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QUALITATIVE THEORY OF CODIMENSION-ONE FOLIATIONS

KAZUO YAMATO

Introduction. The object of the present paper is to give a method
of studying the topological properties of integral manifolds defined by a
completely integrable one-form.

Our method is differential-topological. Through the singular points
of the variation equation of the given one-form, we investigate the
qualitative properties of the integral manifolds.

The plan of this paper is as follows. In § 1, we state our main
theorems, which assert that under certain conditions, foliated structures
are classified into three groups, "bundle foliations", "Reeb foliations",
"hyperbolic foliations". In § 2, which is one of the most important parts
in our theory, we introduce the concept of a vein. A vein is a leaf of
a certain codimension-two foliation associated with the given foliation.
Proposition 2.2.1 is concerned with the existence of compact veins. In
§ 3, we study precisely the distance between two leaves along a curve
contained in one of them. "Admissible tangential curves" and their
"lifts" are the fundamental tools in the proofs of the main theorems.
In §4, we introduce a special Riemannian structure convenient for the
proof of Proposition 4.2.1 from which we prove three fundamental
lemmas 4.1.2-4.1.4. Using these lemmas, we prove our theorems I, II,
III, in §§5, 6, 7, respectively. § 8 is devoted to the proofs of Proposi-
tions 4.1.1 and 4.2.1. In the appendix, we prove that our condition (T)
is "generic".

The main results of this paper have been announced in [8].
The author wishes to express his gratitude for the guidance and

encouragement received from Professor Y. Shikata.

Notation. R denotes the field of real numbers, and Rm denotes the
real m-space, regarded as a real vector space or as a smooth manifold.
Sm denotes an ordinary m-dimensional sphere. By an m-manifold, we
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mean an ?w-dimensional manifold with or without boundary, of class C3.
By a closed m-manifold, we mean a compact m-manifold without bound-
ary. All functions, maps, curves, and vector fields are assumed to be
of class C1 unless otherwise stated. All Riemannian structures are as-
sumed to be of class C2. We denote by J£?X the Lie derivative with
respect to a vector field X. A one-form α on a manifold M is to be
understood a map of the tangent bundle T(M) into R, which induces, at
each point x> a linear map ax of the tangent space TJM) at x into R.
For two subsets A, B of a Riemannian manifold, we shall write dis (A, B)
for the distance of A and B, and diam (A) for the diameter of A. For a
map / of a manifold M into another manifold M', we write /* for the
bundle map of T{M) into T{W) induced by /. For a curve c on a man-
ifold, we denote by ό(t) the tangent vector at a point c(t). If a curve c
is defined on an interval [α, 6], we write | a for the integral of a

J cla,uj

over [a, u] c [α, 6], i.e.,

ί a = [Ua(ό(t))dt .

For a piecewise C1 curve, the same integral as above can be defined.
We write (M, a) for a manifold M with a specified one-form #, and (M,
<z,g) for (M, a) with a specified Riemannian structure g. We shall say
that (M,a) is a foliated manifold if a is completely integrable, i.e.,
^ Λ da = 0. If α is nonsingular, a maximal connected integral manifold
of a foliated manifold (M, α) will be called a leaf (of (M, <x) or of M).
Given a foliated manifold (M, a) by "almost every leaf", we mean except
for leaves whose union has measure zero in M. It is clear that for a
finite set A in a foliated manifold, almost every leaf does not intersect A.

§ 1. Statement of the main theorems

Suppose that we are given a connected, closed {n + l)-manifold Vn+1,
n > 1, of class Cr+1 with a nonsingular, completely integrable one-form
•ω of class Cr. Throughout this paper, we denote by (V, ω) this foliated
manifold and assume, for simplicity, that r is sufficiently large, e.g.,
r > 21. (From the proofs, one will see that our main theorems hold if
r > 4 . )

1.1. The critical cycle Σ. Since ω is nonsingular and completely

https://doi.org/10.1017/S0027763000015373 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000015373
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dntegrable, it is well known that for each point p of V there is a local

coordinate system (x1, ,xw+1) of class Cr in a neighborhood U of p

.such that ω\U — fdxn+1 for some positive-valued C7""1 function / defined

on C7. Then the set (£7, / ; x1, , xn+1) is called an !F-chart (at p).

Now, let Σ be the set of zeros of the exterior derivative of ω, i.e.,

For a point p of Σ, we define the type of p as follows. Let (Uyf x1,

• ,# n + 1 ) be an J^-chart at p, and consider two matrices

9nι

9 ; / - > l , - , n

where fυ(x) = d2f(x)jdxidx3.

Let Λ = 0,1, , n. The point p is said to be of type (X) if the matrix

is nonsingular and if the number of negative eigenvalues of

is equal to λ. We say that p is of type (*) if ||32/(p)|| is singular.

It is obvious that the type of a point of Σ is well defined independently

of the choice of J^-charts. For t = 0,1, ,n or *, let Σt be the set of

points of type (t). Then we have

Σ = Σ* U Σo U Σx U U Σn (disjoint union) .

We shall assume that ω satisfies the following condition:

For any point p of Σ*f there is an 3P-chart (U,f;x\ •• ,xw + 1) at

p such that ||d3/(;p)|| is nonsingular.

One sees then that the same condition holds for any J^-chart at p e Σ*.

One sees also that Condition (T) implies that Σ is a closed one-manifold.

Ήence if ω satisfies (T), then Σ will be called the critical cycle (of (V,

ω)). In the appendix, it will be proved that Condition (T) is generic.

1.2. The main theorems. Assume that ω satisfies Condition (T).

Then we have the following three theorems.

THEOREM I. // Σ0Φύ and Σx = 0, then there exists a Cr fibre

bundle Bn+ι over Sι and a Cr diffeomorphίsm h: Bn+1 -» Vn+ι such that

( i ) the fibre of Bn+1 is a connected, simply connected, closed n-

manίfold of class C\
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(ii) for each fibre Mn of Bn+\ the dίffeomorphίsm h induces a Cr

diffeomorphism of Mn onto a leaf of V.

THEOREM II. // Σn Φ 0, Σn_i = 0, and Σo = 0, then for any point p

of Σn, there exists a Cr fibre bundle Rn+1 over S1, and a Cr imbedding

h: Rn+1-+ Vn+1such that

( i ) the fibre of Rn+ι is a connected, simply connected, noncompact

n-manifold without boundary.

(ii) for each fibre Nn of Rn+1, the imbedding h induces a Cr dίf-

feomorphίsm of Nn onto a leaf of V.

(iii) the set h(Rn+1) Π Σn coincides with the connected component

of Σ containing p.

(iv) if C1(2Ί Π h(Rn+1)) c h(Rn+1), then there exist a finite number

of compact leaves Kl9 ,Km such that

K,Ό U Km = Cl h(Rn+1) - h(Rn+1) = Cl L - L

for any leaf L in h{Rn+ι).

THEOREM III. // Σn = 0, then there exists an open, dense subset 7α

of V such that for any p e Vo, the leaf through p is locally dense in the

sense of Reeb (see 7.1).

§2. The veined structure

2.1. The veined structure. Let X be a vector field on V such that

ω(X) = 1, and put ω/ = — 3fzω.

LEMMA 2.1.1. For an ^-chart (U,f;x\ •• , # n + 1 ) , we have

ω'\U = ΣίU (alog fldx^dx1 + (-X(f) + dlog f/dxn+1)dxn+1 .

Proof. This is an easy consequence of the following elementary

formulas:

= X(ω(Y)) - ω([X, Y]) ,

[gY,hZ] = gh[Y,Z] + g(Yh)Z - h(Zg)Y

for vector fields Y, Z and functions g, h on V, where [, ] denotes the

bracket.

By this lemma, we know that the map α/lαΓ^O): αΓ^O) ->/? is defined

independently of the choice of X, where ω-1(0) denotes the subbundle of
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T(V) defined by ω = 0. Furthermore, we see that the one-form ω/ \ L

on each leaf L is closed. Hence, the following definition makes sense.

DEFINITION 2.1.1. The veined structure of the foliated manifold

{V, ω) is the "codimension-two" foliation on V defined by ω = ωf — 0. The

leaves of this "codimension-two" foliation will be called the veins of

(V,ώ).
More precisely, a vein of (V, ω) is a nonempty subset / in V having

the following properties:

( i ) any two points x,yeJ can be joined by a piecewise C1 curve

c: [0, τ] -> V such that ω(ό(t)) = ω\c(t)) = 0 for all t e [0, τ] at which c is

differentiable

(ii) any point x e V which can be joined to a point e / by a piece-

wise C1 curve c satisfying the same condition as in (i), belongs to J.

A vein / will be said to be nonsingular if J does not contain any

singular point of ω'lαΓ^O), i.e., any point xeV such that ωf

x = 0 on

<ύ~x\§). Clearly, a nonsingular vein is a connected (n — l)-submanifold-

without-boundary (not necessarily closed) in V, of class Cr.

2.2. Closed one-forms and Morse theory. Let Mn be a connected, com-

plete Riemannian ^-manifold of class C\ without boundary. Let a be a

closed one-form of class C2. Denote by α* the dual vector field of a and

denote by || || the norm of tangent vectors or cotangent vectors of M.

For a singular point p of a, the index of p is defined to be the number

of negative eigenvalues of the Jacobian matrix of a at p. The one-form

•a is said to be proper if every singular point is nondegenerate and the

vector field <x* is complete, and if there exist two families {Ei}ieI, {Et)ieI

of open sets of M satisfying the following conditions:

( i ) Eι c Et for each i e I, and Et Π Eά — 0 for every i, j , i Φ j ;

(ii) for each singular point p of a, there is i e I such that p e Et c Et

(iii) there exist three positive constants α0, 50, c0 such that (a)

{\\ax\\ > a0 f o r a l l xeM - [JieI Eu (b) d i s (Et,M - Ed > bQ f o r a l l iel,

and (c) diam (E^ < c0 for all i e I.

