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Compliant walls made from homogeneous viscoelastic materials may attenuate the
amplification of Tollmien–Schlichting waves (TSWs) in a two-dimensional boundary-
layer flow, but they also amplify travelling-wave flutter (TWF) instabilities at the interface
between the fluid and the solid, which may lead to a premature laminar-to-turbulent
transition. To mitigate the detrimental amplification of TWF, we propose to design
compliant surfaces using phononic structures that aim at avoiding the propagation of
elastic waves in the solid in the frequency range corresponding to the TWF. Thus, stiff
inserts are periodically incorporated into the viscoelastic wall in order to create a band gap
in the frequency spectrum of the purely solid modes. Fluid–structural resolvent analysis
shows that a significant reduction in the amplification peak related to TWF is achieved
while only marginal deterioration in the control of TSWs is observed. This observation
suggests that the control of TSWs is still achieved by the overall compliance of the wall,
while the periodic inserts inhibit the amplification of TWF. Bloch analysis is employed
to discuss the propagation of elastic waves in the phononic surface to deduce design
principles, accounting for the interaction with the flow.

Key words: flow-structure interactions, boundary layer stability, instability control

1. Introduction
The concept of employing compliant walls for passive control of boundary-layer
instabilities has its roots in the mid-twentieth century, with the seminal works by Benjamin
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(1960), Kramer (1961) and Landahl (1962). In this context, the primary objective is to
mitigate the spatial growth of Tollmien–Schlichting waves (TSWs), a linear, convective
instability of the boundary layer that, in low-disturbance environments, brings about the
onset of the laminar-to-turbulent transition (Kachanov 1994). Since the turbulent state is
characterised by a higher friction coefficient, delaying the transition to turbulence would
result in a reduction of the friction drag and, thus, in a potential energy saving. In addition
to passive methods, in recent decades researchers have explored active control strategies
for TSW attenuation, spanning from optimal control (e.g. Sharma et al. 2011; Semeraro
et al. 2013) to wave cancellation (e.g. Sturzebecher & Nitsche 2003; Kotsonis, Shukla &
Pröbsting 2015; Simon et al. 2016). Although effective and relatively robust in delaying
transition, these approaches often suffer from poor overall energy efficiency due to
limitations in actuator technology (Fabbiane, Bagheri & Henningson 2017). Also because
of these limitations, researchers have recently revived interest in passive techniques –
such as compliant walls – that do not require external energy to operate.

When considering the interaction between a boundary-layer flow and a compliant wall,
the flexibility of the latter plays a pivotal role in the attenuation of TSWs, where increased
compliance leads to a larger stabilisation of the fluid instability (Carpenter & Garrad 1985;
Yeo 1988). However, the compliance of the wall introduces additional instabilities due to
fluid–structure interaction between the boundary layer and the compliant wall (Benjamin
1963; Carpenter & Garrad 1986). Historically, these instabilities have been categorised
following the three-fold classification introduced by Benjamin (1960) and later illustrated
from an energy transfer standpoint by Benjamin (1963). The stability characteristics of
the first two groups depend on the non-conservative energy transfer between and within
the fluid flow and the compliant solid; the third group, instead, relates to conservative
energy exchanges between the two phases. The first type collects instabilities already
present in the flow and modified by the interaction with the compliant wall, such as TSWs,
as well as static divergence. The development of these instabilities requires a negative
variation of the total energy of the fluid–structural system and, as such, dissipation in
the compliant wall will result in their destabilisation (Yeo & Dowling 1987). The second
type groups instabilities, comprising travelling-wave flutter (TWF), linked to a positive
variation of the total energy of the fluid–structural system and, by consequence, stabilised
by the dissipative behaviour of the solid phase. The third, and last, type of instabilities
(akin to the inviscid Kelvin–Helmholtz instability; Gad-el Hak 1996) is a consequence
of unidirectional conservative energy exchanges to the solid and can be avoided by
reducing the flexibility of the wall. Among these, TWF can be very insidious in transition-
delay applications, as it can lead to a premature laminar-to-turbulent transition in real
experimental scenarios (Lucey & Carpenter 1995). Structural viscosity, achievable through
the use of viscoelastic materials, has been shown to mitigate TWF but at the expense of
a compromised TSW attenuation (Carpenter & Garrad 1986). A comprehensive review of
the progress in the field up to the end of the twentieth century is provided by Carpenter,
Lucey & Davies (2001). More recent investigations (Tsigklifis & Lucey 2017; Pfister,
Fabbiane & Marquet 2022) have confirmed the role of structural compliance and viscosity
in both TSWs and TWF, adopting a novel approach that emphasises forced responses
over traditional modal stability analysis. Notably, these new numerical tools, as developed
by Pfister, Marquet & Carini (2019) and applied by Pfister et al. (2022), now facilitate the
global stability analysis of the coupled fluid–structural problem. These advancements offer
two significant advantages: they allow one to take into account the non-parallel nature of
the boundary-layer flow, providing a more realistic representation; and they open the way
for exploring more complex configurations of the solid phase, such as compliant surfaces
made by microstructured compliant layers.
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The study of microstructured (visco)elastic media has been the focus of very intense
research in past decades for various applications spanning from electromagnetism to
acoustics, under the name metamaterials. These metamaterials are periodic arrangements
of materials that allow the control of the behaviour of waves (acoustic, elastic or
electromagnetic) in a desirable and usually surprising way, in a sense impossible to
obtain with a homogeneous material. Particularly striking realisations of metamaterials
are invisibility cloaks (Schurig et al. 2006; Ni et al. 2015) or negative refractive index
materials (Smith, Pendry & Wiltshire 2004; Dolling et al. 2006; Brunet, Leng & Mondain-
Monval 2013), allowing one to bend light or sound waves (Smith et al. 2004; Pendry,
Luo & Zhao 2015; Colombi et al. 2016) and render details finer than the used wavelength
of light (Pendry & Smith 2006). In terms of modelling, metamaterials are studied using
Floquet–Bloch analysis, by which the entire structure can be understood on the basis
of calculus performed on the periodicity cell (Collet et al. 2011). One of the features
often observed and desired in metamaterials is the appearance of band gaps, that is to
say, frequency intervals at which waves cannot propagate, and rather localise in the form
of evanescent waves. This is the phenomenological feature that motivates the use of a
metamaterial as a compliant surface at the boundary of a flow.

Metamaterials have already found their way to flow control, with a growing number of
examples of their potential applications in the literature. Recent studies have proposed the
use of metamaterials in a diverse range of flow control scenarios, including the mitigation
of flow-induced vibrations (Piest, Druetta & Krushynska 2024) and the reduction of
shock-induced vibrations (Navarro et al. 2025). In the last few years, the attenuation of
TSWs has also garnered attention within the metamaterials community. In particular, the
research on this topic has focused on the use of a specific type of metamaterial structure,
phononic subsurfaces, as firstly proposed by Hussein et al. (2015) in a channel flow. In
that study, a periodic stacking of layers of different materials is used to create a phononic
crystal (Hussein, Leamy & Ruzzene 2014). One end of the resulting one-dimensional
crystal is then made to locally interact with the flow perturbation at the wall, in order to
attenuate the incoming TSWs by means of an anti-resonant interaction with the structure.
This leads to a configuration in which the phonon develops below the surface along the
wall-normal direction, leading to the designation phononic subsurface (Hussein et al.
2015). A key advantage of this set-up is the avoidance of TWF issues, achieved through
the localised interaction between the phononic subsurface and the fluid. Nevertheless, a
significant challenge lies in the size of the employed phononic crystal, which may not
be suitable for aeronautical applications; however, recent research has made progress
in overcoming this limitation using compact local-resonating phononic metamaterials
that maintain performance (Kianfar & Hussein 2023). Unfortunately, a further potential
drawback of this layout is the possible (re-)amplification of the TSW downstream the
interaction point, which could invalidate the intended control effect (Michelis, Putranto &
Kotsonis 2023).

The current study aims to integrate the recent introduction of phononic subsurfaces in
flow control with the more consolidated research on compliant walls for TSW attenuation.
We therefore propose a different strategy, where the wall compliance is used to attenuate
TSWs and the wave-blocking properties of phononic metamaterials to mitigate the
undesired TWF. As a starting point, we consider the conventional configuration proposed
by Pfister et al. (2022), with a finite-length, homogeneous, compliant patch installed at the
wall interacting with a zero-pressure-gradient boundary-layer flow (figure 1). However,
our approach employs a phononic structure, created by incorporating stiff elements into a
homogeneous viscoelastic matrix (figure 1b), differing from the conventional compliant
surface in figure 1(a). Therefore, the wave-blocking capabilities along the periodic
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Figure 1. Wall-mounted compliant wall (orange) in a zero-pressure-gradient boundary-layer flow in water
(blue). The origin of the frame of reference is positioned at the wall at the beginning of the computational
domain: x and y indicate, respectively, the streamwise and wall-normal coordinates. The leading edge of
the plate (i.e. the origin of the boundary layer) is positioned at x ≈ −47.7 cm, for a uniform free-stream
velocity U∞

f = 10 m s−1. The resulting Reynolds number based on the displacement thickness at the inflow
(δ∗

0 ) is Reδ∗
0
= 3000. (a) The conventional set-up from Pfister et al. (2022) with a compliant structure made

by a homogeneous viscoelastic material. (b) The phononic compliant surface obtained by introducing stiffer
inclusions (in red) within the homogeneous matrix and the subject of the current study.

direction are used to prevent wave propagation in the solid phase that contributes to TWF
onset. This approach exploits a more direct utilisation of the phononic surface’s unique
dynamics and introduces a distinct fluid–solid interaction paradigm, where the phonon
couples with the fluid along the wave-propagation direction within the solid. Notably, this
difference is underscored by our layout, where the phononic surface aligns with the wall,
contrasting with the wall-normal orientation that can be found in the current literature
(Hussein et al. 2015; Kianfar & Hussein 2023; Michelis et al. 2023).

