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Abstract

Land managers require tools that improve understanding of suitable habitat for invasive plants
and that can be incorporated into survey efforts to improve efficiency. Habitat suitability mod-
els (HSMs) contain attributes that can meet these requirements, but it is not known how well
they perform, as they are rarely field-tested for accuracy. We developed ensemble HSMs in the
state of Wisconsin for 15 species using five algorithms (boosted regression trees, generalized
linear models, multivariate regression splines, MaxEnt, and random forests), evaluated perfor-
mance, determined variables that drive suitability, and tested accuracy. All models had good
model performance during the development phase (Area Under the Curve [AUC] > 0.7 and
True Skills Statistic [TSS] > 0.4). While variable importance and directionality was species spe-
cific, the most important predictor variables across all of the species’models were mean winter
minimum temperatures, total summer precipitation, and tree canopy cover. Post model devel-
opment, we obtained 5,005 new occurrence records from community science observations for
all 15 focal species to test the models’ abilities to accurately predict results. Using a correct clas-
sification rate of 80%, just 8 of the 15 species correctly predicted suitable habitat (α≤ 0.05).
Exploratory analyses found the number of reporters of these new data and the total number
of new occurrences reported per species contributed to increasing correct classification.
Results suggest that while some models perform well on evaluation metrics, relying on these
metrics alone is not sufficient and can lead to errors when utilized for surveying. We recom-
mend any model should be tested for accuracy in the field before use to avoid this potential
issue.

Introduction

Invasive plants are a pervasive problem that impact natural and managed lands. They can dis-
rupt native plant, animal, and microbial communities (Dukes and Mooney 2004); alter ecosys-
tem processes (DiTomaso 2000; Levine et al. 2003); be costly to control (Epanchin-Niell et al.
2010); and even impact human health (Mazza et al. 2014).While efforts to prevent invasions and
their associated impacts have had success (e.g., Rothlisberger et al. 2010), establishment and
spread of invasive species remains common in natural areas. Land management agencies com-
monly employ early detection and rapid response (EDRR) to limit these impacts (Reaser et al.
2019; Westbrooks 2004). Within this framework, early detection is a critical first step, as it min-
imizes spread, which prevents impacts across a large area (Maistrello et al. 2016) and allows for
cost-effective management (Westbrooks 2004).

Invasive species monitoring efforts, however, are a challenge for land management organ-
izations. Maxwell et al. (2012) estimate that 1% to 2% of managed natural lands are monitored
annually for invasive plants. While increasing monitoring is the optimal solution, few have
budgets to enhance these efforts, and many state and federal agencies have reduced monitoring
programs (NISC 2018). As professional staff and monitoring resources are unlikely to increase,
developing tools to improve efficiency of existing monitoring efforts is an attractive alternative
that has been a high priority (WISC 2013). Habitat suitability models (HSMs) are one example,
as they have the potential to assist with early detection of invasive species. HSMs can improve
detection of target species with much greater efficiency (up to 80% detection rate; Wang et al.
2014) compared with the random searches currently employed (Crall et al. 2013). However, a
general disconnect exists between researchers and land managers (Renz et al. 2009), which sug-
gests that although these models have potential benefits to land managers, their actual imple-
mentation on the landscape is limited.

HSMs have been developed for many invasive species (e.g., Allen and Bradley 2016; Magarey
et al. 2018) at a range of scales (e.g., Young et al. 2020). While predictor variables often differ
depending on the focal species, climactic variables (e.g., precipitation and temperature),
remotely sensed vegetation indices, landscape attributes (e.g., aspect, slope), solar irradiation,
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distance to dispersal corridors (e.g., water, roads), and soil attrib-
utes are commonly used for creation of HSMs (Evangelista et al.
2008; Kumar et al. 2006; Stohlgren et al. 2003). Predictions are best
when true absence data are included, but these data sets are difficult
to attain. Therefore, targeted background approaches have been
developed and demonstrated to be an effective alternative (Crall
et al. 2013; Phillips et al. 2009). Different algorithms have been uti-
lized in modeling suitable habitat; however, ensemble predictions
utilizing multiple algorithms have shown better predictive capabil-
ities of suitability than reliance on any single algorithm (Margery
et al. 2018; Morisette et al. 2013). Updating models with new data
(iterative approach) can also improve predictions over time (Cook
et al. 2019; Crall et al. 2013).

