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Abstract

In this paper, by using critical point theory, we establish some results for the existence of
periodic and subharmonic solutions to subquadratic discrete Hamiltonian systems.

1. Introduction

Let N, 2, K be the set of all natural numbers, integers and real numbers respectively.
For a,b e I, define 1(a) = {a, a + 1, . . .} and l(a, b) = {a, a + 1, . . . , b) when
a < b.

Consider the discrete Hamiltonian system

[Ax2(n) = HXl(n,Xi(n

where *,, x2 6 Kd, H[n,xux2) € C\Rd x Rd, U) for each n e Z and Axt(n) =
Xi(n + l)-Xi(n), i= 1,2.

Suppose that H(n, X\,x2) is m-periodic in the first variable n where m is a positive
integer. We are interested in the existence of w-periodic solutions of (1.1). For
any positive integer p, a pm-periodic solution of (1.1), as usual, is also called a
subharmonic solution of (1.1).

We may think of system (1.1) as being a discrete analogue of the following Hamil-
tonian system:

\ = -Hy(t,x(t),y(t)),

= Hx(t,x(t),y(t)),
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which has been studied extensively by many scholars. In particular, by using critical
point theory, P. H. Rabinowitz, V. Benci, J. Mahwin and K. C. Chang etc. have ob-
tained some significant results for the existence of periodic and subharmonic solutions
of (1.2). We refer the reader to [4,6,12-15] and references therein for further details.

Since the behaviour of a discrete system is sometimes sharply different to the
behaviour of the corresponding continuous system (see, for example, [1,16,17]),
many scholars have investigated discrete Hamiltonian systems for the disconjugacy,
boundary value problems, oscillations and asymptotic behaviour of (1.1) [3, 5,7,8,11].
Only very few papers deal with the existence of periodic solutions even to general
difference equations, see for example [2,9,16,17]. As is well known, critical point
theory is an important tool for dealing with the existence of periodic solutions of
differential equations. It is natural for us to think that critical point theory may be
applied to prove the existence of periodic solutions of system (1.1).

In this paper, we will consider the existence of periodic and subharmonic solutions
of system (1.1) by using critical point theory.

Let z = {x],xl)T where*7 denotes the transpose of x, H(n,z) = H{n,x\,xj)
and VzH{n, z) represents the gradient of H(n, z) in z. For any k s N, | • | will denote
the Euclidean norm in Rk defined by

1/2

, for any JC = (JC| , X2> • • • , xn) 6 OS .

The main results of this paper are as follows.

THEOREM 1.1. Suppose that H(n, z) satisfies

(H|) H(n, z) € C(K2d, \&)for each n € 2 and there exists a positive integer m such
that for all (n, z) € Z x KM, H(n 4- m, z) = H(n, z);
(H2) there is a constant Mo > 0 such that for all (n, z) € 1 x R2*, \Hz(n, z)\ < Mo;
(H3) H(n, z) —• +oo uniformly for n 6 1 as \z\ -*• oo.

Then for any given positive integer p, system (1.1) possesses at least one pm-periodic
solution.

COROLLARY 1.2. lfH(n, z) satisfies (H0-(H2), and (H3) is replaced by

(H4) //(«, z) —>• —oo uniformly for n 6 Z as \z\ —> oo,

then the conclusion of Theorem 1.1 holds.

THEOREM 1.3. Suppose H(n,z) satisfies (H,) and

(H5) there exist constants /?i > 0 and a € (1, 2) such that for any (n, z) e I x
, \z\ > Ru

0 <ZHz(n,z)<aH(n,z); (1.3)
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(He) there exist constants a{ > 0, a2 > 0 and y e (1, a] such that

H(n,z)>a1\z\y -a2, V(n, z) € 1 x KM. (1.4)

Then for any positive integer p > 0, system (1.1) possesses at least one pm-periodic
solution.

REMARK 1.1. By integrating inequality (1.3), we have that

H{n,z) <a3\z\a+a4 (1.5)

holds for some positive constants a3 and a4, which implies that

hm — = 0.
|z|->oo 2

2

In this case, F(n,z) is called subquadratic at infinity. When H(ri,z) grows su-
perquadratic both at zero and at infinity, we refer to [10] for the existence of periodic
solutions of system (1.1).