The rest of the article is structured as follows. Section 2 introduces the phononic
compliant surface and compares it with the conventional one from Pfister et al.
(2022), through global stability and resolvent analyses. Section 3 discusses the design
principles underlying the phononic surface, utilising Bloch analysis as a primary design
methodology, which is validated through comparison with global stability analysis.
Concluding remarks and perspectives are presented in § 4. Additional technical details
regarding the governing equations and numerical methods employed in the fluid–structural
analysis can be found in Appendix A.

2. A phononic compliant surface to attenuate boundary-layer flow instabilities
We consider the configuration illustrated in figure 1 for the numerical investigation of
the passive control of the laminar-to-turbulent transition with compliant surfaces in a
zero-pressure boundary-layer flow. A water flow of density ρf = 1000 kg m−3, viscosity
μf = 1.569 mPa s and uniform velocity U∞

f = 10 m s−1 encounters the leading edge of
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a flat plate where a boundary layer starts to develop. According to Blasius boundary-
layer theory (Schlichting & Gersten 2016), its displacement thickness increases as
δ∗(d) = 1.72 (νf d/U∞

f )1/2, where νf = μf /ρf is the kinematic viscosity of the fluid
and d is the distance from the leading edge. The displacement thickness is equal to
δ∗

0 = 0.471 mm at a distance of 1014 δ∗
0 = 47.7 cm, where the centre of our coordinate

system (x, y) is located, as reported in figure 1. This location corresponds to the inlet
boundary of the computational domain for the flow, which is then characterised by the
non-dimensional Reynolds number Reδ∗

0
= U∞

f δ∗
0/νf = 3000. For that Reynolds number,

TSWs are expected to grow in the zero-pressure-gradient boundary layer for frequencies
within the range 80 Hz ≤ f ≤ 300 Hz and wavelengths 9 mm ≤ λx ≤ 30 mm (Schmid &
Henningson 2001). To capture those flow instabilities, the computational domain in the
fluid side (delimited with dashed blue lines in the figure) extends up to y = 14.1 mm in the
wall-normal direction and x = 84.7 mm in the streamwise direction.

2.1. Conventional and phononic compliant surfaces
To attenuate the amplification of these TSWs in the boundary-layer flow, a compliant
structure of fixed length (l = 47.1 mm) and depth (h = 2.35 mm) is flush-mounted at the
wall starting at a distance x = 11.8 mm from the inlet of the computation domain, i.e.
the origin of our coordinate system. Length, depth and location of the compliant walls
are chosen to match to those employed by Pfister et al. (2022) and they correspond to
100δ∗

0 , 5δ∗
0 and 25δ∗

0 , respectively. Two different structures – schematically illustrated in
figure 1 – are then considered to delay the laminar-to-turbulent transition: a conventional
compliant surface (figure 1a) obtained by considering a structure made of a homogeneous
soft material and a phononic compliant surface (figure 1b) obtained by periodically placed,
stiffer inclusions in the soft material.

The conventional compliant surface, illustrated in figure 1(a), is obtained here by using
a soft elastomer (Ashby 1999). More specifically, the density of this soft elastomer is
chosen as ρs = 1000 kg m−3, i.e. equal to the density of water ρf . Its elastic and viscous
properties are defined through the Young’s modulus Es = 0.1 MPa and the material
viscosity Ds = 0.94 Pa s, respectively. Additionally, elastomers are usually modelled as
incompressible materials and, thus, a Poisson coefficient νs = 0.5 is considered. This
specific choice corresponds to that proposed by Pfister et al. (2022). In particular, their
work showed numerically that the flexibility of the compliant surface allows one to
attenuate the amplification of TSWs occurring at low frequency of around f ∼ 200 Hz,
with a streamwise wavelength λT SW ≈ 30δ∗

0 = 14.1 mm; this resulted in a ratio between
the length of the compliant wall (l) and the TSW wavelength (λT SW ) of about 3.
Meanwhile, the viscosity of the compliant surface prevents the destabilisation of natural
vibration modes of the structure by the flow at higher frequencies f ∼ 1300 Hz. Still, the
structural viscosity is not large enough to avoid the amplification of the so-called TWF
instabilities by an external forcing in the flow. These TWF instabilities propagate in the
streamwise direction in the vicinity of the fluid–solid interface and are characterised by a
streamwise wavelength λx ∼ 4.7 mm, for the current choice of dimensional parameters.

The phononic compliant surface, illustrated in figure 1(b), is here introduced to
specifically attenuate the amplification of TWF instabilities. The term phononic refers
to metamaterials or structures that possess an inherent periodicity in their internal
geometry (Hussein et al. 2014). This periodicity, when properly tuned, imparts unique
dynamical properties, such as blocking the propagation of waves in specific directions
and frequency ranges. In the case of TWF instabilities, we exploit the wave-blocking
properties of phononic materials to prevent the streamwise propagation of solid waves

1020 A47-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
65

5 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10655


N. Fabbiane, O. Marquet, L. Pierpaoli, R. Cottereau and M. Couliou

in the phononic compliant surface. Thus, we aim at breaking the unstable interaction
between natural vibration modes of the surface and flow perturbations. To that aim,
we add circular inclusions (red circles) made of a stiffer material (EI = 1 MPa) into
a homogeneous matrix (orange) made from the same material (Es = 0.1 MPa) as that
used for the conventional homogeneous compliant surface. The two materials (matrix
and inclusions) share the same density (ρI = 1000 kg m−3); note that the stiffer material
corresponds to common elastomers such as natural rubber or polydimethylsiloxane. These
circular inclusions have a diameter dI = 0.94 mm and they are periodically placed in
the streamwise direction with a constant spacing of lI = 2.35 mm, so as to achieve the
band-gap properties of the phononic surface for TWF of wavelength λx = 4.7 mm. The
details of the design process that led to the considered spacing of the circular inclusions
are addressed in § 3. The phononic compliant surface is finally made of 20 inclusions
that are periodically arranged in the same direction as the flow. This is different from
the phononic surface first proposed by Hussein et al. (2015) and later by Michelis et al.
(2023) who introduced a periodic arrangement of material in the wall-normal direction
to attenuate TSWs. With our phononic compliant surface, the natural compliance of the
matrix materials should still be exploited to attenuate those waves, as in the case of the
conventional compliant surface.

2.2. Linear fluid–structure perturbations: global stability and resolvent analyses
The interaction of these compliant surfaces with flow perturbations developing in
the boundary layer are investigated numerically based on the framework detailed in
Appendix A. It was first developed by Pfister et al. (2019) for the study of vortex-
induced vibrations of a thin plate and later applied to the control of boundary-layer flow
instabilities with a conventional homogeneous compliant surface (Pfister et al. 2022).
Similar theoretical and numerical tools have also been used in the literature for the study
of the dynamics of gas bubbles in straining flows (Sierra-Ausin et al. 2022). The equations
governing the interaction between an incompressible flow and a hyperelastic structure
are written in the arbitrary Lagrangian–Eulerian (ALE) framework. To investigate the
linear dynamics of flow perturbations interacting with solid perturbations, these equations
are linearised around steady solutions of the coupled fluid–structural equations. In the
present case, the static deformation Ξ s(x) of both compliant surfaces induced by the
zero-pressure-gradient boundary-layer flow remains small with respect to the boundary-
layer thickness (|Ξ s | < 10−3 δ∗

0), thus confirming the assumption made in Pfister et al.
(2022) of an non-deformed compliant wall. The linear dynamics of coupled fluid–structure
perturbations is then investigated based on (i) global stability analysis to determine the
onset of self-sustained fluid–structure oscillations and (ii) resolvent analysis to investigate
the amplification of flow perturbations sustained by an external forcing, in the case of
globally stable steady solution.

