two equal values, and we obtain instead
the alternate form

a j+1 = a j + v(p) + w,

for w either∞ (if [p j+1]z = 0) or a non-negative integer. If w 6= ∞, then we find
that

w = a j+1 − a j − v(p) = a j+1 − a j − (b− 1)a j − h = v([p j+1]z)− bv([p j]z)− h.

For k > j + 1, ak = ak−1 + v(p) as before. Combining this with the other cases yields
the general formula.

Finally, we return to the case that g ≡ 0. In this case, (5.3) is replaced with

v
(

[p]z
)

= v(z) + v(p),

and we obtain the formula with b = 1, h = 0, j = 0, and w = 0.

https://doi.org/10.4153/CJM-2015-005-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2015-005-0


1130 K. E. Stange

The formula in Lemma 5.1 being somewhat cumbersome, we set some notation
for the class of such sequences.

Definition 5.3 Suppose p ∈ Z is a prime, and let u be the valuation on Q associ-
ated with p. Suppose

b ∈ pZ>0 ∪ {1}, d ∈ Z>0, h ∈ Z≥0, s ∈ Z>0 ∪ {∞}, w ∈ Z≥0 ∪ {∞}.

If b = 1, set j = 0. Otherwise, let j to be the smallest non-negative integer such that

d ≤ b j
(

(b− 1)s + h
)
.

Define a sequence in Z ∪ {∞},

Sn(p, b, d, h, s,w) =

{
b js + b j−1

b−1 h + d(u(n)− j) + w u(n) > j,

bu(n)s + bu(n)−1
b−1 h u(n) ≤ j.

We record a few properties whose proofs are immediate.

Proposition 5.4 (i) If j = 0, then Sn(p, b, d, h, s, 0) = s + du(n).
(ii) For any integer k, Sn(p, b, kd, kh, ks, kw) = kSn(p, b, d, h, s,w).
(iii) For fixed integers p, b, d, h, s, and w, Sn(p, b, d, h, s,w) = O(log n).

6 Non-singular Reduction

The sequence v(Wn) for a point of non-zero non-singular reduction has been de-
scribed in various contexts in [3, Theorem 1] (but see Remark 6.5), [4, Lemma],
[5, Lemma 2.6], [30, Lemma 5], [36, Lemma 3.4]. Loosely speaking, in most cases
one expects that for non-torsion points with non-singular reduction of order nP > 1,

(6.1) v(Wn) =

{
v(WnP ) + v(n/nP) if nP | n,

0 if nP - n.

There are exceptions, however. Lemma 5.1 on formal groups allows us to prove a
somewhat stronger, more general statement. Please refer to Definition 5.3 for the
sequence Sn, which generalises (6.1).

Theorem 6.1 Assume that E is in minimal Weierstrass form, P has non-singular
reduction, and let nP be the smallest non-negative integer such that [̃nP]P = Õ over the
residue field k. There exist

bP ∈ pZ>0 ∪ {1}, hP ∈ Z≥0, sP ∈ Z>0 ∪ {∞}, wP ∈ Z≥0 ∪ {∞},

such that

(6.2) v(Wn) = min
{

0,
v(x(P))

2

}
n2 +

{
Sn/nP

(p, bP, v(p), hP, sP,wP) if nP | n,

0 if nP - n.

Furthermore, v(x(P)) < 0 if and only if nP = 1.
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Corollary 6.2 Assume that P is a non-trivial torsion point with non-singular re-
duction to a point of order nP > 1. Suppose that E is a minimal Weierstrass model.
Then

v(Wn) =

{
∞ if nP | n,

0 if nP - n.

Remark 6.3 This corollary implies that the non-zero terms of an elliptic divisibility
sequence associated with an integral torsion point P are supported only on the primes
of bad reduction. If P is a non-integral torsion point (necessarily of order 2), then
the non-zero terms of the EDS are supported on primes of bad reduction, and 2. See
Example 13.3.

Corollary 6.4 Assume that P is a non-torsion point with non-singular reduction to
a point of order nP > 1. Suppose that E is a minimal Weierstrass model. Under any of
the conditions (i)–(iii) below, we have

(6.3) v(Wn) =

{
v(WnP ) + v(n/nP) if nP | n,

0 if nP - n.

(i) v(p) < (p − 1)v(WnP ).
(ii) K = Qp, and we are not in the special case that p = 2, v(WnP ) = 1 and E has

ordinary or multiplicative reduction.
(iii) K is unramified over Qp and p ≥ 3.

Remark 6.5 The statement of [3, Theorem 1] corresponding to Theorem 6.1 is
incorrect, in that it holds only under the missing assumption that E is in mini-
mal Weierstrass form. This assumption is required when applying [29, Proposition
VII.2.2] during the proof of their Lemma 1. Furthermore, they give the simpler form
(6.3) while neglecting to include the assumption that v(p) < (p − 1)v(WnP ) or an
equivalent. These omissions are corrected in the later paper [4].

We now prove Theorem 6.1 and its corollaries.

Proof of Theorem 6.1 There is a standard isomorphism of groups (see [29, Propo-
sition VII.2.2])

Θ : E1(K) −→ Ê(M), (x, y) 7→ − x

y
,

where Ê(M) is the formal group of E. Write

(6.4) [n]P =
( φn

Ψ2
n

,
ωn

Ψ3
n

)
as in Section 2.

We begin with the case that nP = 1, i.e., P̃ = Õ. Writing P = (x, y), we have
nP = 1 if and only if v(x) < 0. From the minimal Weierstrass equation for E,
we obtain 2v(x) = 3v(y). Let v0 = v(y) − v(x) = 1

2 v(x). Then v(x) = 2v0 and
v(y) = 3v0. Since v0 < 0, by Proposition 2.2(iii), v(φn) = 2n2v0, from which we
obtain

v
(

Θ([n]P)
)

= v(x/y) = −1/2v(x) = v(Ψn)− n2v0.
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Then

(6.5) v(Ψn) =
v(x(P))

2
n2 + v

(
Θ([n]P)

)
.

Now suppose that P̃ 6= Õ instead. Then we have v(Ψn), v(φn), v(ωn) ≥ 0 (by the
definition of the division polynomials). A theorem of Ayad [1, Theorem A] implies
that since P has non-zero non-singular reduction, at least one of v(Ψn) and v(φn) is
zero for each n. It follows that n = nP is the smallest positive n such that v(Ψn) >
0, and that v(φknP ) = 0. This implies v(ωknP ) = 0 by (6.4) and the form of the
Weierstrass equation. Therefore, for all integers k,

(6.6) v
(

Θ([knP]P)
)

= v(−φknP ΨknP/ωknP ) = v(ΨknP ).

Now, in both cases (nP = 1 and nP 6= 1), Lemma 5.1, written in terms of Defini-
tion 5.3, says

v
(

Θ([knP]P)
)

= Sk

(
p, bP, v(p), hP, v(Θ([nP]P)),wP

)
for some bP, hP, and wP. If nP - n, then v(Ψn) = 0. This, combined with (6.5) and
(6.6), completes the proof.

Proof of Corollary 6.2 Since nP > 1, we have v(Wn) = 0 whenever nP - n. Further-
more, sP = v(WnP ) =∞ since WnP = 0 by Proposition 2.1.

Proof of Corollary 6.4 In all three parts, we use the notation of Theorem 6.1 and
Lemma 5.1.

Condition (i) Since P is non-torsion, v(WnP ) 6=∞. Since nP > 1,

v(Wn) =

{
Sn/nP

(p, bP, v(p), hP, v(WnP ),wP) if nP | n,

0 if nP - n.

Condition (i) implies that j = 0 (since h ≥ 0) in Definition 5.3 (since this is imme-
diate if bP = 1, while otherwise bP ≥ p from which it follows). Condition (i) also
implies wP = 0 by Lemma 5.1(iii). By Proposition 5.4(i),

Sk

(
p, bP, v(p), hP, v(WnP ), 0

)
= v(WnP ) + v(p)u(k) = v(WnP ) + v(k).

Condition (ii) For Qp, hP = 0 by definition. We have v(p) = 1, and so

(p − 1)v(WnP ) ≥ p − 1 ≥ 1 = v(p).

Furthermore, the overall inequality between leftmost and rightmost is strict (and
hence we are in Condition (i) and we are done) except possibly in the case where
p = 2 and v(WnP ) = 1. Either way, j = 0. Then, according to Lemma 5.1 and the
proof of Theorem 6.1,

wP = v([2]z/2z),

where z = Θ([nP]P). If wP = 0, we are done as in Condition (i). For an elliptic
curve, the formal group law is

[2]z = 2z − a1z2 − 2a2z3 + O(z4),

so that in the case that ai ∈ R, p = 2 and v(z) = 1,

v([2]z/2z) > 0 ⇐⇒ v(1− a1z/2) > 0 ⇐⇒ v(a1) = 0.
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(Recall that the residue field k has only one unit since p = 2.) As remarked in the
proof of [30, Lemma 5],

v(a1) = 0 ⇐⇒ E has ordinary or multiplicative reduction.