While HSMs are available for a wide range of invasive species,
their use by practitioners and land managers is limited.
Improvement in transparency in habitat modeling development
is one approach researchers are taking to address this (Araújo
et al. 2019; Sofaer et al. 2019) and improve understanding and
adoption of HSMs on the landscape. However, these tools are
rarely field-tested for accuracy (Barbet-Massin et al. 2018; West
et al. 2016). Thus, the effectiveness of these tools on the landscape
is not well known, and this may reduce adoption (Funk et al. 2020;
Sofaer et al. 2019). While validation can be difficult, increases in
community scientist and stakeholder monitoring efforts that are
publicly shared provide a resource to test the accuracy of these
models and potentially increase adoption of HSMs.

As part of an outreach effort from 2014 to 2018 focusing on
detection of invasive species within Wisconsin (Great Lakes
Early Detection Network established by Crall et al. [2012]), we col-
lected known invasive species occurrences for invasive plants and
promoted monitoring throughout the state to stakeholders and
through a community science group (WIFDN 2020). These data
were used to develop HSMs for 15 invasive plants in the state of

Wisconsin using an ensemble approach. With these models, we
assessed performance and the drivers of suitable habitat and, after
2 yr, determined the accuracy of HSMs using occurrences reported
by community scientists and stakeholders. As the accuracy of
HSMs varied among species, further analysis sought to understand
what factors are influencing the ability of models in correct classi-
fication of invasive plant presence.

Materials and Methods

Predictor Variables

Fourteen candidate predictor variables (Table 1) were utilized for
model development. Topographic variables (aspect, elevation, and
slope) and distance to dispersal corridors (roads, waterways) were
created from a digital elevation model and the Topologically
Integrated Geographic Encoding and Referencing (TIGER) data
sets, respectively, using ArcMap (ESRI v. 10.5, 2016, Redlands,
CA). Climate predictors were obtained from the AdaptWest
Project (Wang et al. 2016) and processed to create seasonal average
precipitation and average summer maximum and winter mini-
mum temperatures (1981 to 2010 climate normals). Soil attributes
(percent organic matter and percent clay) were derived from the
USDA gridded soil survey and were included to distinguish soil
types across the study area. Finally, a 10-yr average enhanced veg-
etation index (EVI; Didan 2015) and percent tree canopy cover
(Sexton et al. 2013), both calculated from MODIS satellite data,
were used as measures of greenness to differentiate canopy density
and vegetation types.

Occurrence Data

More than 100,000 occurrence records formore than 100 species of
terrestrial invasive plants were obtained through the Wisconsin
Department of Natural Resources and the Early Detection and
Distribution Mapping System from 2000 to 2016. Occurrences
were evaluated, and duplicates and occurrences with GPS error
>30 m were removed. Fifteen invasive plants (Table 2) were ulti-
mately chosen for modeling in this study.

Habitat Suitability Models

All habitat models were created using the Software for Assisted
Habitat Modeling (SAHM) (Morisette et al. 2013) modules within
the broader Vistrails framework (Freire and Silva 2012). SAHM
was designed to assist researchers with the development of spatial
distribution models by allowing the user to make decisions in an
interactive workflow. For each species modeled, the presence data
were complemented with pseudo-absence records by utilizing
additional reported invasive plant species occurrences taken from
the same surveys performed for the focal species. Phillips et al.
(2009) describe this “targeted background” approach to habitat
models as providing a better representation of absence data, rather
than randomly assigned background points, when true absence
data are not available.

