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SUMS OF CANTOR SETS YIELDING AN INTERVAL
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Abstract

In this paper we prove that if a Cantor set has ratios of dissection bounded away from zero, then there is a
natural number N, such that its N-fold sum is an interval. Moreover, for each element z of this interval,
we explicitly construct the N elements of C whose sum yields z. We also extend a result of Mendes and
Oliveira showing that when s is irrational Ca + Ca* is an interval if and only ifa/(l— 2a)as/(\ — 2as) > 1.
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1. Introduction

Cantor sets are sets that can be constructed in a similar fashion to the classical middle
third Cantor set, but rather than using the ratio 1 /3 at each step, we allow the removed
intervals to be variable in length and not necessarily centered.

Cantor sets appear in many different settings, and often one is interested in knowing
about the arithmetic sum of two or more Cantor sets. For example, in number theory
N-fold sums of Cantor sets havevrisen in the study of continued fractions as initiated
by Hall (see [6]). In harmonic analysis these sums have been studied by Brown et al.
([4, 3]) to aid with understanding the algebraic structure of the space of measures. In
connection with the study of homoclinic tangencies in dynamical systems, Palis asked
if the difference of two Cantor sets is either of Lebesgue measure zero or contains
an interval [10, page 151]. This is false in full generality (see [2] or [12]) but very
recently Moreira and Yoccoz [8] have shown that it is generically true for dynamically
defined Cantor sets.
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Our primary interest is in understanding when the sum (or difference) of two or
more Cantor sets contains an interval. In [5] this problem is completely solved for
N-fold sums of central Cantor sets Ca with fixed ratio of dissection a, and the solution
implies Palis's conjecture is true for that case.

It appears to be much more difficult to characterize when the sum of two different,
central Cantor sets, or N-fold sums of more general Cantor sets, contain intervals. It
was conjectured in [5] that if the ratios of a Cantor set are bounded away from zero
then a sufficiently large A7-fold sum is an interval. In this paper we prove that this
conjecture is true, and moreover, give a constructive proof of it. The proof of our
conjecture also yields a sufficient condition of when the sum of N Cantor sets contains
an interval.

We also continue the study of Ca + C>, begun by Mendes and Oliveira in [7].
We prove that when s is irrational Ca + Ca, is an interval if and only if the sufficient
thickness condition from Newhouse's gap lemma ([9]) is met, answering an open
problem left in [7]. We provide evidence to support the hypothesis that, in contrast,
this sufficient condition is unnecessary for every rational number s; we reduce this
problem to proving there is no rational solution to a certain equation.

2. Definitions and notation

By a Cantor set we mean a compact, totally disconnected, perfect subset of the real
line. The initial interval of a Cantor set C is the closed interval of minimal length
containing C. The gaps of a Cantor set C are the bounded connected components
of the complement of C. All Cantor sets can be constructed in a similar fashion to
the classical middle third Cantor set. We begin with a compact interval and remove
from it an open interval, leaving two closed intervals of positive length (to avoid
isolated points) called the intervals of step one. The quotient between the length of
these intervals and the initial interval are called the ratios of dissection at step one.
A similar operation is performed on each interval of step one, producing the closed
intervals (of positive length) of step two and the ratios of dissection at step two. This
construction yields a decreasing sequence of closed sets whose intersection is a Cantor
set when the union of the intervals removed is dense in the initial interval. Note that
different constructions can yield the same Cantor set.

A central Cantor set is one in which the ratios of dissection at step k are all the same,
and hence a centred interval is removed from each interval of the previous step. We
will denote by Ca the central Cantor set with fixed ratio of dissection a\ the classical
middle third Cantor set is C1/3.

Let W denote the set of binary words of finite length:

W = { e \ ( J { w i • • • w r : w , e { 0 , 1 } , r e N ) ,

https://doi.org/10.1017/S1446788700009058 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700009058


[3] Sums of Cantor sets 407

where [e] denotes the empty word. If if, w' € W then ww' will denote the concate-
nation of w and w', and the length of word w will be denoted by \w\. Set \e\ = 0 and
let W* denote the set of words of positive length. Given w, either an infinite binary
word or a finite binary word of length at least k, we will denote by w(k) the truncation
Wi---Wk.