REMARK 1.2. The pm-periodic solutions obtained in Theorem 1.1, Corollary 1.2
and Theorem 1.3 may be constant. On some occasions, we may be more interested in
nonconstant periodic solutions. The next theorem establishes such a result.

THEOREM 1.4. Suppose H(n, z) satisfies (H,) and

(H7) H(n, 0) = 0, for all nel;

(Hj) there exists a constant a 6 (1,2) such that

0<z-Ht{n,z)<aH(n,z), V(n, z) € l x KM and \z\ £ 0; (1.6)

(H9) there exist constants a5 > 0 and y e (1, or] such that

H(n,Z)>a5\z\y, V(n,z)elx\RL2d. (1.7)

Then for any positive integer p > 0, system (1.1) possesses at least one nonconstant
pm-periodic solution.

The remaining part of this paper is organised as follows. In the next section, we
will find a functional F such that the critical point of F corresponds to the periodic
solution of system (1.1). In Section 3, by using critical point theory, we will prove
that F possesses at least one critical point and an illustrative example is also given.
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2. Some basic lemmas

Let 5 be the set of sequences x = {x(n)}neI, that is,

5 = {{x(n)) | x(n) = (xj\n), x\(n))T € RM,JCy(n) € Rd, j =1,2, ne 2}.

For any x, y e 5, a, b e IR, ax + by is defined by

ax + by = {ax(n) + by(n)}.

Then 5 is a vector space.
For any given positive integer p, m, Epm is defined as a subspace of 5 by

Epm = {x = {x(n)} € S\x(n + pm)=x(n), n el}.

We note that Epm can be equipped with the inner product (•, •)£,„ and norm || • \\Epm as
follows:

pm

(*,y)Ep» = J2(xV)'y(J»' v*,yeEpm (2.1)

and
/pm \ ' / 2

( )

where (•, •) denotes the usual inner product and | • | denotes the Euclidean norm in
We define the functional F on Epm as follows:

- pm pm

Fix) = - > UALx(n),xin)) + > //(« — 1,xAn),Xi(n — 1)), (2.3)
2 ^—J ' ^—'

« = 1 n = l

for all JC 6 Epm, where Lx(n) = (/('„%), ^ = (" V) i s t n e standard 2rf x 2d
sympletic matrix and / is the d x d identity matrix.

By a simple computation, we can get
pm pm

n=\ n=l
pm pm

n=] n=l

Therefore F'ix) = 0 if and only if for any n € Z(l,
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pm.
•where* € E

It is clear now that the problem of finding a pm-periodic solution of (1.1) has been
reduced to that of seeking the critical point of the functional F defined on Epm.

Now we will discuss the existence of a critical point of F. To this end, for any
x = [x(n)} € Epm, where x(n) = (x'[(n),xJ(n))T e KM, we assume xj(n) =
(xj(n), xj(n),..., xf(n))T for; = 1 , 2 and let

x1 = ) , . . . , x[(pm), xl
2(l), x'2(2),..., x

Define a map <\> from Epm to OS2*1" as

(2.5)

Then <p is a linear homeomorphism and
By (2.4), we have

d pm pm

i=l n=\

= ^(A<f,(x),

n=l

H(n - 1, *,(#!), JC2(/I - 1)), (2.6)
n = i

'B
A = and

ipmxZpm
2dpmx2dpm

where

/ - I 1 0 •••

0 - 1 1

0 0 - 1 •••

0 0
0 0
0 0

0 0 0 . . . —1 1
1 0 0 ••• 0 - 1 /

pmxpm

It is easy to see that k is an eigenvalue of B if and only if A.2 is an eigenvalue
of QT Q since

QTQ =

pmxpm

( 2
- 1
0

0

- 1
2

- 1

0
0

0 ••
- 1 ••
2 ••

0 ••
0 ••

• 0
• 0
• 0

2
• - 1

-\\
0
0

- 1
2 )
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is positive semi-definite and QT Q has the eigenvalue 0 and pm — \ other positive-
eigenvalues denoted by 0, A.2, X\, ..., A.2m_,, where 0 < A.] < k2 < • •• < Xpm-\. Then
the eigenvalues of A can be denoted by 0, A.±1, X±2,..., A.±pm_i with multiplicity Id
of 0, where A_; = — Xj. Let A0, A+, A~ denote the eigenspace associated with 0, all
positive eigenvalues and all negative eigenvalues respectively, and

£ ° m = 0 - ' ( A ° ) , E;m = <j>-\A+) and E;m=4>-\A~).