The equations governing infinitesimal flow perturbations q′
f and solid perturbations q′

s
of the steady flow state Q f may be written as the coupled linear equations[

Bf 0
0 Bs

]
∂

∂t

[
q ′

f

q ′
s

]
−
[

Af ( Q f ) Cfs

Csf As

] [
q ′

f

q ′
s

]
=
[

P f

0

]
f ′, (2.1)

where the first line corresponds to the linearised ALE incompressible Navier–Stokes
equations while the second line corresponds to the linear viscoelastic equations (Kelvin–
Voigt model). The exact definitions of the operators are detailed in Appendix A. The
right-hand side forcing term f ′ corresponds to an external forcing in the momentum flow
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equations that is introduced for the resolvent analysis but is dropped in the global stability
analysis.

In the global stability analysis, the long-term temporal amplification or decay of linear
fluid–structural perturbations is investigated by assuming an exponential temporal growth
of perturbations as[

q ′
f (x, t)

q ′
s(x, t)

]
=
[

q̃ f (x)

q̃s(x)

]
e(γ+iω) t +

[
q̃∗

f (x)

q̃∗
s (x)

]
e(γ−iω) t

︸ ︷︷ ︸
complex conjugate (c.c.)

, (2.2)

where ω (γ ) is the frequency (growth rate) associated with the complex spatial structures
denoted q̃ f in the flow and q̃s in the solid. In the following, terms like the under-
braced expression will be abbreviated as ‘c.c.’, indicating that they represent the complex
conjugate of their preceding term. Injecting the above decomposition into (2.1) yields the
following coupled fluid–structural eigenvalue problem:

(γ + iω)

[
Bf 0
0 Bs

] [
q̃ f

q̃s

]
−
[

Af ( Q f ) Cfs

Csf As

] [
q̃ f

q̃s

]
=
[

0
0

]
. (2.3)

In the resolvent analysis, we investigate the linear response of the fluid and solid
perturbations to external forcing, that is here restricted to the momentum flow equations.
The forcing and response may be decomposed into temporal harmonics as

f ′(x, t) = f̂ (x) eiωt + c.c. and
[

q ′
f (x, t)

q ′
s(x, t)

]
=
[

q̂ f (x)

q̂s(x)

]
eiωt + c.c., (2.4)

where the forcing frequency, also denoted ω, is now a parameter, while f̂ , q̂ f and q̂s
are spatial structures. The latter are related by the following input–output relation that is
obtained after injecting the above harmonic decomposition into (2.1):[

q̂ f

q̂s

]
= Rfs(ω) P f̂ , where Rfs(ω) =

(
iω
[

Bf 0
0 Bs

]
−
[

Af ( Q f ) Cfs

Csf As

] )−1

(2.5)
is the aeroelastic resolvent operator and P = [P f , 0]T is a prolongation operator allowing
one to impose the forcing solely on the fluid momentum equations. The resolvent analysis
(Sipp & Marquet 2013) consists here of identifying, for each forcing frequency ω = 2π f ,
the spatial structure f̂ of the forcing that provides the largest energy amplification σ 2 of
the flow velocity perturbation ûf , a component of q̂ f . The energy gain is defined as

σ 2(ω) = max
f̂

(
‖ûf ‖2

‖ f̂ ‖2

)
with ‖ûf ‖2 =

∫
Ωf

û∗
f · ûf dΩ = q̂∗

f Mu q̂ f ,

‖ f̂ ‖2 =
∫

Ω̂f

f̂
∗ · f̂ dΩ = f̂

∗
Mf f̂ . (2.6)

Here ‖ f̂ ‖2 is the norm of the forcing field and ‖ûf ‖2 is the norm of the harmonic fluid
velocity perturbation ûf . In order to limit the influence of the outflow boundary condition
on the amplification factor σ , the fluid domain Ω̂f utilised for computing the two norms
is truncated at x = 70.6 mm. As shown by Brandt et al. (2011), the optimal flow forcing
and response can be determined by computing the largest eigenvalue σ 2 of the Hermitian
eigenvalue problem
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PT RH
fs (ω) Mu Rfs(ω) P f̂ = σ 2 Mf f̂ . (2.7)

In the following, we solve numerically the here-presented problems using a first-order
(pressure) and second-order (fluid velocity and solid displacement) continuous-Galerkin
finite-element method through the DOLFINx library (Baratta et al. 2023). The resulting
eigenvalue problems are solved with SLEPc’s Krylov–Schur algorithm (Roman et al.
2023).

2.3. Results
Let us first examine the effect of the conventional compliant surface, made with a
homogeneous viscoelastic material as illustrated in figure 1(a), on the amplification of
perturbations in the boundary-layer flow. Figure 2(a) displays the optimal amplifications
σ , as a function of the frequency f = ω/2π , of forced harmonic flow perturbations
developing in the boundary layer over the rigid surface (blue dotted curve) and the
conventional homogeneous compliant surface (black dashed curve). The amplification of
TSWs corresponds to the peak observed at low frequency f ≈ 210 Hz. Maximal for the
rigid surface, the magnitude of this peak is clearly reduced when using the conventional
compliant surface. This result, introduced in Pfister et al. (2022), shows the potential
of compliant surfaces for delaying the laminar-to-turbulent transition of boundary layers
induced by TSWs.

However, for the conventional compliant wall, that effect may be undermined by
the appearance of a second peak around the higher frequency f = 1350 Hz. This
amplification of flow perturbation at higher frequency is associated with a flow-induced
surface instability first identified by Benjamin (1960). Later termed the TWF instability
(Carpenter & Garrad 1985; Tsigklifis & Lucey 2017), it involves perturbations in both fluid
and solid phases that manifest as travelling waves localised near the fluid–solid interface.
As shown in figure 2(c), these waves, characterised by a (dimensional) wavelength
lT W F ≈ 4.5 mm, propagate along the boundary layer while undergoing amplification.
The observed energy amplification of the flow response to external flow forcing at high
frequencies can be interpreted as a modal resonance. The eigenvalues of the coupled
fluid–structural problem, that describe the self-sustained dynamics (i.e. without external
forcing) of the boundary-layer flow perturbations interacting with the conventional
compliant surface, are shown in figure 2(b) (black crosses). The eigenvalue branch near
the frequency f = 1350 Hz corresponds to structural vibration modes coupled with the
fluid. As shown by Pfister et al. (2022), this branch becomes unstable (with positive
growth rates) when the compliant surface is made of a purely elastic material. In contrast,
when a viscoelastic material is used, as in the present configuration, the same branch
remains stable (with negative growth rates). This means that, without an external forcing,
small perturbations of the coupled system will eventually decay in time because of the
effect of the material viscosity. Although structural damping due to material viscosity
stabilises these eigenmodes, a resonance still arises in the forced response of the flow.
This is reflected in the pronounced peak centred around f = 1350 Hz in the dashed
curve of figure 2(a). Designing compliant surfaces with more viscous materials may
further stabilise this eigenvalue branch and thereby reduce the amplification of externally
forced flow perturbations. However, an increase of the structural damping would lead to
a destabilisation of the TSW (Yeo & Dowling 1987). Therefore, we propose to leverage
the dynamical properties of phononic surfaces to mitigate the amplification of the TWF
instability at high frequency, while preserving the favourable influence of compliant
surfaces on low-frequency TSW instability.
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Figure 2. Global, coupled, linear stability analyses of the conventional and phononic compliant surfaces in
figure 1 interacting with a laminar boundary-layer flow. The optimal, harmonic, forced response (a) and
eigenvalue analysis (b) are reported for the conventional compliant surface (black dashed line and crosses) and
the phononic one (red solid line and white-filled, red circles). The blue dotted line in (a) indicates the response
over a rigid wall. The spatial structure of the response of the fluid–structural system at the TWF amplification
peak ( f ≈ 1350 Hz) is reported for both the conventional (c) and phononic (d) compliant surfaces. The colour
indicates the real part of the vertical velocity in the fluid (blue) and solid (orange) phases, while the black
vectors the real part of the surface displacement at the interface. The red shaded area in (a,b) indicates the
identified band gap of the phononic surface (1241 Hz ≤ f ≤ 1439 Hz), encompassing the two truncation modes
(see figure 3).

The open red circles in figure 2(b) display the fluid–solid eigenvalue spectrum obtained
with the phononic compliant surface. The bump in the growth rate previously observed
along the branch of fluid–solid modes for the conventional compliant surface (black
crosses in figure 2b) is no longer present. Instead, a gap appears in the eigenvalue
branch between 1241 and 1439 Hz, as highlighted by the red shaded region (see § 3 for
definition and further details). Within this frequency range, only two isolated eigenmodes
are found at f = 1343 Hz and f = 1347 Hz, both having near-identical eigenvalues. Their
spatial structures, shown in figure 3, reveal high amplitudes localised at the upstream and
downstream edges of the compliant surface. The modes result from truncation resonance
(Rosa et al. 2023), a phenomenon inherent to finite-sized phononic materials, which is
further discussed in a later section (see § 3.3). The band gap in the eigenvalue spectrum
is centred (by design, see § 3) precisely around the frequency at which TWF instabilities
are strongly amplified in the case of the conventional compliant surface. This effect arises
from a key property of phononic materials: their ability to inhibit the propagation of waves
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Figure 3. Truncation eigenmodes from the coupled fluid–structural interaction of the phononic compliant
surface with the boundary-layer flow (see figure 2b). The colour reports the real part of the vertical velocity in
the fluid (blue) and solid (orange) phases; the black vectors indicate the real part of the surface displacement at
the interface. The reported modes occur at f = 1343 Hz (a) and f = 1347 Hz (b).

with specific wavelengths, thereby suppressing the emergence of natural vibration modes
at targeted frequencies.