It is convenient to use the elements of W to describe the construction of a given
Cantor set C. Let Ie denote the initial (minimal) interval. If w e W, \w\ = k and /„, is
an interval of step it in the construction, then we denote by Iw0 and Iwi the left and right
intervals obtained by removing the open interval from /,„. The ratios of dissection of
the Cantor set can similarly be labelled by W* in the natural way: [rw : \w\ = k] are
the ratios at step k. The initial interval and the ratios of dissection uniquely determine
the construction of C.

For w € W, \w\ = k, set

r , f r U J ( i ) - - - r l o ( t _ i ) ( l - rMk))\Ie\ if wk = 1;
x[w] = <

[0 i fu> t =0 .

The geometrical interpretation is that JC[U;1] is the sum of the length of the left
subinterval and the gap of interval Iw. The interval Iw has £*=i*[u>(/)] as its left
endpoint and has length \lw\ = x[u>l] +x[u;l l] + • • • .

Each c € C can be labelled by the (unique) infinite binary word w which has the
property that c € lm(k) for each truncation w(k) ofw. Since the lengths of the intervals
/„,(*) tend to zero as k —>• oo, c is the limit of the left endpoints of these intervals,
and therefore c = YUti x[w(i)]. Conversely, as C is closed, X ^ i Jctl0(')] e C, and
hence there is a 1-1 correspondence between C and the set of infinite binary words.

3. Cantor sets with bounded ratios of dissection

In this section we will prove that for any positive number a there exists an integer
n such that the sum of n arbitrary Cantor sets with ratios of dissection greater than a
contains an interval. An immediate corollary of this is that if a Cantor set has rates
bounded away from zero, then the sum of enough copies of itself will contain an
interval.

The proof is constructive and provides a method to select for each element z in an
appropriate interval, elements, one from each Cantor set, whose sum is z-

We first need to prove the following rather technical lemma.

LEMMA 3.1. Let C be a Cantor set with initial interval Ie and ratios of dissection
[rw : w € W*}. Suppose there is some 0 < a < 1/3 such that rw > a for all
w e W.
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(i) Ifw, v G Wthen
a

x[wvl] <

(ii) IfweW, then the length of either the left or the right subinterval of Iw is at
least (a/(I — a))x[wl], that is,

PROOF, (i) Note that since a < 1/3 we have a/(\ — a)1 < 1, thus if v = e the
result is clear. \

So assume \w\ = k and \v\ =j > 0. By definition

"~ rwv(k+j)l) \Ie\

_x[wl](
 l ) , .,. ( t+ ( l _ r (k+n)

\ 1 — fuil /

Since all ratios of dissection are at least a, all ratios are also at most I — a, and hence
the result follows directly.

(ii) Because ;t[iul] is the sum of the length of the left subinterval and the gap of
/„,, this is an easy consequence of all ratios being at least a. •

Now we can state and prove the main theorem.

THEOREM 3.2. Suppose C\,... ,Cn are Cantor sets which have constructions with
ratios of dissection all at least a, where 0 < a < 1/3. Ifn € N is such that

• -• «* • > •
(I — a)3 I - a

then C\ + C2 + • • • + Cn contains an interval.
If, in addition, no translate of any one of these Cantor sets is contained in a gap of

another, then C\ + C2 + • • • + Cn = [A, B], where A = min { Yl"=\ c> '• c< e C-} and
{^=1c, : c, e C,\.

PROOF. We will assume, without loss of generality, that the Cantor sets C, have
initial intervals / j " = [0, b,] and ratios of dissection {r̂ 1 : w e W*} with r̂ ° > a for
all i = 1 n and w e W* .

We will prove that the sum Cx + C2 + •• • + Cn contains the interval [0, min, 6,]
by showing that if z € [0, min, 6,], then we can choose n infinite binary words wU),
i = ! , . . . , « , such that
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orequivalently, z = Ci+c2H hcn,forc, = Yl7=\xU)[wU)(k)] € Q. (Fornotational
ease we will simply write x[wU)(k)] for jc^ftt/'^Jfc)] in what follows.)