Then E°pm = {xeEpm\x = {v), v e R2"} and Epm = E°pm © E+m © E;m.
For any x = (xu x2, ..., xlpm)T 6 R2*"1, and r > 1, define

Then | • | r is a norm in R2dpm. We can equip £pm with the norm ||JC ||r deduced by

II* L = 1*001,, V ^ e £ p m . (2.7)

Clearly, ||^||2 = (|-=c II £r̂,m - Since Epm is equivalent to the finite-dimensional Hilbert
space IR24"71, || • ||2 and || • ||r are equivalent, that is, there exist constants Cir, C2r such
that C2r > Cu > 0, and

C,r||jc||, < ||*||2 < C2r\\x\\r, Wx 6 Epm. (2.8)

On the other hand, we have

for

for

for

u

V

U)

e
e

€

Epm<

nm *

(2.9)

(2.10)

(2.11)(A4>(w),<Hw))=0,

Let X be a real Banach space, / e C\X, K), that is, / is a continuously Frechet
differentiable functional defined on X. The functional / is said to satisfy the Palais-
Smale condition (P-S condition) if any sequence {«„} c X for which {/(«„)} is
bounded and /'(«„) —> 0(n —> 00) possesses a convergent subsequence in X.

Let Br denote the open ball in X about 0 of radius r and let dBr denote its boundary.

LEMMA 2.1 (Saddlepoint theorem (see [15])). Let X be a real Banach space,
X = Xx ffi X2, where Xx ^ {0} and is finite dimensional. Suppose I e C\X, R)
satisfies the P-S condition and

(11) there exist constants a, p > 0 such that /|3B(,nx, < o, and

(12) there exist e 6 B p fl Xj and a constant co > a such that I \e+Xl > co.

Then I possesses a critical value c > w and c = inf/,€r maxuefl/)nxi I(h(u)), where

^Xl = i d ) .
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3. Proofs of the main results

PROOF OF THEOREM 1.1. Let F(x) be defined as in (2.3). Clearly, F e C\Epm, R).
In view of (H2), there exists a constant M\ > 0 such that

\H(n,z)\<Mi+M0\z\, V(n,z)eZxr. (3.1)

We will first show that F satisfies the P-S condition. In fact, suppose that {*(t)} is a
sequence in Epm such that for any it e 2(1), |F(*(t ))| < M2 for some positive constant
M2 and F'(xik)) -» 0 as k -> oo, then for sufficiently large it, \{F'(xw), x)\ < \\x ||2.

Let jc(t) = /*> + w(k), where yw = u(k) + vik) € E+m ® E~m and ww e E°pm.
According to (2.6) and the periodicity of H, we have

pm

(F'(*(i)), x) = (A<f>(xik)), <p(x)) + 2~] Hz(n — 1, Lx(*'(n)) • Lx(n), Vx 6 Epm.
n=l

Then for sufficiently large it,

pm

I
n=\

pm

n=l

and according to (2.9), we get

\(A<P(x(k)), <P(u(k)))\ < J2 \Ht(n ~ 1, Lx(k\n)) • Lu(k\n)\ + \\uw\\2

Thus we have A, ||MW||^ < (M0^/pm + 1)||K(*'||2, which implies that {«<*'} is bounded.
Similarly, we can show that [v(k)] is bounded. So {y(k)} is bounded.
Next, we need to prove that {ww} is bounded. In fact,

pm

F(x(k)) = -{A(j>(xw), <j>(xw)) + J2H(n- 1, Lx(k\n))

n)) - / / ( « - 1, Lwlk\n))].
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So,

pm

- 1, Lw(k\n))
n=\

2
pm

+ J^ \H(n - 1, Lx(k\n)) - H(n - 1, Lww(n))\
n=l

1 Pm

< M2 H—A.pm_i||y(i>||2 + Mo^pmWy^Wi,

where 9 e (0, 1). This implies that { Yln=i H(n ~ ^< Lw(k\n))} is bounded.
By Assumption (H3), we have that {w(ti)} is bounded. If otherwise, there is no harm

in assuming that ||iw(t)||2 —• oo as it —> oo. Since there exist z w e KM, k e 2(1),
such that w(k) = [z(k)) e Epm, then

( pm
pm \ ' / 2 /pm

) (

l/2

Since H(n - 1, Lw«\n)) = H{n-\, z(k)), we have H{n - 1, Lw«\n)) -+ +oo as
k ->• oo. This contradicts the fact that { YZ2i H(n- 1, Lu)w(«))} is bounded.