The 14 predictor layers were projected, aggregated (mean val-
ues), resampled (bilinear interpolation), and clipped to the extent
of the state of Wisconsin using the PARC module within SAHM.
These predictors were selected based on previous research in
Wisconsin (Crall et al. 2013) to identify fine-scale habitat suitabil-
ity. While spatial resolutions of 30, 100, and 250 m were consid-
ered, we selected a final spatial resolution of 30 m, as this
provided similar results as coarser resolutions (data not shown)

Management Implications

With availability of resources for invasive plant monitoring and
control efforts nationwide in decline, new tools and technologies
are required to fill this gap. Habitat suitability models (HSMs) are
an effective tool for improving understanding and detection of inva-
sive plants on the landscape. HSMs use environmental and physical
variables of known locations of a focal species to predict where other
similar locations on the landscape exist.While HSMs are common in
the scientific community, gaps between development of these tools
and use by land management agencies exist. As these models are
rarely evaluated for accuracy, their implementation in the field
has been limited due to concerns over real-world performance. As
developers rarely have resources to field validate, this study sought
to determine whether HSMs accurately identify presence of commu-
nity scientist observations of 15 invasive plants throughout
Wisconsin. A total of 5,005 verified new occurrences collected over
2 yr from a structured network of community scientists was utilized
to test the ability of these models to correctly identify suitable hab-
itat. While model performance looked successful during develop-
ment, only half of the models performed at or above our
performance threshold (80% correct classification). This result
underscores the importance of vigorous field testing of accuracy
of these models with separate data before release to land managers
to ensure accuracy.
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and provided a more detailed map that could be utilized by land
managers. A 10-fold cross-validation test of the training models
was conducted on each individual species’ models to determine
whether overfitting of the data had occurred during model devel-
opment. The cross-validation method randomly withholds 10% of
the data and tests it against the trained model, iterating the process
10 times, with the goal of observing limited variance in the predic-
tion. In the case that predictor layers were highly correlated
(|r|> 0.75), based on three coefficient indices (Pearson,
Spearman, and Kendall), the predictor with the greater biological
importance for the specific species, and the higher percent devi-
ance explained for a simple generalized additivemodel was selected
(Morisette et al. 2013).

Five algorithms (boosted regression trees, generalized linear
models, multivariate adaptive regression splines, maximum
entropy, and random forests [RFs]) were used to produce
habitat suitability predictions for the state of Wisconsin for
the species listed in Table 2. Each algorithm’s predictive perfor-
mance was assessed using both threshold-independent (Area
Under the Curve [AUC]) and threshold-dependent (sensitivity,
specificity, true skills statistic [TSS]) metrics. If AUC values for
the training and cross-validation test were ≥0.075, model hyper-
parameters (see Supplementary Table S1 for more details) were
adjusted to curtail overfitting. If overfitting could not be limited
to meet this standard, those models were not included in
analyses.

Table 1. Predictors used for model development, including data source and whether postprocessing of the data was required.a

Predictor layer
Native resolu-

tion Data source Processing notes

Aspect (° from N) 30 m USGS National Elevation Data
Set

Derived from DEM

Average maximum summer temperatures
(1981–2010)

1 km AdaptWest Project June, July, August

Average minimum winter temperatures
(1981–2010)

1 km AdaptWest Project December, January, February

Distance from roads 30 m TIGER Roads Derived (Euclidean distance) from road networks
Distance from water 30 m USGS National Hydrography

Data Set
Derived (Euclidean distance) from streams, rivers, water-
bodies

Fall precipitation (1981–2010) 1 km AdaptWest Project September, October, November
Mean annual (2000–2010) enhanced vegeta-
tion index

~230 m NASA MODIS Average values created using USGS Phenology Image
Service Toolbox

Percent clay in soil 30 m USDA NRCS gSSURGO
Percent organic matter in soil 30 m USDA NRCS gSSURGO
Percent tree canopy cover 30 m Global Land Cover Facility Vegetation continuous fields layer from NASA MODIS
Slope (°) 30 m USGS National Elevation Data

Set
Derived from DEM

Spring precipitation (1981–2010) 1 km AdaptWest Project March, April, May
Summer precipitation (1981–2010) 1 km AdaptWest Project June, July, August
Winter precipitation (1981–2010) 1 km AdaptWest Project December, January, February

aAll GIS-related manipulations were performed in ArcMap (v. 10.5, ESRI).