We now examine the impact of this band gap on the amplification of flow perturbations
over the phononic compliant surface when excited by an external harmonic forcing.
The red solid curve in figure 2(a) presents the optimal amplification σ in the presence
of the phononic compliant surface. The prominent peak observed near f = 1350 Hz
in figure 2(a) has entirely vanished, while the attenuation of Tollmien–Schlichting
instabilities is preserved at lower frequency ( f ≈ 210 Hz). Figure 2(d) shows the spatial
structure of the fluid and solid perturbations in response to optimal external flow forcing
at that frequency. A spatially growing surface wave characterised by a distinct wavelength
of approximately lT W F ≈ 4.5 mm is still observed but with a magnitude strongly reduced
compared with the case of the conventional compliant surface (figure 2c). One should note
that the observed wavelength is approximately twice the spacing lI between the periodic
inserts that constitute the phononic surface (grey lines in figure 2d). This correspondence
can be attributed to the relationship in phononic media between the frequency intervals
of band-gap appearances and the wavelength of the blocked solid wave, which in turn
is linked to its intrinsic periodicity (Hussein et al. 2014). These results demonstrate that
the proposed phononic compliant surface, specifically designed to introduce a band gap
in the eigenvalue spectrum at the frequency of TWF instability, effectively suppresses its
amplification. Crucially, this is achieved without compromising the compliant nature of the
surface, and therefore retain its beneficial influence on the control of low-frequency TSWs.

It is then of interest to evaluate the performance of the phononic compliant surface
not only on the attenuation of TWF, but also of TSWs. Figure 4(a) reports the response
of the coupled system over the phononic surface for the optimal response at the TSW
amplification peak ( f = 210 Hz, as identified in figure 2a); the blue colours indicate the
streamwise component of the velocity perturbation in the fluid, while the orange the
vertical component in the solid. It is observed that the TSW interacts with the compliant
wall over more than three wavelengths and the solid responds to the perturbation in a
similar manner. According to the analyses by Pfister et al. (2019), the response of the
compliant wall induces a counter-phase TSW, which results in an attenuation of the
perturbation in the fluid. This is reflected in the attenuation of the amplification factor
σ (reported in figure 2a), which indicates that the integrated magnitude of the velocity
perturbation field in the fluid domain is reduced and, therefore, a global attenuation of
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Figure 4. Spatial attenuation of TSWs. (a) The perturbation fields over the phononic surface for the optimal,
harmonic, forced response at the amplification peak of TSWs, f = 210 Hz in figure 2. The colour shows the
streamwise component of the perturbation velocity in the fluid (u′

f,x , in blue) and the vertical component of the
solid velocity (ξ̇ ′

s,y , in orange). The magnitude of the streamwise velocity perturbation field at (b) x = 35 mm
and (c) x = 66 mm. The dotted, dashed and solid curves indicate, respectively, the rigid, conventional compliant
and phononic compliant surfaces. (d) The integrated amplitude of the velocity perturbation in the fluid phase;
the grey area indicates the streamwise extent of both the conventional and the phononic compliant walls.

TSWs is observed. Nevertheless, this quantity does not provide any information on spatial
amplification. To better characterise this aspect, the streamwise component of the velocity
perturbation in the fluid is extracted, for the responses at f = 210 Hz, at two different
streamwise locations: in the middle of the compliant walls at x = 35 mm (figure 4b)
and downstream of them at x = 66 mm (figure 4c). In accordance with Pfister et al.
(2022), at both locations the TSW presents with a reduced amplitude with respect to
the rigid-wall case (blue dotted line) when a compliant wall is considered (black dashed
line, conventional; dashed red line, phononic). Notably, the TSW over the compliant
walls presents with its typical modal shape, as over the rigid wall. To complete the
analysis, figure 4(d) illustrates the streamwise development of the velocity perturbation
energy, integrated along the wall-normal direction. For context, the blue dotted line
represents the spatial growth of TSW over a rigid wall, which, in accordance with
conventional stability theory, exhibits exponential-like behaviour along the streamwise
direction (Schmid & Henningson 2001). In contrast, the dashed and solid lines denote
the responses for the conventional compliant wall and the phononic surface, respectively.
Notably, both compliant surfaces demonstrate comparable attenuation of TSW growth
within the compliant wall’s extent (grey region), relative to the rigid-wall scenario.
This reduced amplitude persists downstream of the patch location, indicating that TSWs
interacting with either the conventional or the phononic compliant surface will exhibit
delayed breakdown to turbulence, compared with those interacting with a rigid wall. We
note that a localised increase in amplitude is present at the trailing edge of the compliant
surfaces, specifically at x ≈ 59 mm. This phenomenon bears resemblance to observations
in studies focused on controlling TSWs through localised flow interaction with a phononic
subsurface (Michelis et al. 2023). In those contexts, such localised amplification limits the
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effective implementation of the proposed flow control principle. Recent developments,
exploring combined streamwise and spanwise patterns of localised phononic subsurfaces,
suggest potential strategies for mitigating this issue (Hussein et al. 2025). Nonetheless,
in the current configuration featuring a streamwise-extended phononic surface, despite a
slight reduction in overall performance, this aspect does not pose a significant limitation
to utilising compliant walls for TSW attenuation. While TSW attenuation is common to
the two investigated compliant surfaces, conventional and phononic, the phononic one
avoids the TWF amplification characteristic of its conventional counterpart. Given that
TWF can trigger premature laminar-to-turbulent transition (Lucey & Carpenter 1995), a
genuine transition delay is only achievable with the employment of the phononic compliant
surface.

In the following section, we recall and discuss in further detail the principles that led to
the design of the phononic surface, namely the relation between the periodic structure of
the phononic surface and its dynamical properties by means of Bloch analysis.

3. Design of the phononic surface based on Bloch analysis
Having demonstrated that our finite-sized phononic compliant surface effectively
suppresses the amplification of TWF instabilities – while preserving the attenuation
of low-frequency TSWs – we now provide a more detailed description of its design
principles. As previously discussed, this design leverages the wave-blocking properties
of phononic metamaterials to inhibit the propagation of solid waves. More specifically, by
preventing wave propagation in the streamwise direction at the frequencies where TWF
instabilities typically develop and amplify, the goal is to disrupt the modal resonance
mechanism responsible for their strong amplification, and thus to effectively suppress these
instabilities. Our phononic compliant surface builds upon the conventional homogeneous
compliant surface introduced by Pfister et al. (2022), which consists of a homogeneous
viscoelastic material. The elastic and viscous properties of this material were specifically
chosen to attenuate both low-frequency TSWs and high-frequency TWF instabilities. To
introduce streamwise periodicity into this viscoelastic matrix, we embed circular scatterers
made of a stiffer material, as previously illustrated in figure 1(b). While this particular
geometric arrangement is somewhat arbitrary, its key advantage lies in preserving the
overall compliance of the fluid–solid interface, thereby maintaining the beneficial damping
effect on TSWs. Once the geometry of the inclusions is fixed, the design problem reduces
to specifying the spacing lI between inclusions and their stiffness, characterised by the
Young’s modulus EI of the inclusion material. It is therefore crucial to establish a
relationship between these design parameters and the wave-blocking properties of the
resulting phononic metamaterial. To this end, we employ Bloch analysis, which relies on
the assumption of an infinitely extended structure along the periodicity direction. This
simplification reduces the wave propagation problem to the study of a single unit cell,
thereby significantly lowering the computational cost and making the method particularly
suitable for design and optimisation.

In the following, our objective is to gain physical insight into the mechanisms
underlying the wave-blocking behaviour of the phononic surface. We start by introducing
the theoretical formalism for the Bloch analysis of the phononic surface (§ 3.1).
Subsequently, the results from the analysis are presented in § 3.2, with a particular focus
on the sensitivity of the band gap to variations in the design parameters, which informs
the identification of the proposed configuration (§ 3.2.3). Finally, we compare the wave
dynamics between infinite and finite phononic surfaces to evaluate the robustness of the
design in practical implementations (§ 3.3).
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Figure 5. Infinite, periodic, phononic surface. The periodic cell (b) – clamped at the bottom and free at the
top – with span lI is periodically and infinitely replicated along the x direction (a).

3.1. Bloch analyses of the phononic compliant surface
We here consider two different scenarios for the Bloch analysis of the phononic compliant
surface. The first involves only the periodic elastic medium, isolated from the fluid domain
and subject to a stress-free boundary condition (§ 3.1.1). The second incorporates the
interaction with the fluid, but it considers as a base state a fluid with no flow, i.e. at rest
(§ 3.1.2). The Bloch analysis of the coupled interaction problem between the fluid flow
and the phononic surface presents substantial theoretical and numerical challenges, and is
therefore left for future investigation.