If z = 0 or z = min fe, this is trivial, take either all w1^ = 0 for all i, or all w^ — 0
for j ^ i and w^ = 1 respectively, where i is the index that yields the minimum
interval.

So assume otherwise. We will inductively construct the words wU), defining one
digit, of one of the sequences, at each step in the process. To begin, choose the index
i such thatx( l )[l] is maximal (that is, the sum of the length of the left subinterval and
the gap of /e

(1) is largest). If x( l ) [ l] > z, then we can only have z = XIc; if c> e A)0'
thus we must define u;',0 = 0. Otherwise, x{i)[l] < z. Then z e J2j 7$>' w h e r e

w<J) = e if j £ i and u>(0 = 1. Thus we will choose to define w[i} - 1. Set y, = 0
or JC(I)[1] respectively. (In either case y\ = xtuij1'].) Clearly, yt 6 C\ + • • • + Cn and

y\ < z.
Now assume that at step m we have chosen the first m, digits of u>('\ for / =

I,... ,n, where 5Z"=i m> = w - Each finite word u;(l)(w,) specifies an interval in step
m, of the construction of C, whose left endpoint is given by Y17U x[wu>(k)]. Assume
ym e C\ + • • • + Cn is the sum of these endpoints,

1=1 k=\

and that zm = z - ym > 0.
If zm = 0 (z = ym), we quit and complete all w(i) with 0's. In this case we clearly

have z = Yl"i=i YlT=i x[wu>(k)] as we desired to show. Otherwise we will construct
ym+). For this we first need to pick the index j = i(m) which determines the word wu>

to be modified. To accomplish this, choose i such that the length of the left subinterval
and gap of I^m{m) is maximal, that is,

jc[u/0(m,-)l] > x[w{J)(mj)l], for j = 1 , . . . , n.

(We interpret w' (0) = e.) Having chosen this index i, we then define
v

(0 (O if x[w<i)(mi)l]>zm\

I 1 otherwise.

In other words, at step m + 1 we modify the sequence corresponding to (one of)

the largest value(s) of ;c[u/0(/n,)l]. If adding the segment Jt[u/0(/n,)l] to ym is still

smaller than z, we increase ym by that amount, and otherwise set ym+] = ym. In

either case, ym+i = ym + x[wU)(mj + 1)] is the sum of the left endpoints of the

intervals /^<!)((ll.+1) and I^)(m.y for j ^ i. This seems a reasonable way to proceed,

at least naively, because if z e £ , (I$,(mj) f| C;), then z € E ; > , /^. ( M j ) + C ( m , + 1 ) -
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(The main content of the proof is in showing that this "reasonable" approach actually
works.)

We should remark that if this process doesn't stop (with ym = z) then all letters
of the infinite binary words wU) are eventually determined because the fact that
x[wU)(n)] —> 0 as n ->• oo ensures that every index / is chosen to be modified
infinitely often.

We will prove that z = J2"=i JlT=i x[wU)(k)], or, equivalently, verify that ym -»• z.
To show this we claim it suffices to prove that at least one of the infinite binary
words wU) has infinitely many 0's. To see why this is sufficient suppose zm > e > 0
for all m (recall that zm = z — ym is a decreasing sequence) and that the letter 0
occurs infinitely often in wu>. If w^ = 0, then by construction this means that
x[w(i)(k - 1)1] > Zm(k) > £ where m(k) is the step on which w^ was defined. But
x[wU)(k)] —• 0 as k -*• oo, which gives a contradiction.

So it only remains to show that there is some index with infinitely many zeroes.
We proceed by contradiction. Assume each of the wU) has only a finite number of
zeroes. Let m = m i H h mn be the step where the last zero was chosen and assume
(without loss of generality) that ti^n) was the last zero.