Table 2. Species modeled, including common and scientific names, number of occurrence records used to develop the models, and how many counties in the state
those points came from (an indication of the spatial extent of these data).

Species common name Species scientific name

Number of
occurrence
records

Number
of

counties

Autumn olive Elaeagnus umbellata Thunb. 169 26
Bush honeysuckle spp. (Amur honeysuckle, Bell’s
honeysuckle, Morrow’s honeysuckle, Tatarian honey-
suckle)

Lonicera maackii (Rupr.) Herder, Lonicera × bella Zabel,
Lonicera morrowii A. Gray, Lonicera tatarica L.

1758 44

Canada thistle Cirsium arvense (L.) Scop. 902 29
Common buckthorn Rhamnus cathartica L. 806 44
Common tansy Tanacetum vulgare L. 2203 29
Crownvetch Securigera varia (L.) Lassen 177 35
Garlic mustard Alliaria petiolata (M. Bieb.) Cavara & Grande 2265 56
Hedge-parsley spp. (Japanese hedge-parsley, spreading
hedge-parsley)

Torilis arvensis (Huds.) Link, Torilis japonica (Houtt.) DC. 380 24

Japanese barberry Berberis thunbergii DC. 343 33
Knotweed spp. (Japanese knotweed, giant knotweed,
Bohemian knotweed)

Reynoutria japonica Houtt., Reynoutria sachalinensis (F. Schmidt
ex Maxim.) Nakai, Reynoutria × bohemica Chrtek & Chrtková

547 62

Leafy spurge Euphorbia esula L. 230 43
Purple loosestrife Lythrum salicaria L. 572 72
Spotted knapweed Centaurea stoebe L. 1783 69
Teasel spp. (common teasel, cutleaf teasel) Dipsacus fullonum L., Dipsacus laciniatus L. 1013 30
Wild parsnip Pastinaca sativa L. 3491 71
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Each algorithm produced a unique probability density surface
of predicted suitability for the study area. These probability surfa-
ces were converted to a binary simplification using a threshold cut-
off found by maximizing the average of the sensitivity plus
specificity. Pixels considered above this threshold were given a
value of 1, while unsuitable pixels were designated as 0. Each binary
prediction was then summed to create an ensemble model (see
Morisette et al. 2013) of suitability for a specific species, and a final
model was created where at least one model deemed a pixel
suitable.

Variable importance and response curves were produced by
SAHM and examined for similarities across the five models.
Variable importance is calculated by determining the change in
AUC when predictor values are permuted between the occurrence
records and background data points. The larger the change pro-
duced by the permutation, the greater the influence the predictor
has on the model. The predictors selected by each of the five differ-
ent modeling approaches varied, so we relativized the values to a
percentage of all the variables used in the model. Marginal
response curves were also produced for each predictor in themodel
by calculating the response when the other predictors are held con-
stant at their mean values (Jarnevich et al. 2018; Lötter and Maitre
2014; Pearson 2007).

Community Science Outreach Campaign

In 2017, following the development of our HSMs, we developed an
active outreach campaign through Wisconsin First Detector
Network to report invasive plants in Wisconsin. Our campaign
trained individuals to identify key invasive species we were mod-
eling and report occurrences. Over the 2-yr time frame, 34 work-
shops conducted in 19 counties trained 986 people.

Testing Accuracy of Models from Community Scientist
Observations

As a result of our community outreach campaign, more than
15,000 new invasive plant reports were submitted by community
scientists in the state of Wisconsin. We used a subset of these
reports to assess howwell ourmodels predicted presence of specific
invasive plants. Reports were used only if they were verified by an
expert reviewer and had a GPS error≤30m. Additionally, accuracy
was only tested when we had >40 observations for each species in
this new data set. This resulted in 5,005 new reports to test 15 spe-
cies distribution models. Each report was run through the species-
specific ensemble model to determine the sensitivity associated
with the model predictions (Jorgensen et al. 2021). A χ2 test was
performed in R (R Core Team 2019) to determine whether the cor-
rect classification rate of these new occurrence records was higher
than an 80% cutoff rate. This cutoff value for assessing predictive
performance is commonly used in remote-sensing evaluation
(Engler et al. 2013).