PROPOSITION 2.2.L Suppose that a is proper and has at least one

singular point of index 0. // a has no singular point of index 1, then

the following hold:

( i ) There exists a C3 function f: M —> R which is proper, i.e., every
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inverse image of compact sets is compact, such that a = df.

(ii) Mn is simply connected.

(iii) // a has no singular point of index n, then Mn is noncompact*

(iv) The number of the singular points of index 0, is equal to one.

( v ) For any y e M, there exists a piecewise C1 curve a: [0, τ] —> M

such that α(τ) = y and ct(O) is the singular point of index 0, and such

that for any x = ait) at which the vector field a* does not vanish, the

tangent vector ά(ί) coincides with a*/\\a*\\.

This will be proved in 2.3. The following proposition can be proved

similarly (cf. [9]).

PROPOSITION 2.2.2. Suppose that a is proper. Suppose that there

exists a closed (n — 1)-manifold Jn~ι and an immersion i: J —> M such

that for any x eJ, the subspace ί*(Tx(J)) of Ti(x)(M) does not contain the

vector άf{x), and such that the cohomology class [i*a] e HKJ R) is trivial,

where i^, i* are the induced maps. If a has no singular point of index

1 and no singular point of index n — 1, then a is rational, i.e., for any

xeM, there exists an open subset U of M containing x and a function

f\U-*R of class C3 such that a — df on U and each level manifold f~\h),.

h e Im /, is compact.

Remark 2.2.1. If V is Riemannian and if ω satisfies Condition (T),.

then for any leaf L of (V, ω) which does not contain any point of Σ*>

hence for almost every leaf L, the closed one-forms ± ω' \ L on the mani-

fold L with the induced Riemannian structure, are proper in our sense.

This may be seen as follows. Condition (T) implies that the critical

cycle Σ is a closed one-manifold Sι U U S1 and is tangent to the leaves,

at the finite set Σ*. For each peΣ*, choose an J^-chart (U,f;x\ •••,.

xn+1) at p such that x\p) = = xn+1(p) = 0 and put

U(p) = {qeU\\x%q)\ < ε/2, ί = 1, . . .,n + 1} ,

U(p) = {qeU\\x%q)\ < e, i = 1, . , n ; \xn+ι(q)\ < ε/2} ,

where ε is a small positive number such that U(p), U(p) are homeomorphie

to the open sets

ε/2, ί = 1, . -,n + 1} ,

ε, i = 1, --.,n;\xn+ί\ < ε/2} ,

by ψ = (x\ -,xn+1), respectively. Let T, f be two sufficiently small
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tubular neighborhoods of Σ in V such that Cl T c f9 and put

E = tffo) U U E7(p.) U Γ , # = UivO U U #(p e ) U Γ ,

where {p1? , p j = I7*. Then, for a leaf L which does not contain any

point of Σ*9 it is easily verified that the forms ±ωf\L on L have only

nondegenerate singular points (by Lemma 2.1.1.) and are proper, with

the families {Ei}ieI, {Ei}iei of open sets Eί9 Et defined by the following

conditions: U t e i ^ ί — L {ΛE9 {JίeIEi = L Π E (disjoint unions), and Eί9.

Et are connected components of L Π E9 L Π E, respectively.

2.3. Proof of Proposition 2.2.1. We begin with some definitions. For
Γδ

a C1 curve c: [a9 b] —»ikf, the integral of a on c is defined to be a(ό(t))dt
J a

and will be denoted by a. A compact leaf of (M, a) is defined

to be a nonempty, arcwise connected, compact subset J in M satisfying

the following condition: for each x eJ, there exists a neighborhood U of

x in M and a function f:U-^R such that α = d/ on £7 and / Π U —

f~ι(f(%)). A compact leaf / is said to be singular if / contains any

singular points of a. Clearly, a nonsingular, compact leaf is a connected,

closed (n — l)-submanifold in M. Let {ψj be the one-parameter group

of transformations generated by a*. The proof of Proposition 2.2.1 will

be preceded by six lemmas, 2.3.1-2.3.6.

2.3.1. There exist positive constants d19 hλ satisfying the following

condition: for xeM and τ > 0, if dis(x,ψr(x)) > d19 then the integral of

a on the curve ψt(x), 0 < t < τ, is greater than hλ.

Proof. Let {Z?J, {Et}9 a0, bQ, cQ be as in the definition of "proper".

Put dx = max (&0, c0), hλ = αo6o, and let the curve φt(x), 0 < t < τ, satisfy

dis (#, ψΓ(x)) > dEle First, consider the case where the curve ifo(cc), 0 < t < τr

does not intersect Et for any i e /. Then, | | ^ ί U ) | | = | | ^ i U ) | | > α0, hence we

have

j a = I a(<(a.,)di = ί | | < U ) ||
2 dί

J^ί(^),0^ί<r JO JO

> ao I IKu) II dί > α0 dis (x, ψt(x)) > aod, > hx .
Jo

Next, in the case where the curve ψt(a0, 0 < t < τ, intersects some Eir

since dis (x, ψτ(x)) > d19 dis (Ei9 M — Eτ)> b09 and diam (Eτ) < c09 we see
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that there exist real numbers tx, t2, 0 < tx < t2 < τ, such that the curve

ifo(aO, tλ < t < ί2, is contained in Et — Ei9 and such that the length of

ΨίW, tλ<t<t2, is greater than 60. Since | |α* ί ( : c ) | | > α0 for te[tl9t2],

similarly to the preceding case, we have

a > aobo = hλ .

Hence, we obtain

a > α > /^ ,

which proves 2.3.1.

2.3.2. Suppose that there exists a connected, compact n-submanifold

Wn in Mn such that the boundary dW is the finite union of nonsingular,

compact leaves of (M,a), and such that for any xedW, the vector a* is

directed toward the outside of W. Suppose further that there exists a

function f:W->R such that a — df on W. Let J be a connected com-

ponent of dW, and let δ be a positive constant satisfying the following

condition: for each xeJ, there is a positive number τ(x) such that the

integral of a on the curve ψt(x), 0 < t < τ(x), is equal to δ. Then, the

set W = W U {ifoG*0\xeJ, 0 < t < τ{x)} is a connected, compact n-sub-

manifold in M such that the boundary dW is the finite union of non-

singular, compact leaves of (M,ά), and such that for any xeW, the

vector α* is directed toward the outside of W. Furthermore, there exists

a function f:W-+R such that f — f on W and a = df on W.

This is easily verified.

2.3.3. Let p be a nonsingular point of a. Suppose that there is a

positive number δ0 having the following properties:

( i ) for any δ e (0,δ0), there is a positive number τ(δ) such that the

integral of a on the curve φt(p), 0 < t < τ(<5), is equal to δ;

(ii) for any τ > 0, the integral of a on the curve ψt(p), 0 < t < τ,

is smaller than δ0.

Then lim^oo ψt(p) exists and is a singular point of a.

Proof. Using 2.3.1, we know that the subset Ut^oΨtip) is bounded

in M. In fact, this set is contained in the compact set

{x e M\ dis (p, x) < d^δjiϊ1 + 1)} ,
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where d19 hx are the same constants as in 2.3.1. Therefore, since M is

complete, there is an infinite sequence tλ < t2 < , tt -^ oo, such that

l i m ^ ψ4i(p) exists in M. It is easy to verify that the limit point is a

singular point of a. Since every singular point of a is nondegenerate,

the limit point is uniquely determined. This proves 2.3.3.

2.3.4. Suppose that there is a nonsingular, compact leaf J of

(M,a). Let δ0 be a positive number satisfying the following condition:

for any δ e (0,δ0) and any xeJ, there exists a positive number τix, δ)

such that the integral of a on ψt(%)> 0 < t < τ(x,δ), is equal to δ. Let S

be the subset of J consisting of those points x such that for any τ > 0,

the integral of a on ψt(x), 0 < t < τ, is smaller than δ0. If S Φ 0, then

So = {lim^^ ψt(p) I p e S} is a finite set, whose elements are singular points

of a.

Proof. By 2.3.3, for each peS, the limit point of ψt(p)(t -> oo)

exists and is singular. Similarly to the proof of 2.3.3, using 2.3.1,

we see that the set So is bounded in M. Since M is complete, and every

singular point of a is nondegenerate, we can conclude that So is finite.

2.3.5. Under the same hypotheses and notations as in 2.3.4, if S Φ 0

and if So contains no singular point of index 1, then the set

J = S0 U {ψτ{x)(x)\xeJ -S} ,

where τ(x) is a positive number satisfying a = δ0, is a singular,

compact leaf of (M,a).

This is proved in [9].

2.3.6. Let a singular, compact leaf J of (M,a) which contains no

singular point of index 1, be given. Then, there exists a connected,

compact n-submanifold Wn in Mn containing J and there exists a func-

tion f\W->R satisfying a = df on W, such that the boundary dW is

the finite union of nonsingular, compact leaves of (M,a), and such that

the subset dJW of dW consisting of those points x at which the vector

a* is directed toward the inside of W, is connected (therefore 3_W is a

nonsingular, compact leaf if d_W Φ 0).

This is also proved in [9].

Proof of Proposition 2.2.1. Fix a singular point p of index 0. By
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Morse's lemma, there exists an imbedded w-disk Dn in Mn containing p
such that the boundary is a leaf of (M, ά), and there exists a function
f:Dn-+R such that a = df on D. Using this fact and 2.3.1, and applying
2.3.2, 2.3.5, and 2.3.6, we can easily construct a function f:M->R of
class C3 which is proper and satisfies a = df. Applying Morse theory
to the proper function f:M->R, we see that M is simply connected and
the number of the singular points of index 0 is equal to one. Part (iii)
is obvious. In order to prove (v), it suffices to verify the following.

