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A STICKELBERGER CONDITION 
ON CYCLIC GALOIS EXTENSIONS 

L. N. CHILDS 

Let R be a commutative ring, C a finite abelian group, 5 a Galois 
extension of R with group C, in the sense of [1]. Viewing 5 as an RC-
module defines the Picard invariant map [4] from the Harrison group 
Gal (R, C) of isomorphism classes of Galois extensions of R with group C 
to CI (RC), the class group of RC. The image of the Picard invariant map 
is known to be contained in the subgroup h Cl (RC) of primitive elements 
of CI (RC) (for definition see below). Characterizing the image of the 
Picard invariant map has been of some interest, for the image describes 
the extent of failure of Galois extensions to have normal bases. 

Let R be the ring of integers of an algebraic number field K. If S is the 
ring of integers of a tame(ly ramified) Galois extension Loi K with group 
C, then viewing S as an i^C-module yields a class in CI (RC). The image 
of this map is of interest for the same reason. L. McCulloh [8] showed 
that in case C has prime order / and K contains a primitive /th root of 
unity, then the image consists of elements of CI (RC) which are in the 
kernel Cl° (RC) of the map induced by the trivial character on C and 
which are in the subgroup Cl0 (RC)J generated by the images of elements 
of Cl° (RC) under action by elements of the Stickelberger ideal / of 
Z (Aut C). 

The two questions concerning the images should be related, for in the 
number field case, connected Galois extensions of R are rings of integers 
of unramified, hence tame extensions of K [1, 1.5(d)]. The purpose of 
this note is to show that for any commutative ring R and for C cyclic of 
odd prime power order ln, primitive elements of CI (RC) lie in Cl° (RC)J. 

It follows that Galois extensions of R with group C yield classes which 
are products of images of Stickelberger elements. Concerning the cor­
responding result for tame extensions, only McCulloh's result [8] is known. 

Stickelberger conditions. Let / be an odd prime, C the cyclic group 
of order ln, G = Aut (C). Then G c^ (Z//nZ)* via the map which sends 5 
in G to the class of the integer /(<5), 0 < t(5) < ln, (t(ô), I) = 1, such that 
d(cr) = <rt(ô) for all <J in C. The inverse isomorphism is given by sending 
the class of the integer a, (a, /) = 1 to 8a, where 8a((r) = <ra for a in C. 
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In QG is the Stickelberger element 

ae(ZflnZ)* > * / ^ «€G 

where ( ) denotes fractional part. The Stickelberger ideal / of ZG is 
denned as / = ZG C\ ZG 6. The ideal J has been the object of considerable 
interest in cyclotomic field theory and Galois module theory in recent 
years; see, for example, [5], [6] or [7, page 12]. 

The ideal J has a convenient alternate description. 

PROPOSITION 1 (Iwasawa). Let A be the Z-submodule of ZG generated 
by ln and 

{a - 8a\a e (Z/PZ)*} = [t(B) - ô\ô £ G}. 

Then J = Ad. 

A proof of this may be found in [7], page 11, or [5], Lemma 3, page 593. 
In order to obtain our main result we need to characterize the sub-

modules of ZG-modules generated by images of elements of / . The follow­
ing result was obtained for n = 1 by McCulloh [8, (4.1.5)]. 

PROPOSITION 2. Let M be a ZG-module, written multiplicatively. For m in 
M, the following conditions are equivalent. 

(i) m £ MJ = submodule of M generated by {my\m £ M, y £ J) 
(ii) ma Ç MJ for all a in A 

(iii) there exists a in M such that ma = aad for all a in A. 

Proof, (iii) => (ii) is trivial. 
(i) =» (iii): If m = I I bf\ bt 6 M} 0, 6 / , let 0, = afi, at 6 A. Then 

m« = n bf«* = I l biai9° = (II bf*)9". 

(iii) follows. 
(ii) ==> (i). We divide the proof into two cases, n = 1 and w > 1. We 

write a = 6 (mod MJ) if a£ - 1 is in MJ. 
n = 1. We have m1 Ç, MJ and w^5>~ô Ç M J for all Ô in G by (ii). 

Since Id £ / , 

1 = m~19 = m-Sï(ô)ô_1 = I l w- t (ô)ô_1. 

Now w'(ô) = mh for all w in M, ô G G, so 

1 EE Ilm-wt*-1). 

Since t(ô)t(ô~l) = 1 (mod/), 

1 = E[ ™~l = ™~(l~l) = m (mod M"J). 

Hence m Ç M J . 
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n > 1. Since d(t(&) - 8) £ J for all Ô <E G, we have for any m in M, 
Ô € G, 1 s «,»('(«>-». Now 

*«<«) - a) « Z ( ^ ^ p î M ) 7 - \ 

and ra7 = m ^ } (mod AP), by (ii). So 

1 = mh 

where 

h = E (^^M. 
To show m 6 MJ it suffices to show that h is prime to /. For « ' " Ç Af17 

by (ii) ; if also mh £ MJ with (h, /) = 1, then w G M"J. 
Let ô be a generator of G, and 7 = 5*. Then 

h '""g-" //£ )f(g) - t(Si+1)\ 

r 
Kr1). 