Condition (iii) Since p ≥ 3, and K is unramified over Qp,

v(p) ≤ v(WnP ) < (p − 1)v(WnP )

and therefore Condition (i) is satisfied.

7 Singular Reduction on a Curve of Potential Good Reduction

In the case where P has singular reduction but E has potential good reduction, we can
extend the field and change coordinates to obtain a minimal Weierstrass equation of
good reduction for the curve. Keeping track of the effect this has on the elliptic
divisibility sequence allows us to give a formula for the valuations v(Wn).

Theorem 7.1 Assume that E has potential good reduction, and P ∈ E(K) has EDS
Wn. There exists an isomorphism φ : E→ E′ to an elliptic curve in minimal Weierstrass
form with good reduction such that φ is defined over a finite extension L of K, with
ramification degree d | 24. Let v1 be a valuation of L lying over v, such that v1(z) =
dv(z) for z ∈ K, and let W ′n be the EDS associated with φ(P). Then

dv(Wn) = (n2 − 1)dv(∆E)/12 + v1(W ′n),

where v1(W ′n) is of the form (6.2) of Theorem 6.1, since φ(P) has non-singular reduction.
Furthermore, 12 | dv(∆E).

Proof of Theorem 7.1 By the theory of reduction types, over some extension L/K,
and under an appropriate change of coordinates defined over L, we obtain an isomor-
phic curve and point E′ and P′ having good reduction. Let v1 be the valuation for L
lying above v such that v1(z) = dv(z) for x ∈ K, where d is the degree of ramification
of L over K. Then dv(Wn) is the valuation of the sequence associated with E and P
considered over L. Changing coordinates, using Theorem 3.3, we obtain

dv(Wn) = (n2 − 1)r + v1(W ′n)

for some r ∈ Z such that 0 = v1(∆E′) = dv(∆E) − 12r. If E has bad reduction, the
extension L/K is ramified, so that d > 1 [29, Proposition VII.5.4(a)]. Furthermore,
we can choose L so that d divides 12 by changing to Legendre normal form [29, Proofs
of Propositions III.1.7(a), VII.5.4(c)], unless p = 2, in which case d divides 24 by
changing to Deuring normal form [29, Proofs of Propositions A.1.3 and A.1.4(a)].
Even if E/K was minimal, E/L will not be minimal.

Remark 7.2 Ayad shows that a P of non-trivial reduction on a minimal curve has
singular reduction if and only if v(Wn) > 0 for all n ≥ 2 [1, Theorem A]. In the
above theorem, if P has singular reduction, we do indeed obtain sequences satisfying
v(Wn) > 0 for all n ≥ 2. See Example 13.5.
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The following proposition gives some restrictions on the parameters used in The-
orem 7.1.

Proposition 7.3 Under the hypotheses and notations of Theorem 7.1, let

d′ =
12

gcd(v(∆E), 12)
.

(i) If d′ = 2, 4, then nP ∈ {1, 2}.
(ii) If d′ = 3, then nP ∈ {1, 3}.
(iii) If d′ = 6, 12, then nP = 1.

For Proposition 7.3, we require an elementary number theoretical lemma.

Lemma 7.4 Let a, b ∈ Z>0. Suppose that for all integers n,

(7.1) n 6≡ 0 (mod a) =⇒ n2 ≡ 1 (mod b).

Then

(a, b) ∈
{

(1, ∗), (∗, 1), (2, 2), (3, 3), (2, 4), (2, 8)
}
,

where ∗ represents any positive integer.

Proof The statement (7.1) holds vacuously if a = 1 and trivially if b = 1. If a = 2,
choosing n = 3 implies b ∈ {1, 2, 4, 8}. If a = 3, choosing n = 2 implies b ∈ {1, 3}.
If a > 3, choosing n = 2 and n = 3 implies that b = 1.

Proof of Proposition 7.3 We can assume that nP > 1. By Theorems 7.1 and 6.1,
there are parameters d, b, h, s,w such that

(7.2) dv(Wn) = (n2 − 1)dv(∆E)/12 +

{
Sn/nP

(p, b, dv(p), h, s,w) if nP | n,

0 if nP - n.

Write r = dv(∆E)/12 ∈ Z, and g = gcd(d, r). It is an exercise in elementary number
theory to see that d/g = gcd(v(∆E), 12). The exercise is as follows: if y | dv, then
d/gcd(d, dv/y) = y/gcd(v, y).

The first claim is that without loss of generality, we can assume (7.2) holds for
some (possibly different) d, b, h, s,w having g = 1. Since v(Wn) ∈ Z, we find that for
n divisible by nP,

Sn/nP
(p, b, dv(p), h, s,w) ≡ 0 (mod g).

If n = nP, we find that g | s, and from this we deduce that g | h (if j = 0, we
can simply change h without changing the function Sn/nP

; otherwise, take n satisfying
v(n/nP) = 1). Then g | w by taking n having v(n/nP) large enough. Therefore, by
Proposition 5.4(ii),

Sn/nP

(
p, b, dv(p), h, s,w

)
= gSn/nP

(
p, b, dv(p)/g, h/g, s/g,w/g

)
.

Therefore, we can divide (7.2) by g, i.e., replace d by d/g = gcd(12, v(∆E)), and
parameters h, s,w replaced by their own quotients with g. This is the proof of the
claim. Therefore, without loss of generality let us assume that gcd(d, r) = 1 and
d = gcd(12, v(∆E)).

https://doi.org/10.4153/CJM-2015-005-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2015-005-0


Integral Points on Elliptic Curves and Explicit Valuations of Division Polynomials 1135

Table 1: Elliptic troublemaker sequences Rn(a, `) for various (a, `).

n: 1 2 3 4 5 6 7 8 9 10 11 12 13
Rn(1, 2): 0 1 2 4 6 9 12 16 20 25 30 36 42
Rn(1, 3): 0 1 3 5 8 12 16 21 27 33 40 48 56
Rn(2, 3): 0 1 3 5 8 12 16 21 27 33 40 48 56
Rn(1, 4): 0 1 3 6 9 13 18 24 30 37 45 54 63
Rn(2, 4): 0 2 4 8 12 18 24 32 40 50 60 72 84
Rn(1, 5): 0 1 3 6 10 14 19 25 32 40 48 57 67
Rn(2, 5): 0 2 5 9 15 21 29 38 48 60 72 86 101
Rn(1, 6): 0 1 3 6 10 15 20 26 33 41 50 60 70
Rn(2, 6): 0 2 6 10 16 24 32 42 54 66 80 96 112
Rn(3, 6): 0 3 6 12 18 27 36 48 60 75 90 108 126
Rn(1, 7): 0 1 3 6 10 15 21 27 34 42 51 61 72
Rn(2, 7): 0 2 6 11 17 25 35 45 57 71 86 102 120
Rn(3, 7): 0 3 7 13 21 30 42 54 69 85 103 123 144

Rn(1, 11): 0 1 3 6 10 15 21 28 36 45 55 65 76

Since v(Wn) is an integer and r = dv(∆E)/12 is an integer,

n 6≡ 0 (mod nP) =⇒ (n2 − 1)r ≡ 0 (mod d).

Since r is coprime to d, Lemma 7.4 implies that the implication only holds if

(nP, d) ∈
{

(1, ∗), (∗, 1), (2, 2), (2, 4), (2, 8), (3, 3)
}
.

8 Elliptic Troublemaker Sequences

In this section we define a class of integer sequences that will be needed to describe
v(Wn) for points P of singular reduction on an elliptic curve E with multiplicative or
potential multiplicative reduction.

Definition 8.1 With any pair (a, `) of integers satisfying ` 6= 0, we associate an
integer sequence called the elliptic troublemaker sequence, defined for n ≥ 0 by

(8.1) Rn(a, `) =
⌊ n2â(`− â)

2`

⌋
−
⌊ n̂a(`− n̂a)

2`

⌋
,

where x̂ denotes the least non-negative residue of x modulo `.

Some examples are given in Table 1. We devote the rest of this section to properties
of these sequences.

Proposition 8.2 The function Rn(a, `) has the following properties.

(i) Rn(0, `) = 0.
(ii) R0(a, `) = R1(a, `) = 0.
(iii) Rn(a, `) = Rn(`± a, `).
(iv) For any positive integer k, Rn(ka, k`) = kRn(a, `).
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(v) For positive integers n and m, Rn(ma, `) = Rnm(a, `)− n2Rm(a, `).
(vi) Rn+1(a, `) + Rn−1(a, `)− 2Rn(a, `) < `.
(vii) For 0 < n < `/a,

Rn(a, `) =
n2 − n

2
a.

(viii) If ` | na or if 0 ≤ a < ` ≤ 7, then

(8.2) Rn(a, `) =
⌊ n2a(`− a)

2`

⌋
.

(ix) An alternative formula for Rn(a, `) is

(8.3) Rn(a, `) =
`

2

(( na

`
−
⌊na

`

⌋) 2
−
( na

`
−
⌊na

`

⌋)
− n2

( a

`
−
⌊a

`

⌋) 2
+ n2

( a

`
−
⌊a

`

⌋))
.