3.1.1. Bloch analysis without fluid interaction
We first investigate the dynamical properties of the ideal viscoelastic structure displayed
in figure 5. As illustrated in figure 5(a), this structure is infinitely long in the x direction
and clamped at the bottom boundary. It is obtained by periodically repeating in the x
direction the unit cell displayed in figure 5(b). The height of this unit cell is fixed to
h = 2.35 mm while its length lI will be varied. This unit cell is made from two different
materials. The matrix (orange) is made with an elastomer characterised by Young’s
modulus Es , structural viscosity νs and density ρs defined before. The circular inclusion
(red) of diameter dI = 0.94 mm that is inserted into the middle of this matrix is made from
an elastomer of the same density (ρI = ρs) and damping (DI = Ds) but with different
Young’s modulus EI , here larger than the matrix’s Young’s modulus, i.e. EI > Es .

The solid state is defined by the variable q ′
s = [ξ ′

s, u′
s, p′

s]T , where ξ ′
s is the

displacement field, u′
s = ∂t ξ ′

s is the velocity field and p′
s is the pressure field introduced

to describe the incompressible structure. They satisfy the viscoelastic equations

ρs ∂t u′
s = ∇ ·

(
p′

s I + E(x)

3

(
∇ ξ ′

s + (∇ ξ ′
s)

T
)

+ Ds

2

(
∇ u′

s + (∇ u′
s)

T
))

, (3.1)

0 = ∇ · ξ ′
s, (3.2)

where the spatially varying Young’s modulus E(x) is a lI -periodic function in the x
direction defined as E(x) = Es for x in the matrix’s material and E(x) = EI for x in
the inclusion. The structure is clamped at the bottom boundary at y = −h = −2.35 mm,
i.e. ξ ′

s = u′
s = 0. Here, we do not consider any interaction with the fluid and therefore

impose a stress-free boundary condition at the top y = 0, i.e. ∂xξ
′
s,y + ∂yξ

′
s,x = 0 and

−p′
s + 2∂yξ

′
s,y = 0.

According to Bloch’s theorem (Ziman 1972), the waves propagating in this infinitely
long x-periodic structure can be represented as a superposition of Bloch waves in the x
direction in the form

q ′
s(x, t) =

∫ ∞

0
qs(x, t; βx ) eiβx x dβx + c.c. with qs(x, t; βx ) = qs(x + lI ex , t; βx ).

(3.3)
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The complex field qs(x, t; βx ), associated with the wavenumber βx = 2π/λx , is lI -
periodic in the x direction, but the wavenumber βx is a real parameter that allows for
the solid perturbation q ′

s(x, t) to break this spatial periodicity of the lattice. Without
any simplification of the problem, the range of values for βx can be restricted to the
irreducible first Brillouin region, i.e. −π/ lI ≤ βx ≤ π/ lI (Brillouin 1946). Moreover, as
q̃s(−βx ) = q̃∗

s (βx ) from the above definition, the investigated range of values can be
further reduced to 0 ≤ βx ≤ π/ lI . The structure being made with viscoelastic material,
we further decompose the periodic complex fields as

qs(x, t; βx ) = q̃s(x; βx ) e(γ−iω)t , (3.4)

where γ and ω represent the temporal growth rate (decay) and frequency of the solid mode
q̃s . Note that the phase and group velocities of the Bloch waves are then classically given
by vφ = ω/βx and vg = ∂ω/∂βx , respectively. By injecting the decompositions (3.3) and
(3.4) into the viscoelastic model (3.1)–(3.2), we obtain the following eigenvalue problem:

(γ − iω) ξ̃ s = ũs, (3.5)

(γ − iω) ũs = 1
ρs

∇β ·
(

p̃s I + E(x)

3

(∇β ξ̃s + (∇β ξ̃ s)
T )+ Ds

2

(∇β ũs + (∇β ũs)
T )),

(3.6)

0 = ∇β · ξ̃ s, (3.7)
defined in the unit cell shown in figure 5(b). Note that the spatial operator has changed
and is now defined as ∇β = (∂x + iβx , ∂y). As previously defined, zero shear stress and
clamped boundary conditions are, respectively, imposed at the top and bottom boundaries
of the unit cell. On the left and right boundaries of the unit cell, periodic boundary
conditions are finally imposed for all variables, i.e.

q̃s(−lI /2, y) = q̃s(lI /2, y). (3.8)

The right-hand-side operator in the eigenvalue problem introduced above is invariant by
a combination of the spatial transformation x → −x and the conjugate operation ()∗.
Consequently, the eigenvalue spectrum obtained for a given value of βx is symmetric
with respect to frequency axis ω. For a solid mode q̃s associated with the eigenvalue
(γ − iω) that propagates in the x direction with positive phase velocity vφ = ω/βx , we
obtain that the complex conjugate solid mode q̃∗

s associated with the eigenvalue (γ + iω)

propagates with negative phase velocity vφ = −ω/βx . The full eigenvalue spectrum of
the infinitely long x-periodic structure illustrated in figure 5(a) is finally constructed by
repeatedly solving the eigenvalue problem in the unit cell with real wavenumber varying
in the range 0 ≤ βx ≤ π/ lI .

3.1.2. Bloch analysis with fluid interaction
We now investigate the dynamical properties of the infinitely long x-periodic structure
interacting at its top boundary with the fluid, as shown in figure 6(a), that is characterised
by density ρf and dynamic viscosity μf . The fluid–structural unit cell shown in figure 6(b)
is now composed of the solid unit described in the previous subsection with a fluid column
at the top. Unlike the analysis performed in § 2, we simplify the analysis by considering
that the fluid is at rest. This analysis allows us to take into account the fluid added mass in
the study of the natural dynamics of a solid, as recently addressed by Zhang et al. (2024)
for a two-dimensional phononic plate.

The flow perturbation is defined by the variable q ′
f = [u′

f , p′
f ]T , where u′

f is the
fluid velocity perturbation and p′

f is the fluid pressure perturbation. Following the two
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Figure 6. Infinite, periodic, phononic surface interacting with a fluid at rest. The periodic cell (b) – clamped at
the bottom and interacting with the fluid at the top – with span lI is periodically and infinitely replicated along
the x direction (a).

decompositions introduced in the previous subsection for the solid perturbation, we
decompose the fluid perturbation as

q ′
f (x, t) =

∫ ∞

0
q̃ f (x; βx ) ei(βx x−ω t)eγ t dβx + c.c. with q̃ f (x; βx ) = q̃ f (x + lI ex ; βx ).

(3.9)

By introducing this decomposition into the Stokes equation governing the fluid
perturbation, we obtain

(γ − iω) ũ′
f = 1

ρf
∇β ·

(
− p̃′

f I + μf

(
∇β ũ′

f + (∇β ũ′
f )

T
))

in Ωf , (3.10)

0 = ∇β · ũ′
f in Ωf , (3.11)

where Ωf denotes here the fluid domain in the unit cell. These fluid equations are coupled
at the fluid–solid interface to the solid equations (3.5), (3.6) and (3.7) defined in the solid
domain Ωs . The continuity of the velocity and stress perturbation at the interface y = 0 is
simply written

ũ′
f = ũ′

s on Γfs

(3.12)(
− p̃′

f I + μf

(
∇β ũ′

f + (∇β ũ′
f )

T
))

(−ey)

=
(

p̃s I + E(x)

3

(
∇β ξ̃s + (∇β ξ̃ s)

T
)

+ Ds

2

(
∇β ũs + (∇β ũs)

T
))

ey on Γfs.

(3.13)

Equations (3.12) and (3.13) ensure that the fluid and solid perturbations respect the
kinematic and dynamic conditions at the interface. The coupled eigenvalue problem
is defined on the fluid–solid unit cell by (3.5), (3.6) and (3.7) coupled to (3.10) and
(3.11) through the interface conditions (3.12) and (3.13). Periodic boundary conditions are
applied to all variables on the left and right boundaries. At the top boundary of the fluid
domain, the stress-free condition is imposed. Finally, the dispersion relation of fluid–solid
Bloch waves in this infinitely long x-periodic structure interacting with the fluid at rest is
obtained by solving this eigenvalue problem for values of the real wavenumber in the range
0 ≤ βx ≤ π/ lI . Note that the same symmetry argument holds for the Stokes equations, i.e.
the fluid–structural mode (q̃ f , q̃s) associated with the eigenvalue (γ − iω) is related to the
complex conjugate mode (q̃∗

f , q̃∗
s ) associated with the eigenvalue (γ + iω), with the two

modes propagating with the same velocity but in opposite directions.
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3.2. Results of Bloch analyses
Results of the Bloch analyses are first presented for the infinitely long phononic compliant
surface with geometrical and material properties similar to those of the finite-length
phononic compliant surface described in the previous section (§ 2). The dispersion relation
and modes are described for the case without fluid interaction in § 3.2.1 and with
interaction with a fluid at rest in § 3.2.2. The effect of the inclusion’s spacing lI and
Young’s modulus EI on the frequency band gap is then investigated in § 3.2.3.