2.3.7. Let U be an open set in Rn with a Riemannίan structure g
of class C\ and let f:U-+R be a function of class C2 with a non-
degenerate critical point p. Denote by grad / the gradient of f with
respect to g. Suppose that there is an integral curve c: [0, oo) —> U of
grad/ such that c(t)->p as t->oo. Then, there exists a C1 curve
d: [0, τ] —> U such that d(0) = c(0), d(τ) = p, and for every te [0, τ], the
tangent vector d(t) coincides with grad f/\\grad / | | at d(t).

This lemma is a consequence of [1, Th. 6.1 (p. 242), Cor. 16.4 (p. 314)].
This completes the proof of Proposition 2.2.1.

§3 Tangential curves and their lifts

Fix a Riemannian structure g on V and a vector field X of class

C3 on V such that ω(X) — 1. Let ω' = — &zω, and {φs} the one-parameter
group of transformations generated by X.

3.1. Tangential curves and their lifts.

DEFINITION 3.1.1. A continuous curve c in V is called tangential if
the image of c is contained in a leaf. For a tangential curve c: [0, τ] —> V
and η e R, suppose that there is a continuous function σ: [0, r] —>R such
that η — σ(0) and such that the curve b: [0, τ]-*V defined by b(ί) = 9>σ(ί)(c(ί)),
is tangential. Then b is called the η-lift of c, and σ is called the height
parameter of the 57-lift of c.

Let it be a positive number such that the inequality

ds2 r

holds for all veTλ(V) and all s satisfying |s| < 1, where T^V) denotes
the tangent sphere bundle of V. This K has the following property.
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LEMMA 3.1.1. Let c: [0, τ] —>V be a tangential, pίecewise Cι curve

such that ||c(ί)|| = 1? ω'(c(ί)) < 0 for every te [0, τ] at which c is differen-

tiable. -Let η be a real number such that 0 < \η\ < 1. // the inequality

Γfexpf aλ
J o \ Jc[o,w]

holds, then c has the η-lift, whose height parameter σ satisfies

σ~(f) < σ(t) < σ+(t) for all t e (0, τ] ,

where

i r \ /1 P*1 P
σ*(f) = b e x p ω'\ / 1 + /cη exp ωf

\ Je[0,ί] 1/ \ Jθ\ J c[0,w] ,

This lemma will be proved in 3.2.

COROLLARY 3.1.2. Let K be as above. Let c: [0, τ] —> V be a tangential,

pieceiυise C1 curve such that \\t(t)\\ = 1, ω'(t(t)) = 0 for every te [0,τ] at

which c is differentiable. If a real number η satisfies

\η\ < l/(κτ + 1) ,

then c has the η-lift.

Proof. Since every tangential curve always has the O-lift, we may

assume η Φ 0. The inequality \η\ < 1/(ΛT + 1) implies that \η\ < 1 and

τ < (1 — |>?|)/(/φί). Therefore, since ω' = 0, the curve c satisfies the
J c[0,w]

assumption of Lemma 3.1.1. Hence c has the η-YdX.

3.2. Proof of Lemma 3.1.1. The proof will be preceded by four

lemmas, 3.2.1.-3.2.4.

LEMMA 3.2.1. Let ηeR. Suppose that a tangential, C1 curve c has

the η-lift. Then the height parameter s = σ(t) satisfies the differential

equation

dt

with initial condition s(0) = η.

Proof. For the curve c: [0, τ] —• V, consider the map F: [0, τ] x R —> V

defined by F(t,s) = φs(c(t)), te[O, τ], seR. Let γ be the vector field on
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[0, τ] x R defined by γ(t, s) = d/dt — ω(φs>*t(t))d/ds where (t, s) is the canon-

ical coordinates on [0, τ] X R. It can be checked directly that (F*ω)γ = 0.

Let σ: [0, r]->J? be the height parameter of the ^-lift of c. Let d: [0, τ]

-> [0, τ] x R be the curve (of class C1) defined by d(t) = (t,σ(t)). Since,

by definition, the set Fod([0,τ]) is contained in some leaf, we see that

(F*ω)d(t) — 0 for all te[O, τ]. Hence, we see that for each t, the two

vectors γd{t)f d(t) are linearly dependent, because the one-form F*ω is

nonsingular. Using the identity d{t) — d/dt + (dσ/dt)d/3s, we conclude

that γd(t) and d(t) coincide, and therefore the function σ satisfies the

differential equation dσ/dt = —ω(φσtjt(t)) with initial condition σ(0) = η.

LEMMA 3.2.2. Let K be the same positive number as in 3.1. Then

the following inequalities hold:

ω\v)s — κs2 < — ω(φS)*v) < ω'(v)s + tcS2

for any nonzero s with \s\ < 1 and any veT^V) Π ω~K0), i.e., any unit

tangent vector v such that ω(v) = 0.

Proof. Regarding — ω(φSt*v) as a function of s, by Taylor's formula,

we have

-«* >v) = -ωiv) -
where fe[O, s]. Since, by definition,

I d \
ω(φSitίv) -

\ ds I s=o
we have

d-ω(φs,*v) = ω'(v)s - 1 f
2 \ \ as

for veω~\0). Hence we obtain the desired inequalities.

The following is a direct consequence of a classical result, due to

Ricatti, on ordinary differential equations.

LEMMA 3.2.3. Let κ,η e R. Let c: [0, τ] -> V be a C1 curve. Consider

the differential equations

4?- = ω'W))8 ± ics2 .
dt
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Then the solutions s = σ±(t) with σ±(0) = η are given by

σ±{t) = h e x p ω'\ / [1 + icη \ exp ωΊdu) .
\ Jc[O,ί] 1/ \ Jθ\ Jc[o,w] / /

LEMMA 3.2.4. Let K be the same positive number as in 3.1. Let η

be a real number such 0 < \η\ < 1. Let c: [0, τ] —> V be a tangential, Cι

curve such that ||c(ί)|| == 1, ω'(c(i)) < 0 for every te[O, τ], αncZ such that

the inequality

Γfexpf ω7

J θ \ JC[O,M]

is satisfied. Then c /̂ αs ίfeβ η-lift, whose height parameter σ = σ(

satisfies the inequalities

σ~(t) < </(ί) < σ+(O /or αZZ ί e (0, r] ,

where

σ

±(t) = hy exp ω' / 1 + icη \ exp ω7

\ Jc[o,ί] / / v Jov jc[o,w]

Proof. For simplicity we assume 27 > 0, the proof in the case η < 0

being similar. By Lemma 3.2.3, the solutions of the differential equa-

tions ds/dt = α/(c(ί))s ± Λ S2 with initial condition s(0) = 37, are given by

s = ^ ( O . It is clear that 0 < σ~(t) for ί e [0, τ]. Since, by assumption,

(exp ωΊ du < (1 — 7])/(fcτ]) for t e [0, τ], we see that σ+(t) < exp α/
J θ \ Jc[0,π] / Jc[O,ί]

for ί e [0, τ], and therefore σ+(ί) < 1 for t e [0, τ\. Note that by Lemma

3.2.2, the following inequalities hold:

- Λ S2 < -ω(φs>Mt)) < ω/(c(ί))s + Λ S2

for se(0,1] and ί e [0, r]. Using these inequalities and Lemma 3.2.1,

and comparing the functions σ±(t) and the solution s = σ(t) of the dif-

ferential equation ds/dt = —ω(φ8tjί(t)) with initial condition s(0) = η, we

can conclude that the curve c has the 57-lift, whose height parameter σ

satisfies the inequalities σ~{t) < σ(t) < σ+(t) for ί e (0, τ], as desired.

Proof of Lemma 3.1.1. Using Lemma 3.2.4, we can easily prove

our lemma.

3.3. Admissible tangential curves. For the Riemannian, foliated mani-

fold (V,ω,g), it is clear that there is a vector field Y (of class C2) on V
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satisfying the following conditions:
( i ) ω(Y) = 0 (i.e., ωx(Yx) = 0 for all xeV);

(ii) ω\v) — g(Y, V) for all veω'KO), i.e., ωx(v) — &(YX, V) for every
x eV and every tangent vector v at x such that ωx(v) = 0.
We observe that for each leaf L of (V, ω), the vector field Y induces a
vector field Y\L on L, which is the dual vector field of ωf with respect
to the Riemannian structure g|L, and hence that, by Lemma 2.1.1, the
vector field Y is determined independently of the choice of X.

DEFINITION 3.3.1. This vector field Y is called the leaf-gradient
field of (V,ω,g).

By Lemma 2.1.1, we note that the set of singular points of Y coincides
with the critical cycle Σ of (V, ω).

DEFINITION 3.3.2. Let Y be as above. A tangential curve α will
be called an admissible tangential curve of (V, ω, g) if α is piecewise C1

and if, for any x = α(ί) at which F does not vanish, the tangent vector
ά(ί)(exists and) coincides with —YX/\\YX\\.

PROPOSITION 3.3.1. Let Y be the leaf-gradient field of (7,ω,g). Let
Z be the vector field on V — Σ defined by

Z — v /il V ιι2

A X — — i xj\\ i x\\

for x e V — Σ. Let W be an open subset in V such that Cl W Π Σ = φ.
Then for any positive number ε, there exists a positive number h hav-
ing the following property: for any ηe(—h,h) and any integral curve
z: [0, τ\-*W of Z, there is the ψlift of z, whose height parameter σ
satisfies

\η\e~a+s)t < \σ(t)\ < \η\e-{l-s)t for all ί e [ 0 , r ] .