(x) If 0 ≤ a < `, then an alternate formula for Rn(a, `) is

(8.4) Rn(a, `) =
`

2

(( na

`
−
⌊na

`

⌋) 2
−
( na

`
−
⌊na

`

⌋)
+

n2a(`− a)

`2

)
.

(xi) Let B2(t) = t2 − t + 1
6 , called the second Bernoulli polynomial, and let B̃2(t) =

B2(t − btc), called the periodic second Bernoulli polynomial. Then an alternate
formula for Rn(a, `) is

Rn(a, `) =
`

2

(
B̃2

( na

`

)
− n2B̃2

( a

`

)
+

n2 − 1

6

)
.

(xii) An alternate formula for Rn(a, `) is

(8.5) Rn(a, `) =
n2 − n

2
a +
(b na

` c∑
k=1

k`− na
)
− n2

( b a
` c∑

k=1

k`− a
)
.

(xiii) We have ∣∣∣Rn(a, `)−
( â(`− â)

2`

)
n2
∣∣∣ ≤ `

8
,

where x̂ denotes the least non-negative residue of x modulo `.

Proof We prove the various parts out of order according to the various interdepen-
dencies.

Parts (i), (ii), (iii), and (viii): Direct calculations from the definition.

Part (vi): For 0 ≤ x ≤ 1, 0 ≤ x(1− x)/2 ≤ 1/8, so that as b ranges through the least
non-negative residues modulo `,

(8.6) 0 ≤ b(`− b)

2`
≤ `/8.

For any A and B,

(8.7) bAc + bBc ≤ bA + Bc, bAc + b−Ac = −1.
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From the definition, (8.6), and (8.7),

Rn+1(a, `) + Rn−1(a, `)− 2Rn(a, `) ≤
⌊ a(`− a)

`

⌋
− 2 + 2

( `
8

)
< `.

Part (x): We will show that (8.4) is equal to (8.1), under the assumption 0 ≤ a < `.
We consider the case ` | na separately. In this case, using (8.4), to show (8.1) (or

actually (8.2)), we need only check that n2a(`−a)
` , which is an integer divisible by `, is

even. Both cases, 2 | ` and 2 - `, are immediate. Therefore, we assume that ` - na.
We express certain quantities in terms of their integer and fractional parts. Write

na

`
= X + x,

n(`− a)

`
= Y + y,

n2a(`− a)

2`
= Z + z,

where X,Y,Z are integers and 0 < x, y < 1 and 0 ≤ z < 1. We also know that
x + y = 1. Furthermore, x and y are rationals with denominator dividing `. We have

Z + z =
`

2
(X + x)(Y + y).

Write
`

2
(X + x)(Y + y) =

1

2
(`XY + `xY + X`y) +

`

2
xy.

We wish to show that the first of the two terms on the right is an integer. That is,
we want to show the integer `XY + (`x)Y + X(`y) is even (note that x and y are not
integers, but `x and `y are). We do this by cases. If X ≡ Y ≡ 0 (mod 2), then the
integer is even. If X ≡ Y ≡ 1 (mod 2), then

`XY + (`x)Y + X(`y) ≡ ` + `x + `y ≡ 2` ≡ 0.

If X 6≡ Y , by symmetry we can assume that X ≡ 0 and Y ≡ 1. Since X + Y = n− 1,
we discover that n ≡ 0. Then, since na = X` + x`,

`XY + (`x)Y + X(`y) ≡ naY ≡ 0.

Thus, we have discovered that 1
2 (`XY + `xY + X`y) is an integer.

Hence,

Z =
1

2
(`XY + `xY + X`y) +

⌊ `
2

xy
⌋
, z =

`

2
xy −

⌊ `
2

xy
⌋
.

Write x = s/` for some 0 < s < ` (in other words, s = n̂a). Noting that xy = x− x2,
and substituting for the meaning of x, y and z in the second equation, we obtain(⌊ n2a(`− a)

2`

⌋
− n2a(`− a)

2`

)
− `

2

(( na

`
−
⌊ na

`

⌋) 2
−
( na

`
−
⌊ na

`

⌋))
=
⌊ s(`− s)

2`

⌋
,

as required.

Part (ix): If 0 ≤ a < `, it is immediate that (8.3) reduces to (8.4). Therefore, using
parts (iii) and (x), it suffices to check that (8.3) is independent of the choice of residue
of a modulo `. But this is a direct calculation (compare the formula (8.3) for Rn(a, `)
and Rn(a + `, `)).
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Parts (iv) and (xi): Direct calculations from (8.3) of part ix.

Part (v): Letting

S(n) =
`

2

(( na

`
−
⌊na

`

⌋) 2
−
( na

`
−
⌊na

`

⌋))
we obtain, from the formula (8.3) of part (ix),

Rn(ma, `) = S(mn)− n2S(m),

Rmn(a, `) = S(mn)−m2n2S(1),

n2Rm(a, `) = n2S(m)− n2m2S(1).

Part (xii): Let

T(n) =

b na
` c∑

k=1

k`− na.

A calculation reveals that

T(n) =

(⌊ na

`

⌋ 2
+
⌊ na

`

⌋
− 2na

`

⌊ na

`

⌋) `
2
.

Then, expanding formula (8.3) of part (ix), we obtain

Rn(a, `) = T(n)− n2T(1) +
`

2

(
−na

`
+

n2a

`

)
.

Part (vii): Follows immediately from part (xii).

Part (xiii): Immediate from parts (xi) and (iii), together with the observation that
X(1− X) has maximum 1/4 on the interval [0, 1].

Remark 8.3 By Proposition 8.2, parts (iii) and (iv), it suffices to study sequences
satisfying 0 ≤ 2a ≤ ` with gcd(a, `) = 1. We could index the collection of such
sequences by Q ∩ [0, 1

2 ].

9 Multiplicative Reduction

We now turn to P having singular reduction on a curve E of multiplicative bad re-
duction, where we will require the theory of the Tate curve.

Suppose that E does not have potential good reduction, i.e., v( jE) < 0. In this case,
there is a unique q ∈ K∗ with v(q) > 0 such that the Tate curve Eq is isomorphic to
E over a finite extension L of K. The case of multiplicative reduction is the case that
L can be taken to be unramified, and split multiplicative reduction corresponds to
L = K. See [28, Chapter V] for background.

Definition 9.1 For any elliptic curve E/K with non-integral j-invariant, and any
P ∈ E(K), let φ : E → Eq be an isomorphism to the Tate curve (note that v(q) > 0).
Analytically, Eq is isomorphic to K∗/qZ, under which φ(P) corresponds to some u ∈
K∗. As a convention, choose u satisfying 0 ≤ v(u) < v(q). Define

`P = v(q), aP = v(u).
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Note that, despite the notation, the quantity `P only depends on the elliptic curve E.
It is a standard fact that `P = v(∆(Eq)) = −v( j(Eq)) = −v( j(E)).

Remark 9.2 Using the standard isomorphisms (see [28, Remark IV.9.6])

E(K)/E0(K) −→ K∗/qZR∗ −→ Z/`PZ,

aP = v(u) is the component of the Néron model special fibre (∼= Z/`PZ) containing
P. In particular, aP = 0 if and only if P has non-singular reduction.

Theorem 9.3 Suppose that P has singular reduction, and E is in minimal Weierstrass
form with multiplicative reduction. Let aP and `P be as in Definition 9.1. Let nP be the
smallest positive integer such that [̃nP]P = Õ over the residue field k. Then there exist

sP ∈ Z>0 ∪ {∞}, wP ∈ Z≥0 ∪ {∞}

such that for all positive integers n,

(9.1) v(Wn) = Rn(aP, `P) +

{
Sn/nP

(p, p, v(p), 0, sP,wP) nP | n

0 nP - n.

Furthermore:

(i) Letting g = gcd(aP, `P), the integers nP and sP are given by

nP =
`P ord(qaP/gu−`P/g)

g
, sP = v(1− qnPaP/`P u−nP ).

where ord denotes the multiplicative order of the image in the residue field k.
(ii) If P is a torsion point of order N, then

nP =
`P

gcd(aP, `P)
= N.

Proof We drop the subscripts and write ` = `P and a = aP. First, we consider the
Tate curve Eq, by which we mean (as described in [28, Theorem V.3.1]) the curve
given by the model

(9.2) Eq : y2 + xy = x3 + a4(q)x + a6(q),

in which case, the point u corresponds to (X(u, q),Y (u, q)), where X and Y are de-
fined as in [28, Theorem V.3.1]. We can define Ψn(u, q) as the usual polynomial in X
and Y for (9.2). As in [28, Proposition V.3.2], define the normalised theta function
as

θ(u, q) = (1− u)
∏

k≥1

(1− qku)(1− qku−1)

(1− qk)2
.