Note that the sequence [yM] is non-decreasing and bounded above by z, thus

(1) lim yM < z.
M-KX

Since only l's are chosen after step m, we have IimM yM = ym + £ " = 1 |/^'(m }|, and
because zero was chosen at step m we have that ym = ym-t. Hence

7 1 - 1

(2) limy* = ym_, + £ 1/^,1 + lC(m._w|.

But by the second part of Lemma 3.1 this yields directly that

(3) limyM > ym.x + - ^ l^xlw^imj - 1)1] +x[w(n)(mn - 1)1]

Since z < I / , ° ' I for all j , it is clear that

(4) nij > 1 for 1 <j < n.

Thus each index must have been chosen at least once before the final zero at step m.
Hence, if j < n, then w^ was determined in an earlier step than m, and that could
only have occurred if there were integers kj < mn such that

(5) x[w(J)(mj - 1)1] >
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By the first part of the lemma

(6) x[ww(kj)l] > a x[wM(mn - 1)1],
(1 -a)1

thus, considering equations (3), (5) and (6) we have that

limyM > ym-i +x[wM(mn - 1)1] ( h — — (w - 1) 1 .
M \ l - a (l-a)3 J

The choice of n yields limw yM > ym^ + x[w(n)(mn — 1)1]. This leads to a contra-
diction since the fact that w(n)(mn) = 0 means that x[w(n)(mn — 1) 1 ] is strictly bigger
than zm-\ = z - ym-i or, equivalently,

limjM > ym-\ +x[wM(mn — 1)1] > z,
M

which contradicts (1). Thus there must be infinitely many zeroes, and this completes
the proof of the first part of the theorem.

For the second part, z is chosen arbitrarily in [ A, B ]. The same proof can be carried
out, except that we need to justify why we still have (4). We proceed by contradiction:
suppose there exists some index j such that m7 = 0, that is, the index j was never
chosen to be the modified index before the last zero was specified. This means that
iu^' = 1 for all k. Therefore, using (2), we have

z > \imyM > ym_, + |/e
W)| + |/£<„., | •

M

Geometrically this says z is at least ym-\ plus the length of the left subinterval
of I^nimn_i) (recall the word w(n)(mn) ends in 0) and the length of the initial interval
of the Cantor set C,. But again we use the fact that û "> = 0 means that z <
x[w(n)(mn - 1)1] + ym-\. Another way to say this is that z is less than ym_{ plus the
left subinterval and gap of I^\m iy Since (by the additional hypothesis) no translate
of Cj is contained in any gap of Cn it follows that the length of 1^ is at least the length
of the gap of I^\m _,, and this gives a contradiction. Thus each index must have been
chosen at least once before the {jinal zero, so each nij > 1 and this completes the proof
of the theorem. •

The reader may have noticed that for certain Cantor sets the method of proof can
be modified to yield better results. We give two examples below.

COROLLARY 3.3. Suppose Cu ..., Cn are central Cantor sets with initial intervals
/f

(l) and ratios of dissection r^" > a, for i = 1 , . . . , n. If ]£"=i (a,/(l — at)) > 1,
then C\ + • • • + Cn contains an interval.

If, in addition, no translate of any one of these sets C, is contained in a gap of

another then C, + • • • + Cn = / j " + • • • + /p
(n).
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PROOF. The length of the intervals in the construction of a central Cantor set
decrease monotonically with the step of the construction. Thus x(l)[wvl] < xM[wl]
for all 10, v e W and i = 1 , . . . , n. From the lemma we know that the length of both
the left and right subinterval of lffik) is at least (a,-/(l - aj))xin[w(k)l]. The corollary
easily follows by using these two observations in the proof of the theorem instead of
the lemma. •

REMARK. This result is best possible when all C, = C (see [5]).

COROLLARY 3.4. Let Cab denote the Cantor set in [0, 1] with all left ratios of
dissection equal to a and right ratios equal to b. Suppose

(N - l)min{a,b) > 1 - a - b.

Then (N)Cab = [0, N].