Proof. Let ε > 0. Applying the mean value theorem to the func-
tion

S ι-> —ω(φSt*Zx) — ω'(Zx)s ,

where x e Cl W, and using the identity

d ω(φs>*Zx) = -ω'(Zx)ds I o

and the compactness of Cl W, we can find a positive number h such that
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\-ω(φs>*Zx)s-1-ω'(Zx)\<ε

for any xeClW and any nonzero s e( — h,h). Hence, for this number

h, we have

— e — 1 < —ω(φSt*Zx)s-1 < ε — 1

for xeQλW and nonzero se(—h,h), because ω\Zx) = —1. Let z: [0, τ]

-^W be an integral curve of Z. It is clear that

- ε - 1 < -ω(φs,M))s-1 < e - 1

for nonzero se( — h,h), and therefore

- ( 1 + ε)s < -ω(φtj(fi)) < - ( 1 - e)s for s e (0, h) ,

- ( 1 + ε)s > -ω(p,,,i(t)) > - ( 1 - ε)s for s e (-h, 0) .

Let ηe( — h,h). Similarly to the proof of Lemma 3.2.4, using Lemma

3.2.1 and comparing the functions 7]e~a±e)t and the solution of the dif-

ferential equation ds/dt — —ω(φ8tMt)) with initial condition s(0) = η, we

can conclude that the curve z has the 27-lift, whose height parameter σ

satisfies \v\e~a+eH < |σ(ί)| < \η\e~a-ε)t for t e [0,r], as desired.

§4. co-preferred Riemannian structures

4.1. β>-preferred Riemannian structures. We shall say that (C7, / xι,

• , xn+1) is an ^-chart (at p) of class Cs (1 < s < r + 1) if (x1, , xn+1)

is a local coordinate system of class Cs in a neighborhood t/ of p e V,

and if the identity ω\U = fdxn+1 holds for some positive-valued Cs~ι

function / on U.

D E F I N I T I O N 4.1.1. Let λ be an integer on the range 0 ,1 , ••-,%.

An i^-chart (U,f; x1, >,xn+1) of class C4 is said to be of type (λ) if U

is mapped onto a neighborhood of the origin in Rn+ί, by O \ •• ,x7 l + 1)

and if the identity

l o g / - # ( ^ + 1 ) - Or1)2 - . . . - (xλ)2 + (x*+1Y + + (a^)2

holds throughout £7, where g is some suitable function defined on an open

set in R.

Let μ be an integer on the range 0,1, ,n — 1. An J^-chart (U,

f;x\ ',xn+1) of class C4 is said to be of type (*,μ) if U is mapped

onto a neighborhood of the origin in Rn+\ by (a?1, - . . ,£ n + 1 ) and if the
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identity

log/ = g(xn,nn+ί) - (x1)2 - . . . - (^) 2 + (^+ 1) 2 + . . . + (xn~lf

holds throughout U, where # is some C3 function which is defined on an

open set Uo is R2 and satisfies the following conditions:

(i) the set Σ(g) defined by

Σ(g) = {(xn,xn+1) e U0\dg(xn,xn+1)/dxn = 0} ,

coincides with either the set

{(xn,xn+1) e U0\(xn)2 - xn+1 = 0}

or the set

{(xn,xn+1) e U0\(xn)2 + xn+1 = 0}

(ii) d2g{xn, xn+1)/(dxn)2 = 0 a t (xn, xn+1) = (0,0) ,

d*g(xn, xn+1)/(dxn)3 Φ 0 a t (xn, xn+1) = (0,0) ,

32^(^w, xn+1)/dxndxn+1 Φ 0 a t (^TO, £ w + 1 ) = ( 0 , 0 ) ,

d2g(xn, xn+1)/(dxn)2 Φθ at any (xn, xn+1) e Σ(g) - {(0,0)} .

DEFINITION 4.1.2. A Riemannian structure g of class C2 on V will

be called an ω-pref erred Riemannian structure if for any p e Σ, there

exists an J^-chart-at-p (£/, / ; x1, , xn+ί) of class C4 satisfying one of

the following conditions:

( i ) {U,f;xι, '>',xn+ι) is of type (X) for some λ and satisfies

(ii) (Uff x1, '- ,xn+1) is of type (*,^) for some μ and satisfies

ί « for l < i / < . - ! ,

a;* dxn

(δij is the Kronecker delta.)

PROPOSITION 4.1.1. // ω satisfies Condition (T), then V admits an

ω-pref erred Riemannian structure.

We shall prove this proposition in § 8.
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The following three lemmas are important for the proofs of the main

theorems. Let X,ω' be as in §3.

LEMMA 4.1.2. Suppose that an ω-pref erred Rίemannian structure g

is given on Y. Then there exist two positive constants a%,τ% such that

for any admissible tangential curve α:[0, τ]-*V of (V,ω,g), the follow-

ing inequality holds:

ω' < —a^t for any t satisfying τ* < t < τ .
Jα[O,ί]

This lemma will be proved in 4.3. The following lemma concerning

the lifts of admissible tangential curves is fundamental.

LEMMA 4.1.3. Suppose that an ω-pref erred Riemannian structure g

is given on V. Then there exist two constants η*, β* such that 0 < η* < 1,

0 < j8* < I/37* and such that, if η is a real number satisfying 0 < \η\ < η*y

then any admissible tangential curve a: [0, r] —> V of (V,ω, g) has the η-

lίft, whose height parameter σ satisfies the following inequalities:

σ*(t) < σ(t) < σ%{t) for all t e [0, τ] ,

where σ%(t) are defined by

σ%(t) = (^exp f ω')l(X + ηβ*) .
\ Jα[O,ί] //

Proof. Let a^,r# be the same constants as Lemma 4.1.2, and let tc

be the same positive number as in 3.1. Put

a = τ* + aiι , β# = ica , η* = 1/(1 + κo) .

Now, let η be a real number satisfying 0 < \η\ < η*, and let α: [0, τ] ->

V be an admissible tangential curve. It is clear that a < (1 — I^D/OφP,

and that

(exp ωΊ du < t , because ωf < 0 .
J θ \ Jα[0,w] / Jo[0,ίi]

First, we shall prove that

ft / f \
exp α/ du <. a for all t e [0, τ] .

J θ \ Jo[0,ω] /

In the case τ < τ^, clearly this inequality holds, because τ* < a. There-

fore we assume τ > r^. From Lemma 4.1.2 we know that
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exp ωf < exp {—a^t) for t > τ* .
Jα[O,t]

Hence, for t e [0, r] we have

Γt I P \ Λr* Γt Coo

exp ω' )du = + < Tj|β + (exp (—α
J θ \ Jo[0,w] / JO Jr* JO

— τ* + a*1 — a , as desired .

Hence, from Lemma 3.1.1 we see that the curve α has the ^-lift, whose

height parameter σ satisfies the inequalities σ~(t) < σ(t) < σ+(t) for t e (0,τ],

where σ± are the same functions as in Lemma 3.1.1. It is easy to verify

that

σϊ(t) < σ"(ί), σ+(t) < σ%(t) for all t e [0, τ] ,

because

rt I /» \

Λ: exp ω'\du
J 0 \ J α[0,w] /

<

Hence we conclude that σ*(t) < σ(t) <σ%{t) for all ίe[0, τ]. Our lemma

is proved.

Remark 4.1.1. In the preceding lemma, putting β% = 1/(1 + η^)9

we observe that 0 < J8J < 1 < j8J, and that the inequalities

j8;.|?| exp f ω7 < |σ(t)| < jSJ | 9 | exp f ω'

hold.

The next lemma gives us the existence of the maximal admissible

tangential curves.

LEMMA 4.1.4. Suppose that an ω-pref erred Riemannian structure g

is given on V. Then for any point p of V, there exists an admissible

tangential curve a which passes through p and satisfies one of the

following:

( i ) a is defined on ( — oo, oo)

(ii) α is defined on ( — oo,0], and α(0)e2Ό;

(iii) α is defined on [0, oo), and α(0) e Σn

(iv) α is defined on a finite interval [0, τ], and a(0)eΣn, a(τ)eΣo.

This will be proved in 4.3.
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4.2. y-preferred neighborhoods of Σ. Let g be a Riemannian structure

on F, and let Y be the leaf-gradient field of (V,ω,g) (3.3).

DEFINITION 4.2.1. An open set T* in V will be called a Y-preferred
neighborhood of the critical cycle I7 if the following nine conditions are
satisfied:

(i) 2cf,
(ii) There exist two positive constants αf,α? such that, if an admis-

sible tangential curve α: [0, τ] —> V satisfies I m α c P , then τ < αf, and
such that, if an admissible tangential curve α: [ — τ, τ] —> V satisfies the
following conditions:

α(0) e Cl T* n (V - Γ*) τ < a* ,

then

either α([-τ, 0]) IΊ T* = 0 or α([0, τ]) Π T* = 0 .

(iii) For any x e T*, there exists an admissible tangential curve
α: [0, τ] —> V such that ^ e l m α c C1T*, and such that one of the follow-
ing is satisfied:

α(0) 0 T* and α(τ) € T*
α(0) e ^ n and α(τ) g Γ*

α(0) 6 Γ* and α(τ) 6 2Ό

α(0) e Σn and α(r) e 2Ό .

(iv) There exists a positive constant af such that for any

x e Cl T* Π (7 - Γ*) ,

there is an admissible tangential curve α: [0,τ] -> V satisfying the follow-
ing conditions:

τ > af Im α Π Γ* = 0

and

either α(0) = x or α(r) = ίc .

Here in order to describe (v)-(viii), we introduce the following word:
A nonempty subset /* of V will be called a T*-vein if there is a vein
J such that /* coincides with some connected component of the subset
T* Π J in /. For a T*-vein J*, we denote by dianvO/*) the supremum
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of the distances in /* between any pairs of points of J*.
(v) There exist three positive constants &*,&*,&* such that

j (J*) < bf , m e s ^ (J*) < b*

for any T*-vein /*, and such that

s ^ (/*) > 6*

for any noncompact T*-vein J*, where m e s ^ (/*) is the total measure
of the in — l)-manifold J* — (J* Π Σ) with the Riemannian structure
induced by g.