We wish to express Ψn(u, q) in terms of the normalised theta function. Over C, we
have

Ψn(u, q) = (−2πi)1−n2 σ(un, q)

σ(u, q)n2 ,

where

σ(u, q) = − 1

2πi
e

1
2 η(1)z2

e−πizθ(u, q).
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(To see this, use (2.3), together with the standard change of coordinates to eliminate
2πi, in [28, Section V.1].) Therefore, over C,

(9.3) Ψn(u, q) = u(n2−n)/2 θ(un, q)

θ(u, q)n2 .

Using the same method as the proof of [28, Proposition V.3.2(b)]; this relation also
holds over K (in fact [28, Proposition V.3.2(b)] is a special case).

We let Wn = Ψn(u, q) (so it is the EDS associated with (9.2) and the point
(X(u, q),Y (u, q))). We wish to discover the form of v(Wn). Note that (9.2) is al-
ways a minimal Weierstrass model in its isomorphism class (this can be verified us-
ing [29, Remark VII.1.1] and the q-expansions of ∆ and c4). Therefore, information
about v(Wn) for a Tate curve applies to any EDS associated with an elliptic curve E/K
in minimal Weierstrass form and having split multiplicative reduction.

For any k satisfying na + `k 6= 0, we have v(1 − qkun) = min{`k + na, 0}. For
k > 0, we have v(1− qk) = 0. Therefore (recalling that a, n, ` ≥ 0),

v(θ(un, q)) = tP(n) +
(b na

` c∑
k=1

k`− na
)
,

where tP(n) = v(1− qku−n) for the unique integer k for which−na + `k = 0, if such
an integer exists, and tP(n) = 0, otherwise. Taken together with (9.3) and (8.5), this
gives

v(Wn) = Rn(a, `) + tP(n)− n2tP(1).

However, tP(1) = 0, since we assumed 0 ≤ a < `, and there is no integer k with
k` = a.

We will now find an expression for tP(n). The equation k` = na has no solution
in k unless

n0 :=
`

gcd(a, `)

divides n. Therefore, if n0 - n, then tP(n) = 0. Even if n0 | n, and if we let k0 be
such that k0` = n0a, as long as qk0 u−n0 6≡ 1 in k, we still have tP(n0) = 0. Therefore,
let nP = bn0 where b is the order of qk0 u−n0 in k. In other words, nP is the smallest
integer such that tP(nP) 6= 0, and furthermore, if tP(n) 6= 0, then nP | n. This gives
the expression for nP in item (i).

The statement of the theorem requires that we also show that nP is the smallest
positive integer such that [̃nP]P = Õ in E(k). But it is a property of division polyno-
mials that [̃n]P = Õ exactly when Wn ≡ 0 in k, i.e., when 1− qk(n)u−n vanishes in k.
Therefore, this follows from the previous paragraph.

We return to finding an expression for tP(n). At this point, we are reduced to
finding an expression for t ′P(s) = tP(snP). Let kP be the unique integer such that
kP` = nPa, and set β = qkP u−nP . Then t ′P(s) = v(1− βs).

Let sP = v(1−β), which is positive by construction. Let U (K) be the kernel of the
reduction map K∗ → k∗. Let Gm be the formal multiplicative group. By the theory
of formal groups, we have an isomorphism

U (K) −→ Gm(M), u 7−→ 1− u.
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Restricting the isomorphism

K∗/qZ −→ Eq(K), u 7→ (X(u),Y (u))

to U (K), and recalling the isomorphism

Θ : Eq,1(K) −→ Êq(M), (x, y) 7−→ −x/y,

as in the proof of Theorem 6.1, we obtain a chain of isomorphisms:

Gm(M) −→ U (K) −→ E1(K) −→ Ê(M)
1− u 7−→ u 7−→ (X(u),Y (u)) 7−→ −X(u)/Y (u)

It can be verified by the definitions of X(u) and Y (u) that this chain has the property
that

v(1− u) = v(X(u)/Y (u)).

So sP = v(1 − β) = v
(

X(β)/Y (β)
)

= v(Θ([nP]P)). (Note that v(1 − u) = v(1 −
u−1).)

Lemma 5.1 for Gm(M) implies

t ′P(s) = v(1− βs) = Ss

(
p, p, v(p), 0, sP,wP

)
,

for some wP ∈ Z≥0 ∪ {∞}. (Note that b = p and h = 0 in Lemma 5.1 by Remark
5.2.) Thus, we have shown (9.1), for any E/K having a minimal Weierstrass equation
and split multiplicative reduction. We have also found an expression for sP and nP

(item (i)) in this case.
Now suppose that E has non-split multiplicative reduction. Then we can let L/K

be an unramified extension over which E is isomorphic to Eq. Because the extension
is unramified, E is minimal over L, because it is minimal over K. Therefore, E, con-
sidered over L, satisfies the assumptions of the previous case of split multiplicative
reduction. Letting v1 be the valuation of L lying over K such that v1(z) = v(z) for
z ∈ K, we find that v(Wn) = v1(Wn) has the form (9.1).

In the case where Wn is associated with an N-torsion point, N > 1; then u must
satisfy uN = qs for some integer s coprime to N, which implies that NaP = s`P by
considering valuations. Combined with item (i), this shows item (ii).

10 Singular Reduction on a Curve with Additive Potential Multi-
plicative Reduction

This section covers the last remaining case, after which the accumulated theorems of
Sections 3, 6, 7, 9, and 10 combine to give Theorem 1.4. Here, c4 := b2

2 − 24b4 =
(a2

1 + 4a2)2 − 24(2a4 + a1a3) is the usual quantity defined in terms of the coefficients
of the Weierstrass equation.

Theorem 10.1 Assume that E does not have potential good reduction. There exists an
isomorphism φ : E → E′ to an elliptic curve in minimal Weierstrass form with multi-
plicative reduction, such that φ is defined over a finite extension L of K, with ramification
degree d | 24. Let v1 be a valuation of L lying over v such that v1(z) = dv(z) for z ∈ K,
and let W ′n be the EDS associated with φ(P). Then

dv(Wn) = (n2 − 1)dv
(

c4(E)
)
/4 + v1(W ′n)
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where v1(W ′n) is of the form (6.2) of Theorem 6.1, if φ(P) has non-singular reduction,
or the form (9.1) of Theorem 9.3 if φ(P) has singular reduction.

Proof Suppose that E has additive reduction. There is some finite extension of K
over which E has split multiplicative reduction. So we have, by Theorem 3.3,

dv(Wn) = (n2 − 1)r + v1(W ′n)

for some r. The extension L/K must be ramified [29, Proposition VII.5.4], so d > 1.
The extension needed to obtain (not necessarily split) multiplicative reduction has
ramification degree dividing 24 [29, Proofs of Propositions III.1.7, VII.5.4(c), A.1.3,
A.1.4(a)]. To obtain split reduction may require a further unramified field extension.
Therefore, d | 24. Although E/K may be minimal, E/L is no longer. The change
of variables required to make it minimal must take E to E′ having v1(c4(E′)) = 0.
Therefore, r = dv(c4(E))/4.

11 Integral Points

We begin with some preliminaries about heights. Let h(p/q) = log max{|p|, |q|}
be the usual logarithmic height on Q . The naive height of a point P ∈ E(Q) is
h(P) = h(x(P)). The canonical height of P is

ĥ(P) =
1

2
lim

n→∞

h(x([2n]P))

4n
.

This definition follows [29, §VIII.9] and differs by a factor of 2 from the definitions
of some other authors. Lang [20, Theorem 2.1] shows that∣∣∣ h(P)

2
− ĥ(P)

∣∣∣ ≤ 1

6
h(E) + O(1).

The meaning of the notation h(E), the height of E, in the introduction is

h(E) = h0(E) = max{h( j), log |∆|, 1}.
However, in this section, following Ingram, it is convenient to consider elliptic curves
in short Weierstrass form,

y2 = x3 + Ax + B,

with integral coefficients, and to use

h(E) = hI(E) = max
{

h( j), log max{4|A|, 4|B|}
}
,

which is always at least 2 log 2. The statement of Theorem 1.1 is the same no matter
which height is used, thanks to the following proposition, which says that the two
heights are equivalent.

Proposition 11.1 hI(E) � h0(E)

Proof Note that |X + Y | ≤ 2 max{|X|, |Y |} and max{4|A|, 4|B|} ≥ 4. We have

h0(E) = max{h( j), log |∆|, 1} ≤ 2 max{h( j), log max{|4A3|, |27B2|}, 1}
≤ 18 max{h( j), log max{4|A|, 4|B|}}
= 18hI(E)

https://doi.org/10.4153/CJM-2015-005-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2015-005-0


Integral Points on Elliptic Curves and Explicit Valuations of Division Polynomials 1143

For the other direction,

log max{4|A|, 4|B|} ≤ log max{|4A3|, |27B2|} ≤ 2 log max{|4A3|, |∆|}
≤ 4 max{h( j), log |∆|, 1},

from which we conclude that hI(E) ≤ 4h0(E).

Lang [20, Conjecture 5] originally stated the Lang–Hall conjecture in terms of the
height

hLH(E) = log max{|A|, |B|}
and the relationship

h(P) < C1hLH(E) + C2.