PROOF. Without loss of generality we may assume a < b for otherwise we reverse
the roles of left and right endpoints and intervals. We claim that for such Cantor sets
one has Jt[iuul] < jc[tul]. This is certainly clear if v = e or if U| = 0. If, instead,
v, = ••• = vk — 1, then;t[u;i;l] < | / JM(1 - b), while x[wl] = | / J (1 - b). Also,

I I ^
\lw(k)i\ > \Iw(k)o\ - a \Iw(k)\ =w(k)\

1 — b

Using these estimates in place of the lemma we obtain the result. •

REMARK. This estimate is sharper than the one obtained in [5], and Corollary 4.3
below demonstrates that this choice of N is also best possible to get the whole interval.

4. The sum Ca + Cb

In this section we will concentrate on the study of sums of two different central
Cantor sets continuing the investigation began by Mendes and Oliveira in [7].

Here the notion of thickness will play a fundamental role. We define this as in [10]:
Given a gap G of a Cantor set C a bridge B of G is a maximal interval whose boundary
intersects the boundary of G and which contains no point of a gap whose length is at
least the length of G. We refer to (B, G) as a bridge/gap pair. The thickness of the
Cantor set C is defined as

( \B\
T(C) = inf —- : (B, G) a bridge/gap pair

I |G|
The Newhouse gap lemma [9] says that if C\ and C2 are Cantor sets, and the product

of their thicknesses is at least one, then C{ + C2 contains an interval. The proof given
in [10, 4.2] actually shows more, however, namely:
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PROPOSITION 4.1. Let C\ and C2 be Cantor sets such that whenever (Bit G,) is a
bridge/gap pair of C, for i = 1,2 then either |B, | > \G2\ or \B2\ > |G,| . Then
C\ + C2 contains an interval. If moreover, none of the translates of either of the
Cantor sets are contained in a gap of the other, then C\ + C2 is an interval.

Before proving the main theorem of this section, we need first the following simple,
but useful, result which demonstrates a sense in which the bridge/gap condition is
necessary. Denote by K+ the set of positive real numbers.

PROPOSITION 4.2. Suppose CuC2,...,Cnare Cantor sets in R+ and /, = (a,,, ai2)
are intervals such that /, is included in a gap of C, for each i — I,... ,n. Let
a2 = min ai2. lfa2 > Yl"=i ai i tnen Q + • • • + d has gaps. In particular.

is empty.

PROOF. Choose* e ($^"=1 a ; i , a2) and assumex = J^ftj, bt 6 C,. Sincex < ai2

for all i we must have bt < ai2. As bt € C, this implies b{ < an. But then
x < ^2"=l Oj\ which is obviously a contradiction. •

COROLLARY 4.3. If C has gap (a, b) with b - a > (N - \)a then (N)C is not an
interval.

Let us now state and prove our main result of this section.

THEOREM 4.4. Let Ca and Ca, be central Cantor sets, with initial interval [0, 1],
with ratios of dissection a and as respectively, a < 1/2 and s > 1. The following are
equivalent:

(1) (i)Ca + (j)Ca, = [0,i+jl
(2) For every m,n e M at ledst one of the following inequalities holds:

(a) o^-^d - 0' + IK) < iam,
(b) am-\\-(i + \)a)<ja'".

(3) There are no positive integers n, m such that

log((l - (i + \)a)/j) logOVO - 0" + Ofl1))
s—l<ns — m<s l < n s m<

log a log a

REMARK. The case s = 1 was done in [5].
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PROOF. First observe that if Cb is a Cantor set of ratio of dissection b with initial
interval [0, 1], then Cb has gaps of size ^""'(1 — 2b) with corresponding bridges of
length b".

In [5] it was shown that if k satisfies that l/(k + 1) < b < l/k, and q < k, then
(q)Cb is a Cantor set, and for q > k, (q)Cb = [0, q]. For values of q smaller than k it
is easy to verify that (q)Cb has gaps of size b"~{(l — (q + \)b), with bridges of length
qb", for some integer n. Also, the intervals (qb", b"~l(l — b)) are gaps of (q)Cb for
alln.

(1) implies (2). If (i)Ca — [0, i] then a > \/{i + 1), so inequality (b) is satisfied.
A similar argument shows that if (j) Ca. = [0, j ], then (a) is satisfied.