(vi) If a T*-vein J* is compact, then there exists an imbedding
i: Dn —> L of a closed unit w-disk to a leaf such that for each ε-sphere
SnΛe), 0 < ε < 1, the image i(Sn-\e)) is a vein and ί(Sn-1(ε/)) = ^* for
some ε7.

(vii) (local Γ-invariance) Let a: [0, τ] —> V be an admissible tangential
curve such that ImαC Γ*, and let a': [0,τ7] —>V be another admissible
tangential curve such that

either α'(0) e J*(α(0)) or a'(r0 € J*(a(τ)) ,

where /*(a(0)), /*(a(τ)) are the T*-veins containing α(0), α(τ), respectively.
If

f ω' = ί ω' ,
Ja'CO.r'] Jα[0,r]

then I m α ' c T*.
(viii) There exists a positive constant c£f, and for each x e T*, there

exists an imbedded closed w-disk Q in the leaf L(x) through x, such that
Q contains the connected component of Γ* Π L(x) containing x> and such
that for a function h: Q -+ R satisfying

ω'\Q = dh ,

the following inequality holds:

d*-(hQ - hτ) inf mes,,! (Qι~Kht) n Γ*)) < mesw ((λ-Ktλ,, KJ) Π Γ*))
t€[0,τ]

for any admissible tangential curve α: [0, τ] —>V such that I m α c Γ * ,
where ht — h(a(t)), and (()) denote the connected components of the sets in
the parentheses, containing the point α(£), and where the right side of the
inequality denotes the total measure of the ^-manifold {(h~\Qιτ, hj) Π Γ*))
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with the Riemannian structure induced by g.

(ix) For any vein J, the subset J — (/ Π T*) iŝ  an- in — l)-submani-

fold with or without boundary, of / — (/ Π 21).

PROPOSITION 4.2.1. Suppose that an ω-pref erred Riemannian structure

g is given on V. Let Y be the leaf-gradient field of (V,ω, g). Then for

any neighborhood W of Σ, there exists a Y-pref'erred neighborhood T* of

Σ such that Γ* c W.

We shall prove this proposition in § 8.

4.3. Proofs of Lemmas 4.1.2 and 4.1.4. For the ω-preferred Rieman-

nian structure g and the leaf-gradient field Y of (V, ω, g), let T* be a Y-

preferred neighbourhood of Σ.

Proof of Lemma 4.1.2. Put

η = min ||Yx\\ , a = of + α* , τ* = 2α , or* = -2?H ,
xev-τ* 2(1

where αf,α? are the same constants as in (ii) of Definition 4.2.1. Now

let a: [0, τ] -> V be an admissible tangential curve. Let τ* < t < τ. Choos-

ing an integer k so that 0 < t — ka < α, we have

Γ Γt fa f2a (*t

α / = a ) ' ( ά ( M ) ) d M = + + ••• + .
Jα[O,ί] Jo J o J α jΛα

F o r u e [0, r] such t h a t a(u) eV— Γ*, we observe t h a t

α/(ά(tt)) = ω'C-Γ^j/H Yβ(tt)||) = β(Y, - Y/|| Y| |) e ( l 0

We also see t h a t ω'(ά(u)) < 0 for all u e [0, τ]. Hence

ω\ά{u))du < 0 .

J ka,

By (ii) of Definition 4.2.1, we have for each i = 1, ,fc,

/*(i + l ) <z

I ω \d\H)))aiAj *v> ~~~"ΐ)a<2l .
J i α

Since k> (t — a)/a, using the fact that (ί — a)/t > 1/2, we have

I ωf < —feίl* ^ 59<x*ί < —*—̂ — t = —oc^t ,
Jα[o,ί] αί 2α
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which proves our lemma.

Proof of Lemma 4.1.4. Since every admissible tangential curve in
V — T* is an integral curve of the vector field — Y/||Γ|| defined on
V — T*, the lemma is a direct consequence of the conditions (iii) and (iv)
in Definition 4.2.1.

§ 5. Proof oί Theorem I

Throughout § 5, § 6, and § 7, we assume that Condition (T) is satisfied.
Let g be an ^-preferred Riemannian structure. (Such a Riemannian
structure exists by Proposition 4.1.1.) Let X be a vector field of class
Cr on V such that ω{X) = 1, and {φ8} the one-parameter group of trans-
formations generated by X. Let Y be the leaf-gradient field of (V, ω, g)
(see 3.3) and put ωf = —

5.1. Proof of Theorem I. Let -η*y β* be the same constants as in
Lemma 4.1.3. We begin with a lemma.

LEMMA 5.1.1. There exists a positive constant ζ* having the follow-
ing property: for any x,yeV satisfying dis(x,y) < ζ*, there is a real
number η with \η\ < η* such that the point φη(x) is contained in the leaf
through y.

This is an easy consequence of local triviality of the foliated structure.

Proof of Theorem I. Note that Σo is a one-manifold and is trans-
versal to leaves. From Remark 2.2.1 we know that there exists a leaf
L containing a point p e Σo, such that the closed one-form ωf \ L on L is
proper. For i = 0,1, , n, and geL, note that q belongs to Σt if and
only if q is a nondegenerate singular point of ω'\L, with index ί, be-
cause for an J^-chart (£7, / ; x\ , xn+1) and q e U Π Σ, the following
identities hold:

dn^f{q) = ±~*f-{q) for i,, = 1, • -,n .
dxW f dW

Hence we can apply Proposition 2.2.1 to (L,α/|L).
We shall prove L is compact. Since Σo is transversal to leaves,

there is a positive number δ such that for any nonzero s with~|s|<<5,
the leaf through the point <ps(p) intersects Σo — {p}. Suppose that L were
not compact. Then there would exist x e L and η e R having the follow-
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ing properties:

0 < V < V* , 57/(1 - ηβ*) < δ , φv(x) e L .

By (v) of Proposition 2.2.1, there would exist an admissible tangential

curve α: [0, τ] -> V such that x = α(0), p = ct(τ). By Lemma 4.1.3, there

would exist the 37-lift of α, with the height parameter σ satisfying

0 < σ(τ) < η/(l - ηβj .

Since the leaf through φσ(τ)(p) would be nothing other than L, the leaf

L would intersect Σo — {p}, which contradicts (iv) of Proposition 2.2.1.

Thus L is compact. Since, by (ii) of Proposition 2.2.1, L is simply con-

nected, our theorem follows from the Reeb global stability theorem [1,

(B, III, 11)].

5.2. The orientation oϊ Σ. We orient Σ as follows. Let p eΣ, and

let (U,f;xι, "',xn+ι) be an J^-chart at p. Denote by 0 the origin of

Rn. Consider the map df: U -> Rn defined by

Note that U Π Σ = (df)-\O) Let

be the map induced by df, where TP(U), T0(Rn) are the tangent spaces

of U, Rn Sit p,0, respectively. It follows from Condition (T) that the

map (3/)#p is onto. Since the kernel of (3f)*p coincides with the tangent

space TP(Σ) of Σ at p, we have a direct sum

TP(U) = Tp(Σy 0 TP(Σ) ,

and we see that the restriction

is an isomorphism. This isomorphism and the standard orientation of

Rn define an orientation ξ^p) of TpiΣ)1-. Let ξ(p) be an orientation of

TP(U) determined by the base

dxι dx71
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Then we define the orientation ξ2(p) of TP(Σ) so that

ξ(p) = fi(p) θ ξ2(p) ,

i.e., so that the orientation ζ(p) agrees with the orientation determined

by a base (v19 -,vn,vn+1) of TP(U), where (v19 -,vn) is a representative

of fiίp) and vn+1 is a representative of ξ2(p). (Orientation is to be under-

stood as an equivalence class of basis.) It can be checked directly that

the orientation ξ2(p) of TP(Σ) is defined independently of the choice of SF-

charts and varies continuously with p e Σ. Hence ξ2 defines an orien-

tation of Σ. In 5.3, we shall suppose that Σ is oriented by this £2.

5.3. Corollaries. Let Sι be an oriented, one-dimensional sphere of

class Cr, and let θ be a nonsingular one-form of class Cr~ι on S1 such

that the integral of θ on Sι is equal to 1.

As another version of Theorem I, we have:

THEOREM F. Let the hypotheses be as in Theorem I. Then there

exists a Cr submersion

π: V-+S1

such that the identity

ω = fπ*θ

holds throughout V, where f is some positive-valued function of class

Cr~ι on V.

Proof. Obvious.

The following assertion is an immediate consequence of Theorem Γ.

COROLLARY 5.3.1. Under the same hypotheses as in Theorem I, the

one-form ω can be written in the form

o) = fa ,

where f is a positive-valued function of class Cr~\ and a is a nonsingular,

closed one-form of class Cr~\

Next, we consider the relation of the homology class of Σ and the

Euler characteristics of leaves.

PROPOSITION 5.3.2. Let S\ θ be as above. Suppose that (V, ω) has
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the following property: there exists a C1 submersion π: V —> Sι such that

the identity ω = fπ*θ holds throughout V, where f is a positive-valued

function. Then for b e S1, the Euler characteristic of the closed n-manί-

fold π~ι{b) is equal to the integral of π*θ on the critical cycle Σ {with the

orientation given in 5.2).