3.2.1. Infinitely long phononic compliant surface without fluid interaction
Figure 7 presents the eigenvalues computed for the infinitely long periodic structure, with
lI = 2.35 mm and EI = 10Es and without fluid interaction. These parameters correspond
to the phononic compliant surface studied in § 2. In the top-left panel, the frequencies
f = ω/2π associated with the identified eigenvalue branches are plotted as a function
of the wavenumber βx . These same branches are also visible in the eigenvalue spectrum
shown in the top-right panel, where the frequency is plotted against the normalised growth
ratio γ /ω. All eigenvalues exhibit negative damping due to the intrinsic viscous properties
of the materials, leading to natural solid waves whose amplitudes decay over time. For f ≥
600 Hz, the frequency axis is not continuously populated, revealing the presence of band
gaps between the identified branches (highlighted in red areas). Within these band gaps,
only evanescent waves can propagate, effectively preventing long-range energy transport.

The eigenmode of the lowest-frequency branch corresponding to βx = π/(2lI ) is
displayed in figure 7(a). In the left-hand panel, the vertical component of the displacement
perturbation field is displayed with colours at the (arbitrary) instant t = 0. This mode is
shown on a domain composed of 10 unit cells (inclusions) for visualisation purposes,
but was computed on a single unit cell. The displacement at the top boundary is also
displayed with arrows. In the right-hand panel, the vertical displacement of the interface is
shown as a function of space x and time t . This Bloch mode is characterised by a spatially
periodic pattern (colour) modulated by the wavelength 2π/βx = 4 lI of the envelope that
is clearly visible at the interface. As can be seen from the right-hand panel, this is a
travelling wave propagating along the x direction with a positive phase velocity vφ = ω/βx
and a positive group velocity vg = ∂ω/∂βx . Note that the complex conjugate eigenmode
(obtained for the same value of βx ) provides a Bloch wave travelling in the opposite
direction with negative phase and group velocities. When increasing the wavenumber on
this low-frequency branch, the group velocity corresponding to the speed of the envelope
decreases. At βx = π/ lI , this group velocity is zero and the envelope of the Bloch mode is
a standing wave. The corresponding mode is displayed in figure 7(b). Inside the standing-
wave envelope of wavelength equal to 2lI , a spatially periodic wave propagates with
positive phase velocity equal to vφ = 2 fminlI , where fmin is the lowest frequency of the
first band gap. As seen in the left-hand panel, the maximal and minimal displacements of
the interface are reached in between the inclusions (circles). The Bloch mode displayed in
figure 7(c) corresponds to the highest frequency fmax of the first band gap. This mode
is also characterised by a standing-wave envelope of wavelength 2lI but for a larger
phase velocity now equal to vφ = 2 fmaxlI . The maximal and minimal displacements of
the interface are now reached above the inclusions. For frequencies fmin ≤ f ≤ fmax in
between these two standing Bloch waves, no wave may propagate, thus confirming the
wave-blocking properties of the phononic surface along the x direction.

The wavelength 2lI of these two standing Bloch modes occurring at the edges of the
band gap is similar to that of the TWF instability, as observed in figure 2. This establishes
the first principle for designing our phononic surface: its spatial periodicity should be half
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Figure 7. (Top) Dispersion relation from Bloch analysis for an isolated, x-periodic phononic medium. The
shaded red areas highlight the bands of angular frequencies for which no eigenvalues are found (band gaps).
(a–c) The time–space evolution of the modes labelled in the top figures. On the left, the colour map reports
the vertical displacement field in the solid domain at t = 0, while the vectors the displacement at the interface.
On the right, the colour map reports time–space evolution of the vertical displacement at the interface over one
oscillation.

of the wavelength of the TWF wave to control. The second principle is that the bang-gap
frequency also matches the range of frequency where TWF instabilities are amplified.
The frequency band gap predicted by the present Bloch analysis extends in the range
1540 Hz ≤ f ≤ 1780 Hz, while that observed for the finite-length phononic surface in § 2.3
sits between 1241 and 1439 Hz. We anticipate that this overestimation of the frequency
band gap is mainly due to the interaction of the compliant surface with a heavy fluid
(water). Added-mass effects can then significantly alter the frequencies of the natural
vibration modes of structures (Pfister & Marquet 2020) and should be taken into account
to design the phononic compliant surface.
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Figure 8. Dispersion relation from Bloch analysis for a viscoelastic, periodic solid interacting with a fluid at
rest (solid lines). The shaded areas highlight the bands of angular frequencies for which no eigenvalues are
found (band gaps). The dashed lines report the dispersion relation for the isolated periodic solid (see figure 7).
(a–c) The modal shapes of the modes labelled in the top figures. On the left, the colour maps report the vertical
displacement field in the solid (orange) and fluid (blue) domains at t = 0, while the vectors the displacement
at the interface. On the right, the time–space evolution of the vertical displacement at the interface is reported
over one oscillation.

3.2.2. Infinitely long phononic compliant surface with fluid interaction
To capture the added-mass effect of the heavy fluid (water) on the frequencies of the
Bloch modes, we now present results of the Bloch analysis for an infinitely long phononic
compliant structure that interacts with a still fluid as discussed in § 3.1.2. Figure 8
displays with solid curves the branch of eigenvalues computed with the coupled fluid–solid
eigenvalue problem, while dashed curves correspond to the original one. The branches
are modified and the expected shift towards lower frequency is observed. The first band
gap now sits in the range 1270 Hz ≤ f ≤ 1440 Hz, to be compared with 1241 Hz ≤ f ≤
1439 Hz from the global stability analysis of the finite-length phononic surface in § 2.3.
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Figure 9. Parametric study on the spacing lI (a), Young’s modulus EI (b) and diameter dI (c) of the inserts.
The error bars indicate the location of the band gaps at each computed point. The data in (a) are for EI = 10Es ,
dI = 0.94 mm and varying lI ; those in (b) for lI = 2.35 mm, dI = 0.94 mm and varying EI ; those in (c) for
EI = 10Es , lI = 2.35 mm and varying dI . The vertical grey lines indicate the design point, reported in figure 8.
The horizontal dashed grey lines indicate the frequency at which the TWF peak occurs.

Additionally, the frequency range of the band gap in the phononic compliant surface is
now in much better agreement with the targeted value f = 1350 Hz, at which the maximal
amplification of TWF occurs. The agreement also validates the general principle of the
present phononic compliant surface that is to forbid the propagation of the solid waves in
the range of frequencies where TWF is most amplified. From the right-hand panel, a slight
increase in the growth ratio is also noted. Looking at the shapes of the modes limiting the
band gap (figure 8a,b), they present the same structure as those identified for the isolated
solid (figure 7a,b). When the interface vibrates, it drives the fluid in its upward/downward
motion, which means the solid has to displace the mass of the fluid, which qualitatively
explains the lower natural frequency. In the case considered, this effect is important since
the mass ratio between the solid (elastomer) and the fluid (water) is unitary; in air, it would
be less pronounced because of the lower density of the fluid.

3.2.3. Effect of inclusion spacing, Young’s modulus and diameter on frequency band gaps
The results previously reported have been obtained for unit cells of size lI = 2.35 mm ≈
lT W F/2 and Young’s modulus EI = 1 MPa = 10Es that lead to the attenuation of the TWF
reported in the first section. We now investigate the impact of these two parameters on the
positioning and extent in frequency of the band gaps in relation to the TWF amplification
peak, providing a comprehensive explanation for the choice of the selected design
point.

Figure 9(a) presents a parametric investigation into the effect of insert spacing lI on the
dynamic behaviour of the phononic compliant surface interacting with the still fluid, for
insert rigidity EI = 1 MPa. The error bars in this figure represent the frequency range
delimiting the band gaps that is displayed as a function of the dimensional value of
lI (bottom axis) and the non-dimensional value lI / lT W F (top axis) where lT W F is the
wavelength of TWF instabilities for f = 1350 Hz (horizontal dashed line). The design
point explored so far is highlighted by the vertical solid line at lI = 2.35 mm ≈ lT W F/2.
For this spacing, the first band gap is centred at the target frequency and wavelength of
the TWF waves, thus confirming again the successful design based on Bloch analysis.
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Increasing the spacing lI is observed to shift the band gaps towards lower frequencies. For
the first band gap (lowest frequency), this phenomenon can be explained by recalling that
the limiting frequencies correspond to Bloch modes of two different branches occurring
at wavenumber βx = π/ lI (see figure 8). As lI decreases, the wavenumber of the limiting
Bloch modes thus increases and consequently the frequencies delimiting the bang gap also
increase. Conversely, increasing the spacing lI leads to lower wavenumbers, resulting in
lower frequencies. This general trend is also observed for the second band. Interestingly,
its frequency range is centred around the targeted frequency of TWF for lI = 4.28 mm,
suggesting that the TWF may also be attenuated with this new compliant phononic surface.
As the bang gap is narrower than for lI = 2.35 mm, we may also anticipate that its effect
is more limited.