One verifies that hLH(E) ≤ hI(E), that hI(E) ≥ 2 log 2, and much as in Proposi-
tion 11.1, one has

h0(E) ≤ C1 + C2hLH(E).

These facts combine to show the Lang–Hall Conjecture as stated in the introduction
is equivalent to that given in [20].

Lang originally stated the Height Conjecture in terms of hH(E) = log |∆|. Since
hH(E) ≤ h0(E), the conjecture with hH follows from that with h0; the conjecture
stated in terms of h0 is actually a strengthened form (see for example [29, Conjec-
ture VIII.9.9]).

We are now ready to prove Theorem 1.1. Ingram’s result is as follows.

Theorem 11.2 ([17, Theorem 1]) There is an absolute constant C such that for all
minimal elliptic curves E/Q , and non-torsion points P ∈ E(Q), there is at most one
value of n > CM(P)16 such that [n]P is integral. Furthermore, this one value is prime.

Recall that M(P) is the smallest integer n such that [n]P has non-singular reduc-
tion modulo all primes. The proof of this result depends on a lemma about valu-
ations of division polynomials, restated here. Any point P ∈ E(Q), where E is in
Weierstrass form, can be written uniquely in the form ( A

D2 ,
B

D3 ) for some A,B,D ∈ Z
with gcd(AB,D) = 1 and D > 0. We will call D the denominator of P.

Lemma 11.3 ([17, Lemma 3]) Let E/Q be an elliptic curve in Weierstrass form, let
P ∈ E(Q) be an integral point of infinite order, and let Wn be the associated elliptic
divisibility sequence. Let Dn be the denominator of [n]P. Then, for n ≥ 1,

log Dn ≤ log |Wn| ≤ log Dn + n2M(P)2 log |∆|.

Ingram’s proof of Lemma 11.3 depends on the results of Cheon and Hahn [3]
concerning valuations of division polynomials. With the stronger results of this pa-
per, we can replace M(P) with a constant independent of the curve and point. The
improved lemma is the following.

Lemma 11.4 Let E/Q be an elliptic curve in Weierstrass form, let P ∈ E(Q) be an
integral point of infinite order, and let Wn be the associated elliptic divisibility sequence.
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Let Dn be the denominator of [n]P. Then, for n ≥ 1,

log Dn ≤ log |Wn| ≤ log Dn +
n2

8
log |∆|.

Proof Since P is integral, Dn |Wn, and so we have the first inequality. To prove the
second inequality, we assume E is minimal and look locally at each prime, and show
that

v(Wn) ≤ v(Dn) +
n2

8
v(∆).

Write φn = φn(P), Ψn = Ψn(P) = Wn. The second inequality is a statement
about the size of gn = gcd(φn,Ψn). Since E is in minimal form, the quantity gn is
supported only on primes for which P has singular reduction [1, Theorem A]. In
other words, v(gn) = min{v(φn), v(Ψn)} = 0 for any valuation v = vp associated
with a prime p at which P has non-singular reduction. In this case, v(Wn) = v(Dn).

We consider the reduction type of E case-by-case.
Suppose E has multiplicative reduction. Recall the notation of Section 9, especially

Definition 9.1 and Theorem 9.3, as well as the elliptic troublemaker sequence Rn of
Section 8. Since P has singular reduction, nP > 1. Since `P = v(∆) and x(1 − x) ≤
1/4 for 0 ≤ x ≤ 1,

Rn(aP, `P) ≤ n2âP(`P − âP)

2`P
≤ `Pn2

8
=

n2

8
v(∆).

We know
v(Wn) = Rn(a, `) + Tn,

where

Tn =

{
v(x([n]P)/y([n]P)) nP | n

0 nP - n

}
= v(Dn)

as in the proof of Theorem 9.3. We conclude that

v(Wn)− v(Dn) ≤ n2

8
v(∆).

Now suppose that E is of additive potential multiplicative reduction (refer to Sec-
tion 10). In this case, v(∆) > −v( j) ≥ 0. We pass to an extension of ramification
degree d over which an isomorphism φ : E→ E′ is defined between E and a minimal
E′ of multiplicative reduction (guaranteed by Theorem 10.1). Let P′ = φ(P). Write
∆′ := ∆E′ and W ′n := Ψn(P′, E′). Then by Theorem 10.1 and its proof (recall that v1

is a valuation lying above the valuation v of Qp such that v1 = dv on Qp),

v1(D′n) ≤ dv(Dn) +
1

4
dv(c4),

as well as

dv(∆) = v1(∆′) + 3dv(c4),

dv(Wn) = v1(W ′n) + (n2 − 1)dv(c4)/4.

Recall that (from the standard fact that j = c3
4/∆),

3v(c4) = v( j) + v(∆) > 0.
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We obtain v1(∆′) = −dv( j). Therefore, we may compute

dv(Wn)− dv(Dn) ≤ n2 − 1

4
dv(c4) + v1(W ′n)− v1(D′n) +

1

4
dv(c4)

≤ n2

12

(
dv( j) + dv(∆)

)
+

n2

8
v1(∆′)

=
n2

12

(
dv( j) + dv(∆)

)
− n2

8
dv( j)

= −n2

24
dv( j) +

n2

12
dv(∆) ≤ n2

8
dv(∆).

Suppose that E has additive reduction that resolves to good reduction. Then we
perform the same sort of computation, but v1(W ′n) = v1(D′n). From Theorem 7.1,

dv(Wn) = (n2 − 1)dv(∆)/12 + v(W ′n).

Then

dv(Wn)− dv(Dn) ≤ n2 − 1

12
dv(∆) + v1(W ′n)− v1(D′n) +

1

12
dv(∆)

=
n2

12
dv(∆)

In all cases, we find

v(Wn)− v(Dn) ≤ n2

8
v(∆).

The lemma, for minimal curves, follows by combining this result for all primes.
For a curve that is not minimal, we must apply a change of variables φ for some u

with v(u) < 0, where E′ is minimal. We have

v(Wn)− v(Dn) ≤ v(W ′n)− (n2 − 1)v(u)− v(D′n)− v(u)

≤ −n2v(u) +
n2

8
v(∆′)

= −n2v(u) +
n2

8

(
v(∆) + 12v(u)

)
=

n2

2
v(u) +

n2

8
v(∆) ≤ n2

8
v(∆).

Ingram’s proof of Theorem 11.2 depends upon M(P) in two places: first, in
Lemma 11.3 that we are replacing with Lemma 11.4, and second, when Ingram

bounds the ratio h(E)/ĥ(P) above in [17, Lemma 5] (the proof of this lemma uses
work of Silverman [25] and Hindry and Silverman [16]). In our proof, we simply

track the dependence on ĥ(P)/h(E) instead of bounding it.
In what follows, we explain the modifications to [17] necessary to obtain Theo-

rem 1.1. It should be pointed out that once Lemma 11.4 is in place, the remaining
modifications are relatively straightforward and partially follow unpublished notes of
Ingram. However, Ingram’s proof spans 11 pages, 95% of which need not be modified
at all. Therefore, rather than giving the full proof again, we provide details outlin-
ing the modifications only. Most modifications consists of following slight changes
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in constants. Where more significant modifications are needed, full proofs of the
relevant propositions are given.

Since Ingram considers only short Weierstrass form, he defines quasi-minimal to
mean a curve with minimal discriminant among short Weierstrass forms with inte-
gral coefficients. Such a curve has a discriminant dividing 612D, where D is the true
minimal discriminant [17, Proof of Lemma 5].

The first alteration is to [17, Proposition 4], restated here.

Proposition 11.5 ([17, Proposition 4]) Let E/Q be an elliptic curve in quasi-min-
imal Weierstrass form, let P ∈ E(Q) be an integral point of infinite order, and suppose
that [n]P is integral for some n ≥ 2. Then

ĥ(P) ≤ log n +
( 16

3
M(P)2 + 2

)
h(E).

We will prove the following proposition instead.

Proposition 11.6 Let E/Q be an elliptic curve in quasi-minimal Weierstrass form,
let P ∈ E(Q) be an integral point of infinite order, and suppose that [n]P is integral for
some n ≥ 2. Then

ĥ(P) ≤ log n +
16

3
h(E).

Proof The proof is exactly as for [17, Proposition 4], except that we assume |x(P)| >
240n2 exp(3h(E)/2) and use Lemma 11.4 in place of [17, Lemma 3]. The altered
proof is included for completeness and because part of it is used later.

A lemma of David [6, Lemma 10.1] states that for O 6= Q ∈ E[n],

|x(Q)| ≤ 120n2 exp(h(E)).

Suppose that [n]P is an integral point, and suppose that

|x(P)| > 240n2 exp(4h(E)/3).

Then |x(P)| > 2|x(Q)|, and so |x(P)− x(Q)| > 1
2 |x(P)|, for all O 6= Q ∈ E[n]. From

the definition of division polynomials,

Ψ2
n = n2

∏
Q∈E[n]r{O}

|x(P)− x(Q)|.