We will now prove the implication for the case when (i)Ca and (j)Ca, are Cantor
sets. If both inequalities (a) and (b) fail for some m, n e N then

(7) as{n-X)(\-as)> iam +jasn

and

(8) am-\\-a)> jasn + iam.

We can apply Proposition 4.2 to the Cantor sets, (i)Ca and (j)Ca,, and their gaps,
(iam, am- ' ( l - a)) and (jans, a("-l)s(l - as)), since assumptions (7) and (8) imply
that the hypothesis of Proposition 4.2 is satisfied. Thus (i)Ca + (j)Ca> has a gap and
this contradicts (1).

(2) implies (1). If (i)Ca and ( / )d« are Cantor sets, then inequalities (a) and (b)
are exactly the conditions imposed on the bridge-gap pairs in Proposition 4.1 for the
Cantor sets (j)Ca, and (i)Ca. Since Ca and Ca- have initial intervals [0, 1], it is easy to
see that the translation condition is also satisfied for (i) Ca and (J) Ca,. So we conclude
that its sum is the interval [0, / +j ].

(2) if and only if (3). This is simple algebra. •

An interesting special case is when s is irrational.

COROLLARY 4.5. Ifs is irrational, then (i)Ca + {j)Ca* = [0, i+j] if and only if

the product of the thicknesses of(i) Ca and (J) Ca, is at least one.

PROOF. We only need to prove necessity when s £ Q since sufficiency is true for
all 5 by Newhouse's lemma. So assume the product of the thicknesses is less than
one. As z{(k)Cb) = kb/(l - (k + l)b), this implies that

, log((l - (i + \)a)/j) log(i/(l - 0 + Da1)) _
L s s — I < = A.

log a log a
When s is not rational the semigroup [ns mod 1 : n e N} is dense in [0, 1] and
consequently there are infinitely many positive integer pairs, n, m, such that ns — m e
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[L, R]. Thus condition (3) of the theorem fails (infinitely often) so that not only is
(i)Ca + (j)Ca- T£ [0, i + j], but in fact there are gaps in the sum accumulating to
zero. •

Another interesting case is when s = q or 1 + \/q for some integer q. In [7]
Mendes and Oliveira prove that if as = 1 — 2a then Ca + Ca, = [0, 2]. Our theorem
can be used to prove the converse.

COROLLARY 4.6. Suppose as = 1 - 2a for some s > 1. Then Ca + Ca> = [0, 2] if
and only ifs=qorl + 1 /q for some positive integer q.

PROOF. Sufficience was proved in [7], but since it follows so easily from our
theorem, we give a new proof here as well as the proof of necessity.

When as = 1 - 2a, condition (3) of the theorem implies that Ca + Ca, = [0,2] if
and only if there are no positive integers n, m such that

(9) — 1 < ns — m <
log a

Note that as a < 1 /2, — log(4a — 1)/ log a < 0. Consequently, if s is an integer,
then there are clearly no integers n, m so that (9) holds, that is, Ca + Ca. = [0, 2]. If,
instead, s = 1 + \/q for some integer q > 1, then the first element of the form ns —m
bigger than — 1 is — 1 + \/q. Hence it is enough to show that

(10) _ l o g ( 4 a - l ) < _ j + _ QT e q u i v a i e n t l y ( 4fl _ i > fl'-i/«.
logo q

The assumptions as = 1 — 2a and s > I imply that a > 1/3, while s = 1 + \/q
implies al~i/q = a2/(I — 2a). It follows after some calculations that 4a — 1 < a'~l/<',
and thus (9) again fails to hold for any integers n,m.

To prove necessity notice first that if as = 1 — 2a for some s > 1, then
r(Ca)r(Ca.) < 1. Corollary 4.5 implies that if Ca + Ca> = [0,2] then s cannot
be irrational. Thus we may assume s = z + p/q, with positive integers z,p,q
satisfying p < q, gcd(p, q) =H and either z > 2 or p > 2.