Once the inserts’ spacing lI is fixed, their rigidity can be exploited to pilot the extension
of the band gap. This effect is illustrated in figure 9(b) where band gaps are reported for
a varying Young’s modulus EI of the insert material, while the spacing is fixed at lI =
2.35 mm ≈ lT W F/2. As before, the horizontal dashed line indicates the target frequency
and the vertical solid line the chosen design point, i.e. EI = 1 MPa = 10Es , where Es is
the Young’s modulus of the material surrounding the insert. The width and location of the
band gap stabilise for EI > 0.8 MPa and no significantly different behaviour is observed
at higher values than the design one. For lower values, instead, the band gap shrinks and
shifts to lower frequency. At EI = 0.1 MPa = Es , no band gaps are observed, the case
being equivalent to a homogeneous surface.

This study employs a simple circular geometry for the scatterer, chosen arbitrarily to
illustrate the fundamental principle behind using phononic surfaces to suppress TWF. Up
to this point, the scatterer’s diameter (dI ) has been set to 0.94 mm, balancing between
the overall wall compliance and the band-gap size. Figure 9(c) presents the location of
band gaps as a function of scatterer diameter (dI ), with fixed parameters lI = 2.35 mm
and EI = 1 MPa. At the design point (dI = 0.94 mm = 0.4 h), the band gap is centred
at the target frequency corresponding to TWF. As the diameter increases, the band gaps
widen but also shift towards higher frequencies due to the stiffening effect caused by the
increasing proportion within the unit cell of the space occupied by the stiffer material
making the scatterer. Notably, a stiffer structure would lead to a reduced attenuation of the
TSW, as documented in Pfister et al. (2022); therefore, if a geometrical optimisation of the
shape of the scatterers is performed, a constraint should be considered to take into account
this effect.

3.3. Comparison with eigenvalue analyses of finite-length phononic compliant surfaces
Thus far, this section has outlined the design process for the unitary cell of the phononic
surface using Bloch analysis, with the primary objective of suppressing the propagation
of waves responsible for TWF. This analysis is based on the assumption of an infinitely
extended surface; in the following, this hypothesis is dropped and the dynamics of a finite
phononic surface is compared with the results of the Bloch analysis.

The coupled interaction of a finite patch with a flow at rest is considered. The eigenvalue
problem (2.3) is considered with a vanishing base solution Q = 0: the velocity of the base
flow is zero (U f (x) = 0) as well as the displacement of the structure, i.e. Ξ s(x) = 0,
in order to be consistent with the analysis in § 3.2.2 for the infinite plate interacting
with a fluid at rest. Note that, in the absence of fluid flow, the concept of a Reynolds
number derived from boundary-layer characteristics becomes inapplicable. However, for
consistency, the fluid’s viscosity remains identical to that of water used in previous
analyses. Figure 10 presents a comparative analysis of eigenvalues obtained for the
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Figure 10. Comparison between the fluid–structural eigenvalue branches computed by means of the Bloch
analysis (lines, see figure 8) and the eigenvalues of the finite-length surface (squares). A fluid at rest is
considered for the two analyses. The coloured shaded areas indicate the band gaps predicted by the Bloch
analysis. (a–d) The respective modal shapes of the modes labelled in the top figure (for a finite-length structure).

finite-length phononic surface (red squares) and from the Bloch analysis of the infinite-
length phononic surface (red lines), revealing both similarities and key differences. The
primary distinction stems from the discrete nature of the eigenvalues in the finite-length
case, as opposed to the continuous branches predicted by the Bloch analysis – an expected
outcome due to the finite spatial extent of the surface. Despite this, the discrete eigenvalues
lie precisely on the continuous branches, demonstrating that the Bloch analysis reliably
predicts both frequency and damping characteristics of the finite-length surface.
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Regarding modal shapes, figures 10(a) and 10(b) show the eigenmodes near the first
band gap, as indicated in the top panel of the figure. These modes exhibit a structure
consistent with those predicted by the Bloch analysis: in particular, they feature surface
oscillations occurring between the inserts (figure 10a versus figure 8b) and above the
inserts (figure 10b versus figure 8c). An amplitude modulation along the x direction is
observed, which is attributed to the lateral clamped boundary conditions imposed on the
finite-length phononic surface. A second notable difference with respect to the Bloch
analysis is the appearance of a double eigenvalue within the band gap, referred to as
truncation resonance (Rosa et al. 2023). This phenomenon arises from the breaking of
periodicity induced by the finite length of the surface and the clamped boundary conditions
at its lateral ends. These eigenmodes shown in figures 10(c) and 10(d) are spatially
localised near the left and right boundaries of the surface. One exhibits a symmetric
structure, while the other is anti-symmetric. Importantly, both mode share the same
eigenvalue, which implies that they can be linearly combined to form spatial structures
fully localised at either boundary, while still satisfying the coupled eigenvalue problem for
the same eigenvalue. These truncation modes also appear when the compliant phononic
surface interacts with the boundary-layer flow (§ 2.3). In this configuration, the fluid is no
longer at rest; instead a boundary layer develops over the surface. Two isolated eigenmodes
are observed at close frequencies ( f = 1343 Hz and f = 1347 Hz; see figure 2b) each
localised near one of the lateral boundaries (see figure 3). Unlike in the static fluid
case, where symmetric and anti-symmetric pairs of eigenmodes are found, the base flow
velocity oriented in the streamwise direction breaks the symmetry and yields two distinct,
localised modes. The slight frequency difference between the two modes ( f = 1343 Hz
versus f = 1347 Hz) is likely due to the streamwise development of the boundary layer,
which interacts differently with the compliant surface at the upstream and downstream
edges.

Beyond the isolated truncation modes, the proposed fluid–structure Bloch analysis
accurately captures the frequency range of the band gaps, a key feature for the effective
suppression of TWF. This is clearly demonstrated by the strong agreement between the
predicted band gap from the Bloch analysis (1270 Hz ≤ f ≤ 1440 Hz) and the observed
band gap for the finite-length phononic surface (1241 Hz ≤ f ≤ 1439 Hz). This close
correspondence underscores the reliability of the Bloch framework as a predictive and
practical design tool for compliant phononic surfaces aimed at TWF control, even when
applied to finite-length configurations.

4. Conclusions
This study builds upon the previous work by Pfister et al. (2022), which investigated the
attenuation of TSWs in a boundary-layer flow by means of a wall-mounted, conventional
compliant surface of finite length and made of a homogeneous, viscoelastic material.
Their findings reveal that, alongside the desired attenuation of TSWs, a further disturbance
amplification peak emerges. This peak is related to the fluid–structural interaction of the
compliant surface with the flow, known in the literature as TWF (Carpenter & Garrad
1986).

In the present study, we successfully addressed the suppression of this secondary
peak by introducing periodic stiff inserts into the solid, thereby creating a phononic
compliant surface oriented along the streamwise direction (§ 2). Phononic metamaterials
can selectively block wave propagation in solids within specific frequency and wavelength
bands. Although their application in TSW passive control is not novel (e.g. Kianfar &
Hussein 2023; Michelis et al. 2023), to our knowledge, this work marks the first use
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of phononic surfaces to attenuate TWF or, more generally, a fluid–structural instability.
Global stability analysis of the coupled system demonstrates that the phononic compliant
surface attenuates the TWF peak while maintaining also the attenuation of TSWs. The
latter persist, as for the conventional compliant surface, also downstream of the compliant
wall (§ 2.3). In general, this is not the case when the localised interaction of phononic
subsurfaces and the fluid is used to attenuate TSWs. In these studies, a localised increase
in amplitude at the trailing edge of the compliant surface results in an overall amplification
of the TSWs (Michelis et al. 2023), even if recent studies suggest that patterns of localised
phononic subsurfaces may mitigate this issue (Hussein et al. 2025). Overall, the current
configuration featuring a streamwise-extended phononic surface remains very promising
for the attenuation of TSWs, while avoiding the amplification of TWF.

In order to provide a better insight in the design choices that led to the attenuation
mechanism of TWF, we introduced a Bloch analysis of a streamwise-infinite phononic
surface (§ 3). First, we considered an isolated periodic elastic body without fluid and
with a stress-free boundary condition at the top (§ 3.2.1). The blocked wave’s wavelength
was accurately predicted, but not its frequency due to the absence of fluid. In order to be
predictive of both wavelength and frequency of the blocked waves, the added mass of the
fluid was also taken into account by considering a fluid at rest over the phononic medium
(§ 3.2.2). This analysis allowed us to validate the design principle that the periodicity
along the controlled-wave direction (i.e. the streamwise direction) should match half of its
wavelength (§ 3.2.3). A comparative assessment with global stability analysis for a finite
phononic surface of equivalent design validated the predictive capability of the Bloch
analysis results, capturing the dynamic behaviour exhibited by the installed phononic
compliant wall (§ 3.3).