Proof. Denote by πx the restriction of π to Σ. Let b e S1. We may

assume that the map πx: Σ —> S1 is transversal to b. Because, the set of

regular values of πx is dense in S\ and for any bf e S\ the two manifolds

π~\b), π~ι{b') are diffeomorphic and hence their Euler characteristics are

equal. Note that π~ι{b) ( 1 ^ = 0. We denote by deg πx the degree of

the mapping πλ between the oriented manifolds Σ, S\ It is easy to verify

that the integral of π*θ on Σ is equal to deg^. On the other hand, let

m+ (or m_) be the number of points p in πϊ\b) such that

θb{πx£2{p)) > 0 (or θb{πx*ξ2{v)) < 0) ,

where πx*: TP{Σ) —> T^S1) is the induced map, and ξ2{p) is to be understood as

a nonzero vector in TP{Σ) which defines the orientation of Σ at p. It is

well-known that d e g ^ = m+ — m_. We shall prove that the Euler char-

acteristic of π~ι{b) is equal to m+ — m_. The following fact is essential:

if a point p e πϊ\b) is of type (ί), for some i = 0, ,n, then

This fact can be checked directly. For i = 0, , n, we denote by ct the

number of elements in the finite set π~\b) Π Σt. From the fact that for

% = 0, , n and a point p e π~ι{b) Π Σu the index of the closed one-form

ω'\π~ι{b) at the singular point p is equal to i, we know that the Euler

characteristic of π~ι{b) is equal to Σ?=o { — 1)*^. From the relation

7ϊl+ — Σ Ci > m- — Σ °i >
i:even i odd

we conclude that the Euler characteristic of π~ι{b) is equal to m+ — m_.

This proves our proposition.

The next corollary is an immediate consequence of Theorem I,

Theorem V and Proposition 5.3.2.

COROLLARY 5.3.3. Let the hypotheses be as in Theorem I. Let v be

a vector field of class Cι on V such that ωx{vx) Φ 0 for all x e V. Denote

by [Σ] the integral homology class of Σ {with the orientation defined in
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5.2), in H^V Z). If [Σ] Φ 0, then there exists a closed integral curve

of v.

§6. Proof of Theorem II.

Let §,X,{φs},Y,ω/ be as in §5.

6.1. Notations and a lemma. For a connected, compact (n — l)-mani-

fold G of V, with or without boundary, which has a Riemannian structure

induced by g, we denote by diamG(G) the diameter of the Riemannian

manifold G, i.e., the maximum distance in G between any pairs of points

of G, and we denote by mes^CG) the total measure of G with respect

to the Riemannian measure on G. Similarly, for an open subset G of a

compact (n — l)-submanifold of V or for an open subset If of a compact

n-submanifold of V, we can define m e s ^ (G) or mesn (H), and we can

also define diamG (G) if G is connected. For an open or closed sub-

set C of V, let mesn+1 (C) denote the measure of C with respect to the

Riemannian measure on V.

For a subset G of a vein of (V, ω) and a number u > 0, we denote

by G[u] the subset of V consisting of those points x such that there ex-

ists an admissible tangential curve α: [0, τ] —> V satisfying the following

conditions:

α(0) e G α(τ) = x ωf — —u .
J α[0,r]

For a vein J and positive numbers σ, μ, we define

cub (/, σ, μ) = U φs I \J J[u\) .
0 \ l /

LEMMA 6.1.1. If Σo = 0, and Σn_x = 0, ffeen ί/iere exist three posi-

tive constants c^,d,e such that the inequality

c^ σ-μ-dianv(J) < mesn + 1 (cub(J,σ,μ))

holds for any numbers σ, μ satisfying 0 < σ < l , 0 < μ< e, and for any

nonsίngular compact vein J satisfying the following conditions:

dianv (J) > d

J n Jίu] = ύ for 0 < u < μ

U J[u]) Π φJ\JJW\ - 0 for 0 < 8 < σ .
0 / \ 0 /
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This lemma will be proved in 6.4.

6.2. Proof of Theorem II. The proof will be preceded by five lemmas,

6.2.1-6/2.5.

LEMMA 6.2.1. Suppose that Σn Φ 0, Σn^ = 0, Σo = 0. Let p be a

point in Σn, and Sι(p) the connected component of Σ containing p. Put

R = U L(q) ,

where L(q) is a leaf through a point q. Then:

( i ) Every point in Sι(p) is of type (n).

(ii) R is a connected, noncompact, open subset in V.

Further, there exists a Cr~ι submersion π of R onto Sι(p) having the

following properties:

(iii) The restriction π\S\p) is the identity.

(iv) For each q e Sι(p), the n-submanifold π~\q) is a noncompact,

simply connected leaf of (V, ω).

(v) For each qeSKp), there exists an open set I in Sι(p) containing

q and a C7"1 diffeomorphism

such that π(Φ(y, x)) — y for all y el and all x e π~\q), and such that for

each point xoeπ~ι(q), there exists a Cr~ι imbedding Θ:I—>R satisfying

Φ(y,%o) = ψβ^Md for all yel.

Furthermore, for any point x of R and any real number η satisfying

<pSv(x) e R for all s e [0,1] ,

there exists a Cr diffeomorphism

ΛXiV: L(x) -> L(φη(x)) ,

where L(x), L(φv(x)) are leaves through x, φv(x), respectively, such that

the following condition is satisfied: there exists a Cr function λ: L(x) —•

R satisfying

λ{x) = 7], ΛXiη(y) = φλiy)(y) for all y e L(x) .

Proof. Part (i) follows from the assumption Σn_x = 0 and the fact

that Σ is covered by J^-charts of "type 00" or of "type (*,μ)" (see 4.1).
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Note that (i) implies that the one-dimensional sphere SKp) of class Cr~ι

is transversal to leaves.

Assertion 1. Suppose that a leaf through a point q of S\p) does not

intersect Σ%. Then L is simply connected and noncornpact, and satisfies

LΠΣn = q.

Proof, From Remark 2.2.1 we know that the closed one-form — ω'\L

on L is proper. For ί = 0,1, , n and a point x of L, note the follow-

ing fact: x belongs to Σt if and only if x is a nondegenerate singular point

of — ω'|L, with index (n — i). Hence, by the assumption Σn_λ — 0, we

can apply Proposition 2.2.1 to (L, — ω'\L). Assertion 1 follows from (ii),

(iii) and (iv) of Proposition 2.2.1.

Assertion 2. There exists a positive number p having the following

properties:

( i ) \p\ < η*, where η* is the same constant as in Lemma 4.1.3;

(ii) for each qeSKp), a mapping defined by st-*φ£q) of (—p,p)

into V, is one-to-one

(iii) for each qeSKp), there exists an imbedding I: (—pyp) —> SKp)

of class C7"1 such that for any se(—p,p), the leaf through <ps(q) passes

through l(s).

Proof. Since S^p) is a one-dimensional sphere of class Cr~\ and is

transversal to leaves, using the facts that for a point q of V, there exists

an ^-chart at q of class C r, and the curve φs(q) (seR) is of class Cr

(X is assumed to be of class Cr), one easily verifies Assertion 2.

Assertion 3. Let p be as in Assertion 2. Let qeS1(p). If a tan-

gential curve c: [0, τ] —» V satisfies

c(0) = φs(q), c(r) = φs,(q) for some s,s' e(—p,ρ) ,

then c(0) = c(τ), and s = s'.

Proof. Suppose that c(0) Φ c(τ). Recall that for almost every

ηe(—p,p), the leaf through φη(q) does not intersect Σ%. Then, considering

a suitable lift of c, we should find a leaf which does not intersect Σ%,

and passes through two distinct points φη(q), φv>(q), η, η'e(—p,p). By

(iii) of Assertion 2, such a leaf would intersect at least two points of
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Σn, which contradicts Assertion 1. Hence c(0) = c(τ). Part (ii) of As-
sertion 2 implies s = s'.

Assertion 4. Suppose that a leaf L through a point q of S\p) does
not intersect Σ^. Let p,l be as in Assertion 2. Then there exists a Cr

imbedding

Ψ:(-p,p)χL->R

such that for each se(—p,p), the image ¥(s x L) is a leaf through l(s).

Proof. As in the proof of Assertion 1, we can apply Proposition
2.2.1 to (L, —ω'\L). For (η9 x) e (-p,p) X L, let α:[0,r]->7 be an
admissible tangential curve such that α(0) = q, α(τ) = x. From Lemma
4.1.3 we know that α has the 37-lift with height parameter σ. Then define

W(q, x) = φa{τ)(x) .

From Assertion 3 we observe that Ψ(η, x) is defined independently
of the choice of admissible tangential curves α, and that Ψ is one-to-one.
Hence, it is obvious that Ψ is an imbedding. Using the fact that the
height parameters a of the 37-lifts i\η\ < p) of admissible tangential curves
α: [0, τ] —> V are bounded, indeed, we have, by Lemma 4.1.3,

\σ(t)\<p/a-pβ*),

where β# is as in Lemma 4.1.3, we know that for each -ηe{—p,p), the
image Ψ(η x L) coincides with a leaf, which passes through l(η). That
Ψ is of class Cr follows from the facts that for every point x of V, there
exists an #~-chart at x of class Cr, and the curve φs(x) (s e R) is of class
C\ Thus Ψ satisfies our requirements.

We can now prove (ii)-(v) of our lemma. First, for xeR, we define
π(x) to be a point where the leaf through x intersects SKp). The similar
argument to the proof of Assertion 3 shows that the map π: R —> S\p) is
well-defined. By definition, each inverse image TΓ"1^), q e Sι(p), is a leaf.
That the map π is of class Cr~γ follows from the fact that the one-sphere
Sι(p) is of class Cr~K It is obvious that the restriction π\Sι(p) is the
identity, and therefore that π is a submersion. Now, let p be as in
Assertion 2, and let q' be a point of SKp). Then we can find L, q, I, Ψ
as in Assertion 4, such that qf e Im Ψ, because for almost every q e SKp),
the leaf through q does not intersect Σ*. Hence π~Kq') is diffeomorphic
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to L, and thus π~\qf) is noncompact and simply connected. Further-

more, putting / = Im I, and using the maps Ψ, I, one obtain the required

diffeomorphism Φ: I x π~\qf) -> π~\I) to prove (v). Our last assertion is

an immediate consequence of (v). This completes the proof of Lemma

6.2.1.

Remark 6.2.1. Let the hypotheses and the notation be as in Lemma

6.2.1. Let S1 be the ordinary one-dimensional sphere. Then there exists

a Cr submersion ft of R onto S1 having the similar properties to π. More

precisely, ft satisfies the following conditions:

( i ) The restriction π \ S^p): S^p) -> S1 is a diffeomorphism.