Therefore,

2 log |Ψn| > 2 log n + (n2 − 1)(4h(E)/3 + 2 log n + log 120)

≥ 2 log n + n2h(E) + (n2 − 1)(2 log n + log 120),

since 4
3 (n2 − 1) ≥ n2 whenever n ≥ 2. On the other hand, as Dn = 1 (since [n]P is

integral), so by Lemma 11.4 and the fact that log |∆| ≤ 4h(E),

2 log |Ψn| < n2h(E).

Combining these two, for n ≥ 2, we obtain

0 ≥ 2n2 log n + (n2 − 1) log 120,
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which is a contradiction. Therefore,

(11.1) |x(P)| ≤ 240n2 exp(4h(E)/3).

By Silverman [27, Theorem 1.1], for all P ∈ E(Q),∣∣∣ ĥ(P)− 1

2
h(x(P))

∣∣∣ < 2h(E).

Since P is integral, h(x(P)) = log |x(P)|. Therefore,

ĥ(P) ≤ 1

2
h(x(P)) + 2h(E) ≤ 1

2
log 240 + log n +

10

3
h(E) ≤ log n +

16

3
h(E),

since h(E) ≥ 2 log 2.

The remaining modifications mainly involve tracking the differences in various
constants throughout. We will give each statement and its modification.

Lemma 11.7 ([17, Lemma 6]) Let a, b > 0 be real numbers, and set f (x) =
x2 − a log(x)− b. Then f (x) ≥ 0 for x ≥ max{e, a + b}.

(Note that e is the natural logarithm base.) This is replaced with the following
lemma.

Lemma 11.8 Let a > 0 be a real number. Let f (x) = x2−a log x−a. Then f (x) ≥ 0
for x ≥ max{9,

√
a log a}.

Proof The proof is a straightforward exercise.

We will use the notation CP := h(E)/ĥ(P) for simplicity.

Proposition 11.9 ([17, Proposition 7]) For all quasi-minimal E/Q and non-torsion
P ∈ E(Q), there is a constant c0 depending only on M(P), such that if [n]P is integral
and n > c0, then n is prime. Furthermore, we can choose c0 = O(M(P)16), where the
implied constant is absolute.

Proposition 11.10 For all quasi-minimal E/Q and non-torsion P ∈ E(Q), there is
a constant c0 depending only on CP, such that if [n]P is integral and n > c0, then n is
prime. Furthermore, we can choose c0 = O(CP log(CP)), where the implied constant is
absolute.

Proof The proof mimics that of Ingram. Supposing that n is composite, put n = qa
where 2 ≤ q ≤

√
n is a prime and q ≤ a. Supposing that [n]P = [q]([a]P) is

integral, we may apply Proposition 11.6:

a2ĥ(P) = ĥ([a]P) ≤ log q +
16

3
h(E).

Therefore, since q ≤ a,

a2 ≤ log a

ĥ(P)
+

16

3

h(E)

ĥ(P)
.
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Then, using the fact that h(E) ≥ 1 and Lemma 11.8, we have

a ≤ max

{
4,

√
16

3

h(E)

ĥ(P)
log
( 16

3

h(E)

ĥ(P)

)}
.

The stated bound comes from applying this to n ≤ a2.

Ingram uses David’s explicit lower bounds for linear forms in elliptic logarithms.
Let ω be the real period of E, and let Ln,m(z, ω) = nz + mω, where z is the principal
value of the elliptic logarithm of P and choose m so that Ln,m(z, ω) is the principal
value of the elliptic logairthm of [n]P. See [17, §2] for details.

Lemma 11.11 ([17, Lemma 9]) There exist absolute positive constants c1 and c2 such
that if [n]P is an integral point and n > c2, then

log |Ln,m(z, ω)| ≤ −c1n2h(E).

Furthermore, we may take c−1
1 = O(M(P)6) and c2 = O(M(P)3).

This is modified to become the following lemma.

Lemma 11.12 There exist absolute positive constants c1 and c2 such that if [n]P is an
integral point and n > c2, then

log |Ln,m(z, ω)| ≤ −c1n2h(E).

Furthermore, we can take c−1
1 = O(CP) and c2 = O(

√
CP).

Proof The proof is exactly the same, except that in place of using [17, Lemma 5],
we track the dependence on CP.

Proposition 11.13 ([17, Proposition 11]) Let E/Q be a quasi-minimal elliptic curve,
and let P ∈ E(Q) be a point of infinite order. There exist positive constants C3 and c4

(depending only on M(P)) such that for all n > c3, [n]P integral implies

n < c4h(E)5/2.

Furthermore, we may choose the constants such that c3, c4 = O(M(P)5 log+(M(P))3/2).

This we will replace with the following proposition.

Proposition 11.14 Let E/Q be a quasi-minimal elliptic curve, and let P ∈ E(Q) be
a point of infinite order. There exist positive constants C3 and c4 (depending only on CP)
such that for all n > c3, [n]P integral implies

n < c4h(E)5/2.

Furthermore, we can choose the constants such that c3 = O(CP) and c4 = O(C1/2
P ).

Proof The proof is as in Ingram, except that (with reference to the notation there),
by Proposition 11.6 (in lieu of [17, Proposition 4]), it now suffices to take

log B = log V1 ≥ 2 log n + 11h(E),
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and we can use C ′ = 1046. For curves with h(E) ≥ 2π
√

3, we can then use the
improved constant c4 = 1024C1/2

P (this depends on Lemma 11.12), and choosing any
0 < ε < 1, we can use

c3 = max
{

cε,
(

1024C1/2
P

) 1
1−ε
}
,

where cε is a constant such that log n < nε/3 for all n > cε. For example, if ε = 1/2, we
can take cε = 108. (Note that Ingram makes an inconsequential error in computing
c3.)

Lemma 11.15 ([17, Lemma 12]) If E/Q is a quasi-minimal elliptic curve, and P ∈
E(Q) is a point of infinite order, then there is a constant C = O(M(P)4) such that the
following holds: if z is the principal value of the elliptic logarithm of P, ω is the real
period of E and [n]P is an integral point, then either |nz| > ω/2 or n < C.

Lemma 11.16 If E/Q is a quasi-minimal elliptic curve, and P ∈ E(Q) is a point of
infinite order, then there is a constant C = O(C1/2

P ) such that the following holds: if z is
the principal value of the elliptic logarithm of P, ω is the real period of E and [n]P is an
integral point, then either |nz| > ω/2 or n < C.

Proof The proof is as in Ingram: we replace Ingram’s equation (10) with our (11.1),
which does not depend on M(P). Then we can take C =

√
5/c1 =

√
10C1/2

P . The
proof depends on the modifications Lemma 11.12 and Proposition 11.6.

Proposition 11.17 ([17, Proposition 13]) Let E/Q be quasi-minimal, and let P ∈
E(Q) be a point of infinite order. Suppose that [n2]P and [n1]P are integral points.
Then there exist constants c5 = O(M(P)6) and c6 = O(M(P)16) such that

n2
1h(E) ≤ c5 log n2

whenever n1, n2 > c6.

We replace this with the following proposition.

Proposition 11.18 Let E/Q be quasi-minimal, and let P ∈ E(Q) be a point of infi-
nite order. Suppose that [n2]P and [n1]P are integral points. Then there exist constants

c5 = O(CP) and c6 = O(C1/2
P ) such that

n2
1h(E) ≤ c5 log n2

whenever n1, n2 > c6.

Proof The proof is as in Ingram; we use c5 = 2/c1 = 4CP and c6 = max{c0,C,K},
where K is an absolute constant. The proof relies on Lemmas 11.12 and 11.16, and
Proposition 11.10.

For clarity, we now present the proof of Theorem 1.1, following [17, Theorem 1],
but using the modified propositions and lemmas.
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Proof of Theorem 1.1 Let E/Q be a quasi-minimal elliptic curve with an integral
point P ∈ E(Q) of infinite order (if P were not integral, it would not have any integral
multiples). Let C0 = max{c0, c3, c6, c7}, where

c7 =
√

c5 log c4

If [n1]P and [n2]P are integral and C0 < n1, n2, then by Propositions 11.14 and 11.18,
we have

n2
1h(E) ≤ c5 log n2 and n2 ≤ c4h(E)5/2.

Combining these, we have

(11.2) h(E) ≤ 5c5

2n2
1

log h(E) +
c5

n2
1

log c4.

Recall that
c5 = O(CP), c4 = O(CP)1/2

and since n1 > c6 ≥ O(C1/2
P ), the first constant in (11.2) can be replaced with an

absolute constant, and since n1 > c7, the second can also. We therefore obtain an
absolute upper bound h(E) ≤ N. On those E with h(E) > N, there can be at most
one n > C0 such that [n]P is integral. Let

C ′0 = sup
h(E)≤N

{n : [n]P is integral for some P ∈ E(Q)}.

The set of h(E) ≤ N is finite and can be effectively computed if N is known. Letting
C = max{C0,C ′0}, and we have shown that there is at most one value of n > C such
that [n]P is integral.