To determine the drivers of correct classification of the commu-
nity scientist observations across the 15 species evaluated, we
developed a RF model in R using the RANDOMFOREST package.
RF is a nonparametric ensemble machine learning approach that
stochastically builds regression trees via a bootstrap technique (i.e.,
leave-one-out sampling with replacement). RF models are robust
to data sets including large quantities of both continuous and cat-
egorical variables compared with the number of observations
(Cutler et al. 2007). The importance of predictor variables is ranked
by each tree in the forest, and the tree rankings are then averaged to
develop unbiased estimations of the most important predictors

where the overall model error is minimized. Twenty-six predictor
variables were used to understand what is impacting the accuracy
of community scientist observations. Twenty model evaluation
metrics (training AUC, TSS, sensitivity, and specificity for each
individual model in the species ensemble), three variables associ-
ated with the HSM (number of occurrences, pseudo-absence
records, and number of counties where the species had been
reported), and three variables associated with community scientist
data (the number of new occurrence records to test themodels, and
how many reporters contributed these reports) were used in this
RF analysis. The model was tuned to curtail overfitting by setting
the mtry parameter to the square root of the number of predictors
and the number of trees to 500 (Probst et al. 2019).

Results and Discussion

Model Characteristics and Important Variables

The ensemble binary models for all 15 species’HSMs were created
and deemed appropriate based on evaluation metrics (AUC, TSS)
(Figure 1; Supplementary Figures S1–S14.) Two to 14 variables
(Table 3) were retained in the final models, depending uponmulti-
collinearity or the intrinsic model algorithm variable selection
method for each species. The relative importance of the predictor
variables was both species and model specific. The top three pre-
dictors (Table 3) were either consistently important (i.e., within the
top three at least 30% of the time), occasionally important (in the
top three 10% to 30% of the time), or rarely influential on model
predictions (in the top three <10% of the time). Minimum winter
temperature was the most common important variable across spe-
cies models (66% of the top three variables across all 15 models),
which is consistent with other workmodeling invasive species hab-
itat suitability (Young et al. 2020). We also found summer precipi-
tation (47%), summer maximum (41%) temperatures, and percent
tree canopy cover (31%) consistently important across species’
models. Precipitation in the fall, spring, and winter was less con-
sistently important, ranking within the top three most important
predictors in 27%, 23%, and 27% of the models, respectively.
Similarly, percent clay in the soil and distance to road networks
were among the top three most important predictors for 14%
and 12% of the models, respectively. Crall et al. (2013) found per-
cent clay to be the most important predictor for modeling suitable
habitat of spotted knapweed (Centaurea stoebe L.) in Wisconsin,
while it ranked within the top three important predictors 14 times
in our study, two of which were C. stoebe.

Predictors that were rarely ranked in the top three most impor-
tant were the topographic variables (aspect, slope), EVI, distance to
water, and percent soil organic matter (Table 3). Wisconsin has
relatively homogenous topography with only a 426-m difference
between the highest and lowest point in the state (mean= 320
m), and a mean slope of just 2.7% rise (range: 0% to 59%). The
small differences among these variables inWisconsin may be a fac-
tor in the importance of this variable in model predictions.
Similarly, distance to water was only ranked among the top three
important predictors in wetland invasive species (Phragmites and
purple loosestrife [Lythrum salicaria L.]).

In addition to differences in important predictor variables
among species, directionality of the response also varied among
species. For example, response to tree canopy cover varied, with
9 species responding positively, 10 negatively, and 2 with a bimodal
response (data not shown).While others suggest that HSM for spe-
cies with common growth forms can be combined, as they behave
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similarly (Ianonne et al. 2015), our results suggest that the drivers
are species specific and agree with those of Allen and Bradley
(2016), who reported that invasive plant species occupy different
niches.