4.1. Perspectives
The introduced fluid–structural Bloch framework could be directly extended to incorporate
non-zero base-flow conditions, provided that the fluid’s periodicity aligns with the unitary
cell or, alternatively, a common periodic framework is established within the coupled
system. A pertinent example of applying this principle to a fluid-only problem can be found
in Jouin, Robinet & Cherubini (2024), where the authors employed the Bloch formalism,
as introduced by Schmid, de Pando & Peake (2017), to investigate the stability of spanwise-
periodic channel flows. However, the focus on zero-pressure-gradient boundary-layer flow
of the current study presents a notable exception. Specifically, this type of flow exhibits
spatial inhomogeneity along the streamwise direction, characterised by a boundary-layer
thickness that monotonically increases with the streamwise coordinate (Batchelor 2000).
This leads to the absence of periodicity along the streamwise direction and, thus, does not
allow for a direct extension of the presented formalism to the interaction of a phononic
surface with a zero-pressure-gradient boundary-layer flow.

In this study we explored the linear dynamic of the coupled fluid–structural system,
given by the boundary-layer flow and the phononic compliant surface. Under the
hypothesis of linearity, we showed that TSWs are attenuated and TWF is suppressed.
However, this represents only the initial step towards the application of this control
technique to delaying the laminar-to-turbulent transition in the flow. Linear studies, as the
current one, call for further inquiries towards the assessment of the transition delay; this
could come from either a numerical or experimental standpoint. The former would require
the development of three-dimensional numerical frameworks to perform time-resolved,
nonlinear simulations of the fluid–structural coupling. The latter would involve modern
fabrication techniques, such as three-dimensional printing or polymer lithography, for the

1020 A47-23

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
65

5 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10655


N. Fabbiane, O. Marquet, L. Pierpaoli, R. Cottereau and M. Couliou

realisation of the compliant phononic surface; moreover, if water is considered as a fluid,
the here-specified flow condition could be achievable, for instance, in a towing tank.

The findings of the current study are limited to a simple unitary periodic cell geometry,
comprising a stiff circular scatterer embedded within a homogeneous flexible matrix.
Further developments could involve more complex geometries, such as those presented
in Park et al. (2022), the integration of local resonators, as discussed in Kianfar & Hussein
(2023), or geometry optimisation in order to achieve finer control over the band-gap
positions and widths within the frequency domain. Nevertheless, despite its simplicity,
the chosen geometry has successfully served as a proof of concept for the underlying
design principle, validating its potential for further development and optimisation. The
present results can facilitate the effective use of compliant surfaces for TSW attenuation,
subsequently delaying the laminar-to-turbulent transition, by addressing one of the
primary constraints: the premature transition triggered by TWF (Lucey & Carpenter 1995).

The present proof of concept could inspire further research aimed at enhancing the
performance of these surfaces as presented here, and/or applying phononic surfaces to
address other fluid–structural problems where wave propagation in the solid phase serves
as one of the driving mechanisms. Notably, the results presented herein pertain to water
flow, benefiting from a unity density ratio between the solid and fluid phases. However,
a critical challenge remains in adapting these techniques for aerodynamic flows, where
the substantial increase in density ratio introduces complexity. Despite this, a promising
application lies in supersonic flows (Zhao et al. 2019; Klauss et al. 2025), where elevated
velocities might compensate for lower fluid densities.
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Appendix A. Arbitrary Lagrangian–Eulerian formulation of the fluid–structural
problem
This appendix presents a summary of the formulation introduced in Pfister et al. (2019),
based on the ALE formulation of the fluid–structural problem and here used to model the
coupled dynamics of the fluid and solid phases. We refer the reader to Pfister (2019) and
Pfister et al. (2019, 2022) for further details.

The fluid state – composed of fluid velocity uf and pressure pf – is augmented to include
the operator ξ e that maps the fluid equations – naturally expressed in the deformed domain
– to the fixed reference fluid domain Ωf . The resulting equation for the fluid phase reads

ρf J (ξ e) ∂t uf = −ρf
(∇uf Φ(ξ e)

) (
uf − ξ̇ e

)+ ∇ · Σ f (uf , pf , ξ e; μf ) + f in Ωf ,

(A1)

0 = ∇ · (Φ(ξ e) uf
)

in Ωf ,

(A2)

where Σ f is the fluid stress tensor, mapped to the reference domain. The extension
operator ξ e enters in the formulation via the deformation operator Φ(ξ e) = J (ξ e)F−1(ξ e),
with F(ξ e) = I + ∇ξ e and J (ξ e) = det(F(ξ e)). Since the particular form of the extension
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operator is arbitrary, a Laplace equation is used here. A volume forcing f (x, t) is also
introduced in the fluid domain Ωf , to later study the forced response of the system. The
solid equations, instead, are written in the solid domain Ωs in their natural Lagrangian
form:

ρs ∂2
t ξ s = ∇ · P s(ξ s, ξ̇ s, ps; Es, Ds) in Ωs, (A3)

0 = ∇ · ξ s in Ωs, (A4)

where ξ s is the displacement vector of the solid and ps the isotropic part of the solid stress
tensor P s . The continuity of stress and displacement along the fluid–structural interface
Γfs is ensured by imposing the following conditions:

ξ e = ξ s on Γfs, (A5)
Σ f n = P s n on Γfs. (A6)

Dirichlet boundary conditions are enforced on the complete fluid velocity vector uf at the
rigid-wall (Γ f,w) and inflow (Γ f,i ) boundaries, while only the streamwise component is
prescribed at the free stream (Γ f,∞):

uf = 0 on Γ f,w, (A7)
uf = uBlasius on Γ f,i , (A8)

u f,x = U f,∞ on Γ f,∞, (A9)

where uBlasius is the Blasius solution of a boundary-layer flow at the inlet for a free-stream
velocity U f,∞. Natural stress-free conditions are considered at the outflow. Regarding the
solid phase, a zero displacement is considered along the clamped boundary Γs,c:

ξ s = 0 on Γs,c. (A10)

The complete state q of the coupled fluid–structural system reads as follows:

q(x, t) =
[

q f (x, t)
qs(x, t)

]
= [

uf (x, t) pf (x, t) ξ e(x, t) ξ s(x, t) ξ̇ s(x, t) ps(x, t)
]T

,

(A11)
where q f is the fluid state and qs the solid one. The former is composed of the fluid
velocity uf , the fluid pressure pf and the extension operator ξ e, which maps the fluid
quantities from the deformed to the reference domain. The latter is composed of the solid
deformation ξ , the solid velocity ξ̇ and the solid pressure ps(x, t), i.e. the isotropic part of
the solid stress tensor.

The equations introduced above – describing the coupled fluid–structural model – are
discretised by means of the finite-element method. The resulting numerical model – as
well as the Bloch extension in § 3.1 – is implemented by means of the Python-interfaced,
finite-element library DOLFINx (Baratta et al. 2023).

The global stability and resolvent analyses in § 2.2 are based on the hypothesis of small
perturbations with respect to the steady solution of the coupled ALE formulation presented
above. Therefore, the following decomposition is introduced:

q(x, t) = Q(x) + ε q′(x, t), (A12)
f (x, t) = ε f ′(x, t),

where q(x, t) is the complete state, Q(x) = [U f (x), Pf (x), Ξ e(x), Ξ s(x), Ps(x)]T the
steady solution and q ′(x, t) the state perturbation, which is multiplied by an arbitrarily
small coefficient ε � 1. The volume forcing f (x, t) is similarly decomposed, with a zero
steady contribution, i.e. no steady forcing. By injecting the decomposition (A12) in the
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governing equations, the linear equations describing the dynamics of q′ are found:[
Bf (Ξ e) 0

0 Bs

]
︸ ︷︷ ︸

B(Ξ e)

∂

∂t

[
q ′

f

q ′
s

]
︸ ︷︷ ︸

∂q′
∂t

−
[

Af (U f , Ξ e) Cfs

Csf As

]
︸ ︷︷ ︸

A(U f ,Ξ e)

[
q ′

f

q ′
s

]
︸ ︷︷ ︸

q′

=
[

P f

0

]
︸ ︷︷ ︸

P

f ′

⇒ B(Ξ e)
∂q ′

∂t
− A(U f , Ξ e) q ′ = P f ′.

(A13)

The mass matrix B is related to the inertia of the coupled system: it is diagonal by
blocks with one contribution from the fluid Bf and one from the solid Bs . The Jacobian
matrix A, instead, describes the response of the coupled fluid–structural system to small
perturbations. The inherent dynamics of flow and structure are captured by Af and As ,
respectively, with coupling enforced at the fluid–solid interface through Cfs and Csf. Both
B and A depend on the base solution Q via two of its components, namely the flow field
U f and the extension field Ξ e. Finally, the forcing operator P restricts the application
of the volume forcing f ′ to the fluid phase. The here-presented linearised operators are
assembled by means of the automatic differentiation capabilities of the library DOLFINx
(Baratta et al. 2023). The eigenvalue problems – for the global stability, resolvent and
Bloch analyses – are solved by means of the linear-algebra library SLEPc (Roman et al.
2023).
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