It remains to simplify the constant C0. Considered as a function of x = CP, it is of
the form

C0 = max
{

K0,K1x(log x),K2x,K3x
1
2 ,K4x

1
2 (log x)

1
2
}
,

where the Ki are absolute constants. If we increase the constant K0 sufficiently, then
since x(log x) grows fastest (as x increases) among all the functions (which are all
eventually increasing), we may replace C0 with

C0 = max
{

K′0,K1x(log x)
}
.

This proves the theorem.

12 Other Connections and Applications

12.1 Growth Rates of Valuations

The main theorems of this paper give growth rates of v(Wn). Cheon and Hahn find
that for a non-torsion point over a number field with singular reduction, the growth
rate is quadratic [3]. Everest and Ward give more precise growth information in
[9, Theorem 3], which says that for any E in minimal Weierstrass form and P of
singular reduction,

log |Ψn(P)|v =
(

log |∆E|v/12 + λv(P)
)

n2 + O(nC ),

where C < 2 and may depend on P (here, λv(P) is a canonical local height; see
[28, §VI.2]).
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The results of this paper allow us to improve this estimate. For a point of singular
reduction on a curve of additive reduction, the coefficient of n2 depends on the be-
haviour of the point when the field is extended to resolve the additive reduction; see
Theorems 7.1 and 10.1, and the examples of Section 13.

For multiplicative reduction, the constant is more easily stated. If E is in minimal
form, then from Theorem 9.3, Proposition 8.2(xiii), and Proposition 5.4(iii),

v(Wn) =
( aP(`P − aP)

2`P

)
n2 + O(log n),

where the meaning of aP and `P is given in Definition 9.1. In particular,

0 < aP ≤ `P = v(∆E).

Using [28, Theorem VI.4.2(b)], it is immediate to verify that this constant is in agree-
ment with Everest and Ward’s.

In all cases (i.e., all types of bad reduction), our theorem improves Everest and
Ward’s result. We have the following theorem.

Theorem 12.1 Let K be a p-adic field with valuation v and residue field of size NK .
Let E be a minimal elliptic curve over K and let P ∈ E(K) be a point with singular
reduction. Let Wn be the associated elliptic divisibility sequence. Then

v(Wn) =
( λv(P)

log |NK |
+

v(∆E)

12

)
n2 + O(log n).

Proof From [9, Theorem 3], all that remains is to show that the error term is cor-
rect. This follows from Propositions 5.4(iii) and 8.2(xiii) and Theorems 3.3, 6.1, 7.1,
9.3, and 10.1.

12.2 Torsion Points and Tate Normal Form

Gezer and Bizim use Tate’s normal form for an elliptic curve with an N-torsion point
to obtain general formulæ for EDS of rank N [13]. For example, the general form of
a rank 7 EDS is

1,−α2(α− 1),−α6(α− 1)3, α11(α− 1)6 · · ·

They go on to give the general term as

Wn = εα(5n2−p)/7(α− 1)(3n2−q)/7,

where

ε =

{
+1 if n ≡ 1, 4, 5 (mod 7),

−1 if n ≡ 2, 3, 6 (mod 7).

p =


5 if n ≡ 1, 6 (mod 7),

6 if n ≡ 2, 5 (mod 7),

3 if n ≡ 3, 4 (mod 7),

q =


3 if n ≡ 1, 6 (mod 7),

5 if n ≡ 2, 5 (mod 7),

6 if n ≡ 3, 4 (mod 7).
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We can now restate this general term as

Wn = εαRn(2,7)(α− 1)Rn(1,7),

where ε is as above.

13 Examples

The examples in this section illustrate the main theorems of the paper describing
v(Wn), both the usual and unusual.

Example 13.1 This example demonstrates non-singular reduction fitting the hy-
potheses of Corollary 6.4, as well as singular reduction on a curve of multiplicative
reduction. Consider the elliptic curve in minimal Weierstrass form and point

E : y2 + xy = x3 + x2 − 1652x + 25168, P = (24,−4),

having j = −2−8 · 7−2 · 113 · 89−1 · 72113, ∆ = −28 · 72 · 89, and c4 = 11 · 7211.
The curve has good reduction at p = 3. The point P reduces to a point of order 5.

By Corollary 6.4,

v3(Wn) =

{
v(W5) + v(n/5) 5 | n

0 5 - n.

The curve has multiplicative reduction at p = 7. The point P reduces to a non-
singular point of order 6. By Corollary 6.4,

v7(Wn) =

{
v(W6) + v(n/6) 6 | n,

0 6 - n.

The curve has multiplicative reduction at p = 2. The point P reduces to the
singular point. The smallest multiple of P reducing to the identity is [6]P =
(4719/196,−56771/2744). In Theorem 9.3, `P = v2(∆) = 8. Since [2]P has
non-singular reduction, P reduces to the component of E(Q2)/E0(Q2) having or-
der 2, i.e., aP = 4. Using the notations of Lemma 5.1, h = 0 and b = p
by Theorem 9.3. Also, sP = v2(Θ([6]P)) = 1, and so j = 0. Furthermore,
wP = v2(Θ([12]P)/Θ([6]P)2) = 3− 2 = 1. Therefore,

v2(Wn) = Rn(4, 8) +


2 + v(n/6) v6(n) > 1,

1 v6(n) = 1,

0 6 - n.

The EDS associated with E and P is

1, 24, 28, 216, 224 · 3 · 5, 237 · 7, −248,−264 · 211, −280 · 23 · 137, . . .
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with valuations, agreeing with the formulæ above, of

v2(Wn) : 0, 4, 8, 16, 24, 37, 48, 64, 80, 100, 120, 147, 168, 196, 224, 256, 288,

325, 360, 400, 440, 484, 528, 580, 624, 676, 728, 784, 840, 901, 960, . . .

v3(Wn) : 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 2,

0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 3, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, . . .

v7(Wn) : 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1,

0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, . . .

Example 13.2 This example describes a point that reduces to the identity, as well
as a point of singular reduction on a curve of additive, potential good reduction.
Consider the elliptic curve in minimal Weierstrass form and point

E : y2 = x3 + 2471x + 1, P =
( 1

52
,

1249

53

)
,

having j = 28 · 33 · 73 · 3533 · 60350132471−1, ∆ = −24 · 60350132471, and c4 =
−24 · 3 · 7 · 353.

This curve has good reduction at p = 5, but P reduces to the identity. We are in
the case of Theorem 6.1, and v5(x(P))/2 = −1. We have nP = 1. The formal group
for this elliptic curve has

[5]T = 5T − 3083808T5 − 33480T7 + 1574818510720T9 + O(T10).

Therefore, in Lemma 5.1, b = 5 and j = h = w = 0. Therefore, from Theorem 6.1,
we expect

v5(Wn) = −n2 + 1 + v5(n).

At p = 2, this curve has additive reduction, but potential good reduction. If
we extend Q2 by a cube root π of 2 (an extension of ramification degree 3), then E
obtains good reduction. The change of coordinates is

y′ = π−3(y + x + 1), x′ = π−2(x + 1),

and the new curve (now in minimal Weierstrass form) and point are

E′ : y2 + π2xy + y = x3 + πx3 + 618π2x + 618, P′ =
(
−12π

52
,

622

53

)
.

The point P′ reduces modulo π to the point (0, 0) of order 3 on the reduced curve
y2 + y = x3 over F2. Applying Theorem 6.1 to W ′n, the elliptic divisibility sequence
for E′ and P′, we have nP = 3, sP = vπ(Θ([3]P)) = 1. The formal group for E′ has

[2]T = 2T − π2T2 − 2π2T3 + O(T10)

so that b = h = 2, v(p) = 3 and so j = 0 in Lemma 5.1. We have wP =
vπ(Θ([6]P)/Θ([3]P)2)− hP = 4− 2 · 1− 2 = 0. Therefore,

vπ(W ′n) =

{
1 + vπ(n/3) 3 | n,

0 3 - n.
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By Theorem 7.1, we have

3v2(Wn) = (n2 − 1) + vπ(W ′n) = n2 +

{
3v2(n/3) 3 | n,

−1 3 - n.

The elliptic divisibility sequence for E and P begins

1, 2 · 5−3 · 1249, −1 · 23 · 5−8 · 298135585859,

− 1 · 25 · 5−15 · 1249 · 460436473420870703, . . .

and has valuations, agreeing with the formulæ above, of

v2(Wn) : 0, 1, 3, 5, 8, 13, 16, 21, 27, 33, 40, 50, 56, 65, 75, 85, 96, 109, 120, 133,

147, 161, 176, 195, 208, 225, 243, 261, 280, 301, 320, 341, 363, 385,

408, 434, 456, 481, 507, 533, 560, 589, 616, 645, 675, 705, 736, 772, . . .

v5(Wn) : 0,−3,−8,−15,−23,−35,−48,−63,−80,−98,−120,−143,−168,

− 195,−223,−255,−288,−323,−360,−398,−440,−483,−528,

− 575,−622,−675,−728,−783,−840,−898,−960,−1023, . . .

Example 13.3 This example showcases a non-integral torsion point. Consider the
elliptic curve, in minimal Weierstrass form, and point

E : y2 + xy + y = x3 + x2 − 135x − 660, P = (−29/4, 25/8).