Habitat Suitability Model Performance

All models performed at or exceeded acceptable thresholds for
both threshold dependent (TSS) and independent (AUC) evalu-
ation metrics (Supplementary Table S2). AUCs for models were
above the minimum threshold (0.9) for excellent performance
62.5% of the time and never below the acceptable threshold
(0.7) (Hosmer and Lemeshow 1989). TSS, an indication of how
well the models are able to accurately distinguish presence from
background, was above the minimum threshold of 0.4 established
by Jarnevich et al. (2018) for all but one of the retained model out-
puts (multivariate adaptive regression splines [MARS]: Lonicera
spp.). Assessment of AUC and TSS values from the 10-fold
cross-validation also indicated good model results, as differences
between the training and mean cross-validation testing sets indi-
cated limited overfitting with only one exception. Any models that
were considered to be overfitting the training data were tuned
appropriately (Supplementary Table S1).

Accuracy of HSMs in Correctly Classifying Community
Scientist Observations

Over two growing seasons, an additional 6,035 new occurrence
records were reported and verified by experts for the 15 modeled
species by 114 reporters across 86% of Wisconsin’s counties. Of
these new occurrences, 1,030 were excluded from this data set,
as they were in “novel” areas where models did not assign a pre-
diction (the majority were waterbodies and roads, which were
excluded inmodel development). This resulted in 5,005 new occur-
rence records.

We used these 5,005 new data points as an independent data set
to evaluate HSMs for each of the 15 species. Occurrences used per
species ranged from 48 to 1,291 and were distributed across 9 to 32
of Wisconsin’s 72 counties (Table 4). Eight of the 15 models per-
formed at or above an 80% correct classification of the new data
points in suitable pixels, with leafy spurge (Euphorbia esula L.),
wild parsnip (Pastinaca sativa L.), and Torilis spp. performing at
or above 97% correct classification (Table 4). All three of these spe-
cies’ models also performed excellently for AUC and TSS values
across all five of the model algorithms. However, autumn olive
(Elaeagnus umbellata Thunb.), common tansy (Tanacetum vul-
gare L.), and the teasel species’ (Dipsacus spp.) models performed
at less than 60% correct classification of these new data despite
great to excellent performance for AUC metrics and above thresh-
olds for other model performance metrics.

Comparing E. umbellata and P. sativa emphasizes this pattern,
as both species performed similarly on AUC and TSS and had sev-
eral hundred new occurrence records used to validate the ensemble
models (454 for E. umbellata, and 365 for P. sativa). Despite these
similarities, the P. sativa ensemble correctly classified presence
97% of the time, compared with 56% correct classification by
the E. umbellata ensemble model.

Simplified models that overpredict suitable habitat could be a
reason for high performance on the community scientist observa-
tions. The total area deemed suitable for each species differed sub-
stantially, with species like teasels (Dipsacus spp.) predicting
suitability at only 11% of Wisconsin compared with common
buckthorn (Rhamnus cathartica L.) predicting suitability at 63%
of the state (Table 4). Of the species that performed above our
80% threshold, Lonicera spp., E. esula, C. stoebe, and P. sativa pre-
dicted greater than 50% of Wisconsin’s area suitable habitat, but
crown-vetch [Securigera varia (L.) Lassen], garlic mustard
[Alliaria petiolata (M. Bieb.) Cavara & Grande], Torilis spp.,

Figure 1. Occurrence records for model development and assessment (A), the binary
ensemble habitat suitability model (HSM) created using five model algorithms (B), and
a final binary HSM representation (C) of the ensemble model for Pastinaca sativa in the
state of Wisconsin.