Let 5i be an integer ^ 0 so that /(ô*) = /(£)* — /n5t-. Then 

p - i ( z - i ) r / / / s \ t 7̂  
h = ^ [(ffl)' - /%);(8) - (t(ô)'+1 - lnsi+1)} f ( r < ) 

= _ y ^ [/(5)/ Sj — lnsi+i] ./«-i\ 

= - £ M*)~< + 1 - sn-i^r*] (mod /) 
1=1 

P - 1(«_ 1)+1 Zn-l(Z_l) 

= Z t(8)-i+1
Si - £ «(«)-1+154 

;=2 i= l 

= K*r ,""1< '"1)sP.-(i-i)+i - <(5)V. 

Now si = /(Ô) - *($)/** = 0; also 

c , _ A r//s\!"-1(i-1)+1 /('x!""1<!-1>+1M 
Sj»-i(J-l)+l — ,n [t(.0) — H ô JJ r 

= ^^(ô) ' "" ( ( - 1 ) <(5)- i (Ô)] = /(6) 

and /(Ô)'"-'<'-» = 1 (mod /•). So 

A = 5i: » - l ( I - l ) + l '(*) ^^""r-^mod 0 

0 if and only if t(d) !"1 < i _ 1 ) = 1 (mod f+ 1) . 
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But <5 is a generator of G = Aut C, and G c~ (Z//"Z)*, w ^ 2 via the 
map <5* —> t(di). So /(<5) is a primitive element mod / \ It is known that 
if a is a primitive element mod ln, n ^ 2, then a is a primitive element 
mod lm, m > n, for all m [3, p. 215, E4]. Hence 

t(ty«-Hi-\) =£ i (mod/w+1), 

and so h ^ 0 (mod /). That completes the proof of Proposition 2. 

Primitive elements. By Cl (RC) we mean the group of isomorphism 
classes of rank one projective PC-modules. We define h Cl (RC), the sub­
group of Cl (RC) consisting of primitive elements. One definition of 
h Cl (RC) is by the maps: 

€i, e?, A : C -+ C X C 

defined by 

ei(o-) = 1 ® a 

€2(cr) = ( T 0 1 

A(a) = a ® o-

for or in C. A class P in CI (i?C) is primitive if 

<i*(P)e2*(P) = A*(P) 

where ( )* denotes the induced map on CI ( ). An equivalent formula­
tion of h Cl (RC) is obtained by the Yoneda lemma [4, (2.6)], [2, (1.7)]: 

h Cl (RC) 9É Horn (Alg« (PG,), CI ( )) 

via the maps 

P - * / , / ( € ) = fc(P), 
/ "> / ( 1 * G ) . 

We prove 

THEOREM 3. Let R be a commutative ring, C a cyclic group of odd prime 
power order l\ Then h Cl (RC) C Cl° (RC)J. 

Proof. Let P be in h Cl (RC) and / be the corresponding element of 
Horn (Alg« (RC, ), CI ( )). We first note that if Xo in Alg* (RC, R) 
is the trivial character, then xo is the identity element in A\gR (RC, R), 
soR=f(Xo) = Xo*(P), henceP £ Cl0 (PC) (cf. [2, (1.8)]). 

To show P is in Cl° (RC)J we apply Proposition 2, (ii) and Proposition 
1, and show that Pln is in Cl0 (RC)J and that 

5jje(P) = P* = p « » (mod Cl° (PC)-7) 

for 5 in G = Aut (C). In fact, we show that Pln and P*-^ a r e trivial in 
CI (RC). 
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The multiplication in A\gR (RC, RC) is given by 

(£.!?)(*) = (f ® ij)(*® er) = t(*M*)-

Hence if t is a positive integer, the map t in A\gR (RC, RC) defined by 
linearity and t(a) = a1, a in C, may be written as t = V, where 1 is the 
identity function on RC. Moreover, for P in h Cl (RC), 

Thus P" = / ( /") . But /"<» = <r'" = 1 for all a in C, so /" is the identity 
element of AlgB (RC, RC). Thus P'n = / ( !") = R, the identity of CI (RC). 

Also, if Ô <E Aut (C), 5(<T) = <7,<5) for all <r in C, then 5 = t(ô) in Alg* 
(2?C,2?O.So 

P'<« = / ( $ ) ) = / ( « ) = « , ( P ) = P S . 

That completes the proof. 

COROLLARY 4. / / C is cyclic of odd prime power order, then the image of 
the Picard invariant map: Gal (R, C) —> CI (RC) is contained in Cl° (RC)J. 

For Gal (R, C) maps into h Cl {RC), by [2, (1.2)]. 
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