The discriminant is ∆ = 38 · 52. The point P reduces modulo 2 to the identity.
Therefore, Theorem 6.1 applies, with nP = 1. We have v(x(P)) = −2, so sP = 1, and
in the formal group, we have

[2]T = 2T − T2 − 2T3 − 6T4 + O(T5)

so that bP = 2, hP = 0, j = 0, and wP = ∞ (since [2]P is the identity on E). We
obtain

v(Wn) = −n2 +

{
∞ 2 | n

1 2 - n.

The elliptic divisibility sequence for E and P begins

1, 0, −2−8 · 38, 0, 2−24 · 324, 0, −2−48 · 348, . . .

and has valuations, agreeing with the formula above, of

v2(Wn) : 0,∞,−8,∞,−24,∞,−48,∞,−80,∞,−120,∞,−168,∞,−224, . . .

Example 13.4 This example illustrates singular reduction on a curve of potential
multiplicative reduction. Consider the curve, in minimal Weierstrass form, and point

E : y2 + 49y = x3 + 14x2 − 312352901x + 2123335052286, P = (10206, 1176).

Modulo 7, the point P reduces to the cusp (0, 0) on the reduced curve, y2 =
x3 (additive reduction). If we pass to a ramified quadratic extension of Q7, say by
adjoining a square root π of 7, then the change of coordinates x′ = π−2x, y′ = π−3 y
gives a minimal Weierstrass equation,

E′ : y2 + πy = x3 + 2x2 − 6374549x + 6190481202, P′ = (1458, 24π).
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having vπ( j) = −10, vπ(∆) = 10, vπ(c4) = 0. Therefore, this curve has multi-
plicative reduction. The point P′ reduces to the node (2, 0) on the reduced curve
y2 = x3 + 2x2 + x + 3. We have `P = vπ(∆) = 10. The points P and [3]P reduce to the
node, while [2]P reduces to the point (1, 0) of order 2; [4]P reduces to the identity.
Therefore, nP = 4. By Theorem 9.3(i), aP = 5. Alternatively, aP must have order 2 in
Z/`PZ, so it must be aP = 5. Using the notation of Lemma 5.1, b = p and h = 0 by
Theorem 9.3. We can compute sP = v(Θ([4]P)) = 1, which tells us that j = 0 and
wP = 0. Gathering together these parameters, we obtain the sequence of valuations
for W ′n, the EDS associated with E′ and P′:

vπ(W ′n) = Rn(5, 10) +

{
1 + vπ(n/7) 7 | n

0 7 - n.

By Theorem 10.1, we have

2v7(Wn) = (n2 − 1) + Rn(5, 10) +

{
1 + 2v7(n/7) 7 | n

0 7 - n.

The elliptic divisibility sequence Wn begins

1, 74, 79, 718, 2 · 32 · 727 · 19, . . .

and has valuations, agreeing with the formula above, of

v7(Wn) : 0, 4, 9, 18, 27, 40, 54, 72, 90, 112, 135, 162, 189, 220, 252, 288, 324, 364,

405, 450, 495, 544, 594, 648, 702, 760, 819, 883, 945, 1012, 1080,

1152, 1224, 1300, 1377, 1458, 1539, 1624, 1710, 1800, 1890, 1984, . . .

Example 13.5 This example of potential good reduction exhibits very unusual
complicated behaviour. In particular, we have an example with j 6= 0 in Lemma 5.1.
Let K = Q2, and R be its ring of integers. Let α =

√
17 ∈ R∗. Then the curve

E : y2 = x3 + αx + α + 2

has j = 28 + 210 + 214 + 217 + O(219) ∈ R, so E has potential good reduction. It is
a minimal Weierstrass equation, since v2(∆) = 4 < 12. It has additive reduction,
since v2(c4) = 4 > 0.

The reduced curve over F2 is Ẽ : y2 = x3 + x + 1, which has a cusp at (1, 1).
Let β2 = (−17)3 +α(−17) +α + 2. Then β ∈ R∗. Let P = (−17, β) ∈ E(K). The

point P has singular reduction to the cusp (1, 1), but [2]P reduces to the non-singular
two-torsion point (0, 1).

We have to pass to a ramified extension L/Q2 to obtain good reduction for E,
which will guarantee non-singular reduction for P. It will suffice to change coordi-
nates to Deuring normal form

ED : y2 + axy + y = x3.

The change of coordinates required is

x = u2x′ + r, y = u3 y′ + u2sx′ + t,
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where q = s− 1 is a root of the irreducible polynomial

p(x) = (x + 1)8 + 18α(x + 1)4 + 108(α + 2)(x + 1)2 − 27α2,

whose constant term, a0 = 217 + 126α− 27α2 has valuation v2(a0) = 2. Therefore,
q is not a uniformizer (since the polynomial is not Eisenstein), but it has positive
valuation. Let N = Q2(s) have valuation vN = dv2, where d is the ramification degree
of N over Q2. Since vN (p(q) − q8 − a0) > vN (a0) = 2d (all the intermediate terms
of the polynomial are divisible by 4x), we find that 8vN (q) = 2d, i.e., vN (q) = d/4.
Hence, the extension is totally ramified (d = 8), and vN (s− 1) = 2.

We also have u3 = (α+ s4/3)/s ∈ Q2(s). We can compute the valuation of 3α+ s4

in N as follows. We have

3α = (1 + 2)
(

1 + 23 + O(25)
)

= 1 + 2 + 23 + O(24).

Meanwhile,

s4 = 1 + 4q + 6q2 + 4q3 + q4.

So, v(3α + s4) = 8. Therefore, vN (u3) = 8. Hence, u generates a totally ramified
extension L of degree 3 over N = Q2(s). Therefore, [L : Q2] = 24.

We have r = s2/3 and t = u3/2. Finally, a = 2s/u.
The Deuring normal form is a minimal Weierstrass equation of good reduction.

(We could also verify that vL(u) = 8, since vL(∆E) = 24v2(∆E) = 96 and so 0 =
vL(∆ED ) = vL(u−12∆E) = vL(∆E) − 12vL(u) = 96 − 12vL(u). We also find that
vL(a) = 24 + vL(s)− vL(u) = 16, so a is an integer, which confirms that ED has good
reduction.)

Let φ : E → ED represent the change of coordinates to Deuring normal form.
Then,

v
(

x(φ(P))
)

= vL(17 + s2/3)− 2vL(u) = 12− 16 = −4.

The EDS W ′n associated with the curve ED and point PD = φ(P) satisfies

vL(W ′n) = 24v2(Wn)− 8(n2 − 1)

and is associated with a point of non-singular reduction. In fact, PD reduces to the
point at infinity and has v(x(PD)) = −4. Thus, the sequence

vL(W ′n) + 2n2 = 24v2(Wn)− 8(n2 − 1) + 2n2

must be of the form Sn(p, t, d, h, s,w) as in Lemma 5.1. Multiplication-by-2 in the
formal group for ED begins

[2]T = 2T − aT2 + (1 + a)T4 . . . ,

and since vL(a) = 16, we get b = 4 in Lemma 5.1, and so we have t = 2, c = 2, j = 1,
and w = 6 in Definition 5.3. The sequence vL(W ′n)− 2n2 = Sn(2, 2, 24, 0, 2, 6) is

2, 8, 2, 32, 2, 8, 2, 56, 2, 8, 2, 32, 2, 8, 2, 80, 2, 8, 2, 32, 2, 8, 2, 56,

2, 8, 2, 32, 2, 8, 2, 104, 2, 8, 2, 32, 2, 8, 2, 56, 2, 8, 2, 32, 2, 8, 2, 80,

2, 8, 2, 32, 2, 8, 2, 56, 2, 8, 2, 32, 2, 8, 2, 128, 2, 8, 2, 32, 2, 8, 2, 56,

2, 8, 2, 32, 2, 8, 2, 80, 2, 8, 2, 32, 2, 8, 2, 56, 2, 8, 2, 32, 2, 8, 2, 104, 2, 8, 2, . . .

https://doi.org/10.4153/CJM-2015-005-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2015-005-0


Integral Points on Elliptic Curves and Explicit Valuations of Division Polynomials 1157

Now let us verify this directly. The first few terms of the elliptic divisibility sequence
associated with E and P are

1, 2β, −α2 + 1530α + 250155,

− 4βα3 − 5540βα2 + 1277796βα + 95764068β, . . .

or

1, 2 + 26 + 29 + 211 + 212 + 213 + 216 + 218 + O(219),

22 + 25 + 27 + 28 + 210 + 211 + 212 + 214 + 217 + O(219),

25 + 27 + 29 + 210 + 212 + 213 + 215 + 216 + 218 + O(219) . . .

The valuations v2(Wn) are

0, 1, 2, 5, 6, 9, 12, 18, 20, 25, 30, 37, 42, 49,

56, 67, 72, 81, 90, 101, 110, 121, 132, 146, 156, . . .

These are exactly equal to

1

24

(
8(n2 − 1)− 2n2 + Sn(2, 2, 24, 0, 2, 6)

)
.
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