Let a(s) denote the unique solution to as = 1 — 2a. Clearly a(s) increases (to 1/2)
as s increases, and since s > \ + 2/q,a(s) > a ( l+2 /^ ) . Set/Or) = Ax - 1 — JC1-I/*.

If x > 1/3, then

fix) = 4 - (1 - \/q')x-V<> > 4 - (1 - l/g)(l/3)-1/" > 0,

so / (JC) is an increasing function. It can be seen that/ (a(l +2/q)) > 0, and therefore
f(a(s)) > Oforalls = z+p/<jr, withz > 2orp > 2. Hence 4a(s)-l > (ais))1-1^.
Choosing integers n and m such that ns — m = — 1 + 1 /q we obtain a violation of
condition (9). This completes the proof. D
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In view of Corollary 4.5, it is of interest that there actually exist Cantor sets Ca and
Ca. such that r(Ca)r(Ca.) < 1 and Ca + Ca. = [0, 2]. In fact, we speculate that for
every rational number s, there is a choice of a satisfying r(Ca)r(Ca>) < 1, but having
Ca + Ca, = [0, 2].

We have partial results that support this claim.

PROPOSITION 4.7. Lets = l+p/q, where gcd(p,q) — 1 andp = 1, 2 , . . . , 8, or
let s = n + 1/2, n € N. Then Ca + Ca, = [0, 2] for some a < t where t = t(s) is the
unique solution to r(C,)r(C,.) = 1.

The proof of this proposition relies on a rather technical proposition which is again
a consequence of the theorem.

PROPOSITION 4.8. Suppose s = n + p/q where n, p,q e N and gcd(p, q) = 1.
Let t = t(s) be the unique solution to r(C,)r(C,.) = 1. There is some a < t such that
Ca + Ca, = [0, 2] if and only if there is no integer r with trlq = 1 - 2ts.

PROOF. Both directions of the proof will use the following calculation: If / satisfies
T(C,)T(C, . ) = l,then

_log t log t

First, suppose that there exists r such that tr/q = 1 — If or, equivalently,

r log(l - 2ts)

q log t

As both log( 1 — 2x)/ log x and log( 1 — 2xs)/ log x are increasing functions for* < 1 /2,
when a < t we must have

l o g ( l - 2 a ) l o g ( l - 2 0 , log(l-2f)
s - 1 < s - 1 =

log a log t log /
_ _r_ log(l - 2a1)

q log a

Since gcd(p, q) = 1 there are certainly positive integers n, m such that ns — m =
—r/q. Thus condition (3) of the theorem implies Ca + Ca, ^ [0, 2] .

Assume now that there does not exist any r satisfying the above condition. Choose
the unique integer r such that trl'< < 1 - 2ts < tlr-l)/<l. Then

r l o g ( l - 2 0 , l og ( l -2 r ' ) r - \
< s - 1 = < .

q log/ log/ q
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Choose a < t (but sufficiently close) so that the inequalities still hold, that is,

r l o g ( l - 2 a ) l o g ( l - 2 a s ) r - \
(11) — < - s - 1 < - < .

q log a log a q
Since ns — m is of the form z/q for some integer z, equation (11) ensures we cannot
have

l o g ( l - 2 a ) , log(l-2a')
s — \<ns — m<

log a log a

for any n,m € H, and consequently Ca + Ca> = [0, 2]. •

REMARK. Since (11) is obviously necessary as well as sufficient, the proof shows
that the minimal a such that Ca + Ca, — [0, 2] is the maximum of the solutions to the
equations

r log(l-2jc) , . r - \ l o g ( l - 2 * ' )
— = — s — \ and = .

q log* q log*
We can now prove Proposition 4.7. The proof is straightforward, but rather techni-

cal, so we will only outline its main steps.

PROOF. Since t satisfies the thickness condition and s > 1, we have 1 /3 < t < 1 /2.
Also, t satisfies the equations

(1 - 2r)(l - If) = rv+l and ts = (1 - 2r)/(2 - 3t).

Thus t solves trlq = 1 - If if and only if f~rlq = 2-3t.
By the previous proposition, it is therefore enough to show that this cannot occur

for any of the choices of s above. We leave this verification to the reader. •
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