(ii) Each inverse image π~\q) is a noncompact, simply connected

leaf.

(iii) For each q e S\ there exists an open set / in S1 containing q

and a Cr diffeomorphism

such that π(Φ(y,x)) = y for all yel and all xeπ~ι(q).

This fact may be seen as follows. Since Sι(p) is a one-dimensional

sphere of class Cr~ι which is transversal to leaves, smoothing this im-

bedded one-sphere, we have a Cr+1 imbedding

such that the composition π o %: S1 —> Sλ(p) is a diffeomorphism. It is easy

to verify that a map ft defined by

π(χ) = (TΓ o ϊ)-\π(x)) , xe R ,

gives us the required submersion.

LEMMA 6.2.2. Let the hypotheses and the notation be as in Lemma

6.2.1. Let L be a leaf which is contained in R and does not intersect Σ*.

Let f:L-*R be a first integral of ωf\L> i.e., satisfy

df = ω'\L.

(Such a function does exist by (i) of Proposition 2.2.1.) Let v be a real

number. Assume that f~K( — oo,v]) Π Σλ — 0. Suppose that f~ι(y) is a

finite union of nonsingular, compact veins J>-\ j = 1, , m, and has a

e" fence in the following sense: There exists an immersion
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F\f~\v) X [0,ε]->7

such that

( i ) - the restriction F\f~\v) x 0 is the identify,

(ii) for each s e [0,ε] and each j = 1, ,m, the image F(J3 x s) is

contained in a leaf, and if s Φ ε, the restriction F\JjXs is an imbedding

(iii) the image F{f~\v) x [0, ε)) is contained in R

(iv) the image F{f~\v) x ε) does not contained in R

(v) for each xef~\v), the curve c: [0,ε] —>V defined by c(s) =

F(x, s) can be expressed in the form

c(s) = φp(s)(x) , se [0,ε] ,

for a suitable imbedding p: [0,ε]—>R satisfying

p(0) = 0, \p(s)\<^,

where η* is the same constant as in Lemma 4.1.3. Then for each Jj9

the leaf containing F(J3 x ε) is compact.

Proof. We shall prove that the leaf containing F(JX X ε) is compact.

Assertion 1. There exists an infinite sequence su s2, of points in

[0, ε) such that lim^^ st = e, and for each sί9 the set F(JX x s^ is con-

taίned in L.

To prove this, fix a point x1 of Jx. By assumption, a curve cλ: [0,ε]

—» V defined by c^s) = F(x19s), is transversal to leaves. Hence, for

π:R-^SKp) as in Lemma 6.2.1, the composition

is a submersion. Since c^&R, we observe that lims_e_0τro cx{s) does not

exist, and hence that for a point q — π(L), the set (πoc^iq) is infinite.

Since (πocj'^q) does not have the accumulating point in [0,ε), there ex-

ists an infinite sequence s19 s2, , st —> ε, such that cfa), c^), € L.
From the condition (ii) of F, it follows that F(J1 x sέ) c L for all i.

Assertion 2. For any real number w and any Jjf there exists δ e (0, ε)

such that if F(Jj χ s ) c L for some s e (δ,e), then

To prove this, fix a point x of Jj9 and consider the subset
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F{x X [0, ε]) Π L

of L. It is clear that any sequence of points in this set does not con-
verge in L. Since f([w — 1, oo)) is compact (by (i) and (v) of Proposi-
tion 2.2.1), the subset of Fix x [0, ε]) Π L consisting of those points y
such that fiy) >w — 1, is finite. Hence there exists δx e (0, ε) such that,
if F(x, s) e L for some s e(δχyε), then

f(F(x,s))<w-l.

Using the fact that there exists an J^-chart whose coordinate neighbor-
hood contains the set F(x x [0,ε]), we see that for a sufficiently small
neighbourhood Ux of x in Jj9 the inequality

\f(F(y,s))-f(F(x,s))\<l

holds for any y e Ux and any s e [0, ε) satisfying Fix, s) e L. Consequently,
the number δx has the following property: if Fix, s) e L for some seiδX9ε)9

then fiFiy, s)) < w for all y e Ux, that is,

Since Jj is compact, we can find δ e (0, ε) with the desired property.
Now, for each j = 1, ,m, fix a point XjβJj9 and let cύ,pj be as

in (v) of Lemma 6.2.2, i.e.,

F(xj9 s) = Cjis) = φpj{s)ixj) , s e [0, ε] .

Suppose for definiteness that p^ε) > 0. We may assume that for some
integer I > 1,

Pi(ε) > 0 f or 1 < i < I ,

Pi(ε) < 0 for Z + 1 < i < m .

The following is essential to our argument.

Assertion 3. There exists a compact n-submanifold W in L having
the following properties:

( i ) the boundary dW coincides with the union of

J19 , Jl9 and FiJ, x rλ)9 , FiJL x rt) ,

where r19 -'-9rι are suitable numbers in (0,ε);
(ii) for any point y of W9 there exists an admissible tangential

curve starting at some point of {Jι

i=1Jί9 with the terminal point y;
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(iii) for two admissible tangential curves α :̂ [0, τ j-» F, i = l ,2,

with α^Γj) = α2(r2) e W, i/ α^O) e Jiχ and α2(0) e Ji%9 ίftew ^ = ί2

(iv) /or an?/ pom£ x of Jό, j — 1, , Z, ίftere e#is£s a neighborhood

U of x in L and a neighborhood V of F(x,rj) in L such that the map

as in Lemma 6.2.1, induces a diffeomorphism of U onto U'9 and maps

U Π W onto V - (£/' Π (W - dW)), where p is as in (v) of Lemma 6.2.2.

Proof. For the fixed point xλ e J1 and a number s e [0, ε), let

be as in Lemma 6.2.1. If F(x19s)eL, we denote this map by A8, for

simplicity of notation. By Assertion 1, there is an infinite sequence

sί9 s2, , Si —> ε — 0, such that F(JX x st) c L. It is clear that for the

base points xj9 j — 1, ,m, and any i = 1,2, , the points yίSί(^ ) are

contained in L, and that if 1 < j < I, there are suitable rόi e (0, ε) satisfying

Note that for each 1 < y < i, r̂  ̂  —» ε — 0 as i —> oo. From Assertion 2,

it follows that for any real number w, there is an integer i such that

f(y) < w for all y e F(Jj9 rjτ), j = 1, , I .

Hence, taking sufficiently large i, and putting s% = si9 we observe that

F(x19s*) eL, and for any point y of Λs*(Jj), :/ = 1, ,Z, there exists an

admissible tangential curve starting at some point of Uι

ί=1Ji9 with the

terminal point y. To prove this, suppose that there were any admissible

tangential curve α: [—l,τ]—>V9 a( — ΐ)eΣn9 such that

α(r) e ΛH/^ ) 0' = 1, , I) , and Im a Π U Λ = 0
i = l

Then the curve α would intersect UΓ=ί+i Λ We might assume α(0) e /fc

(fc = ί + 1, . . ,m). Since pk(ε) < 0, by (v) of Lemma 6.2.2, there would

exist a real number η such that

- 9 * < V < 0 , and p,(α(0)) έ J? .

Considering the 37-lift of α, and applying Lemma 4.1.3, one would conclude

that for the point α(τ) e As*(Jj) and some negative number σ sufficiently
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close to 0, <pσ(a(τ)) g R. This contradicts the fact that there exists a

curve c: [0, ε] -> V which passes through α(τ), near the point c(ε), and which

is written in the form

c(s) = φp{s)(x) , se[0,ε] ,

where x e Jj9 and p is as in (v) of Lemma 6.2.2, and p(ε) > 0 (since

1 < j < ΐ). Now, in order to prove Assertion 3, consider the decomposition

m ,
L = f-\[v, oo)) U Lx U U U U Lι+1 U U L

L, Γ) L, = 0 if iφj ,

where each Lt is a connected, noncompact n-submanifold in L, with

boundary dLt = /*, such that

and such that for any y e Lί9 there is an admissible tangential curve

starting at some point of Jif with the terminal point y. (Such a decom-

position exists, since L is simply connected.) We put

Ψ = (L1U U L ί ) n ΛHΓKίv, oo)) U L,+1 U U L J ,

where s* is the number mentioned above. From the property of s*, we

know that for each ί = 1, , Z, the manifold yls*(/ί) is contained in some

Lj, j — 1, , i. Furthermore, for ί — 1, . , I, if Js*(/*) is contained in Lj9

then A' iLi) is also contained in Z^ . (If ^^(L^) were not contained in Lj9

then Λs*(Li) would contain L — L3. This contradicts the fact that there

exists a point p e L — Lj such that {φs(p)}s>0 c i? (Lemma 6.2.1).) From

the assumption that / - 1 (( — 00,1;]) ΓΊ 2Ί = 0, it follows that for any

w < v and each Lu the set L̂  Π f~\w) is connected. Using these facts,

we conclude that W is a compact n-submanifold, with boundary

dW = J1Ό U Λ U ΛHJO U U il' CΛ) .

It is clear that each Λ8*(Ji), i = 1, ,Z, can be expressed in the form

ί\Λ X r j for some r^eiO, ε). Furthermore, one verifies that W satisfies

the desired properties (ii), (iii), (iv). This completes the proof of

Assertion 3.

Now, in order to prove Lemma 6.2.2, for the manifold W in As-

sertion 3, we define a map A: W -> V as follows. For a point y of W,

let α: [0, τ] —> F be an admissible tangential curve such that
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α(0) e\JJt, o(τ) = y .
i l

Έy (iii),(v) of Lemma 6.2.1, there exists a real number η such that

0 < η < 7)* ,

^ β f or 0 < s < 1 .