218 Jorgensen and Renz: Validating invasive plant HSMs

https://doi.org/10.1017/inp.2021.27 Published online by Cambridge University Press

https://doi.org/10.1017/inp.2021.27
https://doi.org/10.1017/inp.2021.27
https://doi.org/10.1017/inp.2021.27


and Japanese barberry (Berberis thunbergiiDC.)predicted≤36% of
Wisconsin suitable. While results suggest some level of generaliza-
tion, with large areas of the state deemed suitable habitat for a given
species, this reduction would still result in substantial decreases in
monitoring efforts for land managers. If a higher level of reduction
is desired, increasing the number of models that agree (we selected
one) could be an approach to further reduce area. However, this
may increase the potential for false negatives and should be used
with caution.

Although referenced as a key component of the modeling
process, field validation is not widely observed in the literature
(Barbet-Massin et al. 2018). Our data corroborate this notion
that useful models must be tested with independently acquired
data, as relying on the evaluation metrics (training and cross-
validation test) from the model development phase does not
correlate with accuracy from newly acquired occurrence data.
With only 8 of the 15 models performing at or above 80% correct
classification rates, we would recommend further development
of the remaining 7 models using the newly collected data as a
means to improve model performance (Crall et al. 2013).
Below this threshold, these models would likely have limited

applicability for land managers employing EDRR management
efforts. End users, however, should set their own expectations
for accuracy requirements. We hope that our results provide
additional momentum in field validating HSMs, as other have
also labeled this as a high priority issue (Sofaer et al. 2019).

Finally, to investigate whether any single metric or set of metrics
was important in describing correct classification of community
scientist observations, an RF analysis was performed to determine
the most important factors driving correct classification (n= 15).
The predictors included each of the five model evaluation metrics
(AUC, TSS) as well as information about the community scientist
data to explore the importance these variables had on predicting
suitable habitat. These variables only explained 14.9% of variability
in the data. The number of community scientist presence data and
the number of total reporters of these new records were the two
most important variables (1.0 and 0.81 scaled importance, respec-
tively), all other variables had scaled importance <0.62. Partial
dependence plots (Figure 2) depict the directionality of these pre-
dictor variables on the response when all other variables are held
constant. For example, new occurrences above 250 and number of
reporters above 19 had a dramatic improvement on correct

Table 4. Species used to test the accuracy of community scientist observations (n= 15) and howmany of the new points (Figure 1; Supplementary Figures 1–14) were
correctly classified as suitable by the habitat models.a

Common name Scientific name % Correctly classified Total points No. of reporters
No. of counties
reported in

% Area of state
suitable

Leafy spurge* Euphorbia esula 97.2 142 22 9 57.1
Wild parsnip* Pastinaca sativa 97.0 365 26 15 62.1
Hedge-parsley spp.* Torilis spp. 96.9 228 16 14 33.7
Spotted knapweed* Centaurea stoebe 95.9 98 22 22 72.8
Bush honeysuckle spp.* Lonicera spp. 92.3 1291 19 30 54.9
Crownvetch* Securigera varia 91.4 151 15 12 36.0
Japanese barberry* Berberis thunbergii 86.4 674 17 20 33.7
Garlic mustard* Alliaria petiolata 83.7 604 33 32 32.7
Canada thistle Cirsium arvense 73.9 329 15 21 57.7
Purple loosestrife Lythrum salicaria 72.9 48 20 17 46.0
Knotweed spp. Reynoutria spp. 68.0 50 27 22 38.4
Common buckthorn Rhamnus cathartica 62.7 465 20 28 58.0
Autumn olive Elaeagnus umbellata 56.4 454 13 19 46.1
Common tansy Tanacetum vulgare 52.5 59 12 16 30.6
Teasel spp. Dipsacus spp. 42.0 50 15 13 10.9

aAn asterisk (*) indicates species performing above an 80% correct classification threshold per a χ2-test (P< 0.05).