Now we will check that the conditions (10 and (I2) in the Saddlepoint theorem hold.
To this end, let X, = E~m and X2 = E+m ® E°pm. FoTanyx = u + we E+m © E°pm =
X2, there exist z* € KM such that w(n) = z*, Vn e 1. Thus

1

1 Y^
- - { A ^ ) i ( « ) ) + ^ ( / / ( « - , L * ( n ) ) - / / ( n - , Lu; n

pm

-A., | |«||2 - Mo

n=l n=l
pm pm
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/ pm \ 1/2 pm

> r*. \\u\\\ - M0^JR J^ IL"(")I2 I + £ # ( « - 1, z*)
\n=\ ) n=\

j Pm

l -

where 0 e (0, 1). According to (H3), it is easy to see that H(n,z) is bounded from
below for n 6 Z and z 6 RM. That is, //(n, z) > M3, for all (n, z) e 2 x K u for
some constant M3. Thus

F(x) > ^Au\\2
2-

= \^ (\\u\\2 - ^

Take cu = pm(M3 — Ml/2kx), then we have

F(x) >a>, Vx e X2. (3.2)

Let e = 0, then (I2) holds.
For any v € X] = E~, according to (3.1), we have

pm

F(v) = -(

< -^ i l l u l l 2 + ^(Mo|Lv(n) | + M,)

This implies that F(v) -»• —oo as ||u||2 ->• oo. Let a = a> — 1, then there exists a
sufficiently large p > 0 such that

<7, VueX, , and ||w||2 = p. (3.3)

Thus (Ii) is satisfied. By the Saddlepoint theorem, the proof of Theorem 1.1 is
complete. D

PROOF OF COROLLARY 1.2. Let G(x) = -F(x), X, = £+m and X2 = E~m ® E°pm.
By a similar argument to the proof of Theorem 1.1, we can prove Corollary 1.2. D

PROOF OF THEOREM 1.3. First, we need to show that F satisfies the P-S condition.
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Clearly, F e C\Epm, R). Let xw e Epm, k g 2(1) be such that {F(xw)} is
bounded and F'(x(K)) —*• 0 as k —»• oo. Then there exists a constant M4 > 0 and
ko e Z(l) such that \F(x(k))\ < M4 for k e 2(1) and \(F'(xik)),x)\ < ||x||2 for
*€Z(*b),je eEpm.

Since

Hz(n - 1, Lx(k\n)) • Lx(k\n),

we see that, for k e 2(ko),

i -l

\ ( n - l , Lxw(n)) - -Lxw(n) • Hz(n - 1, Lx{lc)(n)) .

For any & € 2(&o), denote

Sf = {n e 2(1, pm) | k(<:)(n)| > /?,} and S2* = {n 6 2(1, pm) | \x(lc)(n)\ < /?,}.

Then Sf U 5 | = 2(1, pm) and

1 pm 1

A/4+ -||*w||2 > J^H(n - 1, Lxik)(n)) - - ^ L x ( t ) ( n ) • »,(n - 1, Lxw(n))
1=1 ne5f

In view of (1.3), we have

-I

1 ^ - >
- > [aH(n — 1, Lxw(n)) — Lx(k)(n) • H (n—
2 ^-f ' z
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Since aH(n — 1, z) — z • Hz(jn — 1, z) is continuous with respect to z 6 KM for each
n e 1, there exists a constant Ms > 0 such that \ccH(n — 1, z)-z-Hz(n — l, z)\ < M5,
for all z e K M and \z\ <Rune 2(1, pm). Thus

t '"" i
M + | | W | | > ( l \ ) £ H( 1 L ( * > ( ) )| | J C | | 2 ( l \ ) £ H(n - 1, L*(*>(H)) - -pmM5.

n = l

By (1.4) and (2.8), we get

1 '""

-\\xmh > (l - | ) «i E l^W(«)ly - (l - | ) «2pm - -pmM5

where M6 = (1 — a/2)a2pm + (pmM5)/2.
That is,

II*('112 "" 2^x( ^l2 - ^ 4 + M6.