Table 3. Number of species models for which each input was within the top three most important variables.a

Variable BRT GLM MARS MAXENT RF Overall Percentage

Clay 2 3 3 1 5 14 13.5
Distance to roads 2 4 2 4 12 11.5
Distance to water 1 2 1 1 2 7 6.7
EVIb 1 1 – – 1 3 2.9
Organic matter – – – – 1 1 1.0
Fall precip. 5 5 6 8 4 28 26.9
Spring precip. 2 6 9 5 2 24 23.1
Summer precip. 13 7 10 11 8 49 47.1
Winter precip. 8 3 6 6 5 28 26.9
Summer Tmax 9 9 8 8 9 43 41.3
Winter Tmin 14 11 14 16 14 69 66.3
Tree cover 6 7 6 5 8 32 30.8
Slope – 1 – – – 1 1.0
Aspect – – – – – 0 0.0

aResults are summarized bymodel algorithm and as a percentage of all models (n= 104). BRT, boosted regression trees; GLM, generalized linear models; MARS,multivariate adaptive regression
splines; MaxEnt, maximum entropy; RF, random forest.
bEVI, enhanced vegetation index.
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classification. As these new data came from across the state of
Wisconsin, we consider the number of reporters of these data as
a proxy for spatial extent but found it surprising that another proxy
for spatial extent (number of counties with reports) was not impor-
tant. Evaluation metrics for models did not have much influence
on the overall result. This agrees with our variability in correct clas-
sification performance at or above our 80% threshold, despite

relatively similar model evaluation metrics, and suggests that
evaluation metrics alone should not be used to assess model per-
formance. Others have suggested that specific model evaluation
metrics are a poor indicator of model performance (AUC [Lobo
et al. 2008]; TSS [Wunderlich et al. 2019]). Additional research
is needed to better understand which metrics are best at predicting
model performance in the field.

Figure 2. Partial dependence plots (PDPs) for the top two most important variables in a random forest model to determine drivers of accurate classification from community
scientist observations of 15 habitat suitability models for individual invasive plant species in Wisconsin. A PDP depicts the marginal impact a single variable has on the result of a
machine learning algorithm when all other variables are held at their mean values. The number of independently collected occurrence records (A) not used to train the original
habitat models was the most important variable, followed closely by the number of reporters (B) of these new occurrence records.
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While robust data sets can help with performance, other factors
are likely influencing success/failure of these model performances.
More explicit descriptions of the distribution of these new occur-
rence data (distance to roads or trails, elevation, etc.; Mair and
Ruete 2016) could offer better insight into the drivers of successful
classification, as spatial bias may occur during the data-collection
phase. Regardless, Crall et al. (2013) and Jarnevich et al. (2018) rec-
ommend overcoming poor field validation performance by using
an iterative approach, whereby models are created and vetted in a
development phase, then passed through a field evaluation test,
and then updated. Our results support the need for this process
when developing HSMs for invasive plants for early detection of
new populations, until acceptable results are achieved. Life history,
habitats invaded, and other species-specific attributes may also
influence results and should be evaluated in the future.

Here we presented 15 ensemble HSMs for a range of invasive
plants in the state of Wisconsin. While climate predictor variables
consistently were most often the most important variable, the spe-
cific variable, directionality, and mixture of other variables differed
among models, suggesting modeling should be done on individual
species, if possible.

Working with community scientists allowed for the develop-
ment of a separate data set to confirm performance of models.
While all but one species performed at or above acceptable ranges
for model evaluation metrics, when community scientist data were
tested, just 53% of models could correctly classify these new data at
>80%. Known issues of transferability to new environments or
environmental conditions (e.g., Latif et. al 2016) or to new loca-
tions entirely (e.g., Lauria et al. 2015) that were not used to train
the models can produce these low-performing models. Therefore,
while not all of our models are ready for deployment in land mon-
itoring/management systems, at least eight exceeded expectations
for detection of new populations. Model evaluation metrics (e.g.,
AUC, TSS) were not a good predictor of accuracy in community
scientist observations. This effort highlights the benefits of devel-
oping a network of community scientists and stakeholders for
HSM efforts. While validation of data submitted and education
are required, the additional information made available across
wide spatial extents broadened the ability for the scientific commu-
nity to create useful models that perform well in the field and
improve interaction between the scientists and the land managers.

Supplementary Material. To view supplementary material for this article,
please visit https://doi.org/10.1017/inp.2021.27
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