Because y e (1, 2), we see that {||ACW||2} is bounded. Since Epm is finite dimen-
sional, [x(k)] has a subsequence which is convergent in Epm. Therefore F satisfies the
P-S condition.

Now we prove that F satisfies (Ii) and (I2). To this end, let Xi = E~m and
X2 = E;m ® E°pm. Then for any x = u + w e E+m ® E°pm = X2,

1 ^
Fix) = -(Acbiu), <t>iu)) + > Hin — 1, Lxin))

2 if
i

- 2 ;

> —

Let u> = —a2pm, e = 0 and a = co — 1. Then F satisfies (I2). By (2.10), for
v e Xi = E~m, according to (1.5),

Fix) = l-(
n=\

https://doi.org/10.1017/S1446181100009792 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100009792


100 " Zhan Zhou, Jianshe Yu and Zhiming Guo [12]

Since 1 < a < 2, there exists a sufficiently large constant p > 0 such that F(v) < a
for all v e X\ and ||u|| = p. Thus (I() holds. According to the Saddlepoint theorem,
there exists at least one critical point of F. And the proof is complete. •

PROOF OF THEOREM 1.4. According to the proof of Theorem 1.3, we know that
the functional F € C'(£pm, K) has a critical value c and (1.1) has a corresponding
solution. By (H7), we see that the zero solution is a constant solution of system (1.1).
If x(n) = z € KM is another constant solution of system (1.1), then HXl(n, z) = 0 and
HXI(n, z) = 0. This implies that Hz(n, z) = 0 for n e 1. By (1.6), we have z = 0.
Thus the zero solution is the only constant solution of system (1.1). Since F(0) = 0,
to complete the proof it suffices to show that F has a critical value c > 0. To this end,
assume that y0 e R2*"1 is a nonzero eigenvector of A associated with the eigenvalue
—A-i and with |yo| =8 small enough, it holds that

CO =

Let yQ = </>-l(yo) e Epm, Xx = Epm and X2 = y0 + E+m ® E°pm.
For any x=yo + u + w€ X2, where u e E+m, w e Epm. According to (2.6), we

have

pm

F(x) = -(A<j)(x), 4>(x)) + > H(n — 1, Lx{n))2 *—<
n=l

1 1 ^
). 4>(yo)) -I—(^0(«). <£(")) + «s / l ^ w r

2 ^ ^
2

2 2y

This shows that F satisfies the condition (Ii).
For any v e Xu similar to the proof of Theorem 1.3, we have F(v) -*• —oo as

II v || 2 -»• co. So, there exists a sufficiently large constant p such that F(v) < co — 1
for u e X], ||u|| = p, which implies that F satisfies the condition (I2). Therefore F
possesses a critical value c > co > 0. The proof of Theorem 1.4 is complete. •

Finally, we give an example to illustrate our conclusions.
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EXAMPLE. Consider the system (1.1) with

ux2) = (a\x1\
y+b\x2n^(n), Vn g Z, (x,,jc2)

r g K2, (3.4)

where a, fc > 0, y e (1, 2) and TJ/(n) is a positive m-periodic function.
We now check that all conditions in Theorem 1.4 hold. Clearly, (Hi) and (H7) hold.
LeU = (xux2)

T anda = nun[f (n)\n e 2(1, m)} > 0. Then

(«, z) = (ay\xi\r + by\x2\
r)Mn) = yH(n, z),

which implies that (H8) holds.
At last, we have

H(n,z) > amin{a, 6}(|x1|
)' + \x2\

y)
Y

"' + \x\

Y

,b) ( -^- '

So, (H9) holds.
According to Theorem 1.4, we see that, for any given positive integer p, the

system (1.1) with H as defined in (3.4) possesses at least one nonconstantpm-periodic
solution.
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