X.et B: [0,r] -» 7 be the 37-lift of α. Then we define Λ(#) = B(r). Using
(iii) of Assertion 3 and the fact that every leaf in R is simply connected,
one easily verifies that the point A(y) is determined independently of the
•choice of admissible curves α (cf. the proof of Lemma 6.2.3), and that
this map A is expressed locally in the following form: for each y e W,

Λ{z) = φm{z) for z e U ,

where U is a neighborhood of y in W, and λ is a suitable positive-valued
function defined on U. Furthermore, by (iii), (iv) of Lemma 6.2.2, for
each F(Jt x rt) in (i) of Assertion 3, the image Λ(F(Jt x rj) coincides
with F(Ji x ε). Hence we see that A is a submersion of W into the leaves
Ku - >,Kk (1 < k < ΐ) containing the sets F(Jλ X ε), ,F(Jt x ε). From
this and (iv) of Assertion 3, it follows that A maps W onto K19 -,Kk,
and hence that K19 > ,Kk are compact, as desired. Similarly, it is proved
that the leaves containing F(Jt x ε), i = I + 1, ,m, are compact. This
completes the proof of Lemma 6.2.2.

Remark 6.2.2. With the hypotheses and notation of the preceding
lemma, for each Jj9 there exists a connected, compact n-submanifold Wj
in L having the following properties:

( i ) the boundary 3Wj consists of Jj and F(Jj X rj), where r) is a
suitable number in (0, ε)

(ii) there exists a function λ: Wj->R such that \λ(z)\ <η* for all
.zeJj, and such that the map Ad: Wd —> V defined by

Λj(z) = VXMW
 f o r zeWj ,

is a submersion of Wd onto the compact leaf containing F(Jj x ε).
To prove this, recall the proof of Assertion 3. For the map As*, con-

sidering a suitable iteration (As*)\ we have
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Then we define Wj to be the manifold bounded by Jj and (As*y(Jj). I t

is essentially proved above that Wj satisfies the required properties.

Similarly, for j = I + 1, ,m, we find Wj as above. Thus our assertion

is proved.

LEMMA 6.2.3. Suppose that a nonsίngular, compact vein Jn~ι> a

point x0 of J, and a real number η satisfy the following condition: for

any x eJ, there exists a tangential curve c: [0, τ] —• V which satisfies

c(0) = x0 , c(τ) = x , I m c c / ,

and has the η-lίft. If for any s e [0,1), the leaf through <p8η(x) is simply

connected, then J with the base point x0 has the ψlift, i.e., there exists

a function λ: J -> R with λ(x0) = η, such that for any xeJ, the point

ψλ{x)(χ) is contained in the leaf through φη(x0).

Proof. Let xeJ, and let c€: [0, τ j - * V, £ = 1,2, be two tangential

curve satisfying x0 = ĉ O) = c2(0), x = cfa) — c2(r2), and having the 37-lifts

with height parameters σt. We shall prove that afa) = σ2(τ2). Then,,

defining λ by λ(x) = ^(ΓJ), one will obtain the required function λ. Now,

to prove afa) = σ2(r2), we consider a curve c12: [0, τλ + τ2] -+ V defined by

c12(£> = Cχ(t) for t e [0, r j ,

Ci2(*) = C2(τχ + τ2 — t) for ί e [r1? rx + τ2] .

It is clear that x0 = c12(0) = c^fo + r2), and that c12 is tangential and has:

the η-liit. For definiteness, we assume η > 0. For each fee [0,37], let

0Λ [0, Ti + τ2] —> i? be the height parameter of the fe-lift of c12. Now, say

cΓiCTi) were smaller than σ2(r2). Then for the map H: [0, rj\ -* [0,37] defined by

H(h) = σΛ(rx + r2) ,

the point iϊC^) would be smaller than η, and furthermore for any integer

£ > 1, if*0?) would be smaller than H^fyj). Hence for the limit point η0 =

lim^eo £?*(>;), the ^-lift of c12 would be closed and have a non-trivial

holonomy, which contradicts the assumption that the leaf through φVQ(x0)

is simply connected. This proves Lemma 6.2.3.

LEMMA 6.2.4. Let the hypotheses and the notation be as in Lemma

6.2.1. Let η* be as in Lemma 4.1.3. Let a point z of V and a real

number η have the following properties:

( i ) \v\ <y*
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( i i) zeR, φsv(z) e R for 0 < s < 1

(iii) the leaf L through φη(z) does not intersect Σ*

(iv) the set f~K(—oo,v]) does not intersect Σ19 where f:L->R is

a first integral of ω'\L, and v — f(φv(z)).

Then the leaf L(z) through z is compact.

Proof. Let η*9 β* be the same constants as in Lemma 4.1.3. For
simplicity, we assume η < 0. The proof in the case η > 0 is similar.
Now, by Lemma 4.1.4 we have an admissible tangential curve α: [0, oo)
—• V with α(0) = φv(z). Put δ — —η, for simplicity of notation. Clearly
z = φδ(a(0)). Let σ be the height parameter of the δ-lift of α. Let Jt be
the vein through the point a(t). For any t e [0, oo), by definition, we
know that Jt is a connected component of f~ι(Vj)y where

vt = v +
Jα[O,ί]

From (i) of Proposition 2.2.1, we see that Jt is compact, and for almost
every t e [0, oo), the vein Jt is nonsingular. The following is important.

Assertion 1. There exists a positive number Θ such that for almost
every θ e [θ, oo), the vein Jθ is nonsingular and satisfies

σ(θ) < l / ^ ^

where K is the same positive number as in Corollary 3.1.2.

Proof. Put q = π(α(0)), and let I,Φ be as in (v) of Lemma 6.2.1.
For the vein Jt and a nonnegative number u, the set Jt[u], by definition
(6.1), is contained in f~\vt — u). Since f~K( — oo,v]) ΓΊ Σx — 0, it follows
that Jt[u] coincides with a connected component of f~\vt — u). Now,
let e be the same constant as in Lemma 6.1.1. Since the set USUoΛM
is compact, we can find a positive number pQ such that the set

cub (J0,p0

is contained in π~ι{I). It is clear that pQ < δ — —η < η^. For t e [0, oo),
consider the set

pit) I e

cub {Jt,p{t), e )=Up, U W) >
s=0 \u=0

where
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r*\ I Γ λ In . Ω ̂
p\t) = I ^0 e x p ω /v-L + Pop*)

\ Jo[0,ί] //

Then, we contend that

cub (Λ, p(t), e) c π'KD for all t e [0, oo) .

This is proved as follows. By (v) of Proposition 2.2.1, any point of the

set on the left can be written as

x = φsia'it')) ,

where 0 < s < pit), and where α': [0,f] -» V is an admissible tangential

curve such that

α'(0) e J[u] for some u e [0, e], and ωf —\ ωf .
Jo'[0,ί'] Jα[O,ί]

By Lemma 4.1.3, there exists the ^0-lift of a', whose height parameter

or satisfies

0 < pit') < σ'it') .

From this, we conclude that the point x is contained in a leaf through

some ^s(α7(0)) with se[0,^ 0], and hence that xeπ~\I), as desired. From

the relation proved above and (v) of Lemma 6.2.1, it follows that

cub iJt, pit), e) Π cub (/,,, p(t'), e) = 0

for t, V e [0, oo) such that

t < t' , and ί ω' < -e .

Thus, since V is compact, we have

mesn + 1 (cub iJt, pit), e)) -> 0 as t —> oo ,

because, by Lemma 4.1.2, we have

ωf —> — oo as t —> oo .
Jα[O,ί]

On the other hand, for any ί e [0, oo) it is clear that

0 < pit) < 1 (since 0 < p0 < η* < 1) ,

j t n jt[u] = ΰ if u > o ,

and that
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U Jthil) n Ψs u /»[«] = 0 if o < s < p(t).
\u=o I V=o /

For simplicity, we assume that

diam^ (Jt) > d for any t sufficiently large ,

where d is the same constant as in Lemma 6.1.1. In the general case,,
using the fact that by Lemmas 4.1.2 and 4.1.3,

σ(t) —> 0 as t —•» oo ,

one will prove Assertion 1 similarly. Thus we may apply Lemma 6.1.1
to obtain

e diamJί (Jt) < mesn+1 (cub (Jt, p(t), e)) ,

where ĉ  is as in Lemma 6.1.1. Consequently, we have

c* p(t) e diamJί (Jt) -^0 as t -> oo .

Recall that the height parameter σ of the <Mift of α satisfies

0 < σ(t) < σj(ί) for all t e [0, oo) ,

where

σ%(t) = (δexv ί ω^
\ Jα[O,ί] /

Note that

which is constant. Hence we have

σj(ί) diamt7ί (/ί) -^0 as ί -> oo ,

and thus

σit) - diam J i (Jt) -• 0 as ί —» oo .

Using the fact σ(t) —> 0 (ί —> oo) again, we obtain

σ(t)(tc diam J ί (Jt) + ^ 1) —> 0 as t —> oo ,

which in particular proves Assertion 1.

Assertion 2. Let θ be as in Assertion 1. Then there exists an im-

mersion
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which satisfies the same conditions (i)-(v) as in Lemma 6.2.2, such that

the image F(JΘ X ε) is contained in the leaf L(z) through z.

Proof. It is clear that the point a(θ) and the number σ(θ) have the
following properties:

φsa{θMθ)) eR for 0 < s < 1

€ L(z) .

For any x e Jθ, by definition there exists a C1 curve c: [0, τ] —> V such that

a{0) = c(0) x = c(τ) I m c c / f l ; ||c(ί)|| = 1 for t e [0, τ] ,

and such that the length of c, which is equal to τ, is smaller than or
equal to diam^ (/<,). Then, by Corollary 3.1.2 the tangential curve c has
the o (0)-lift. Furthermore, from Lemma 3.1.1 (and the proof of Corol-
lary 3.1.2) we know that its height parameter is smaller than or equal
to σ(θ)/(l — fc σ(θ)-τ), which is smaller than η*, because our assumption
concerning θ implies

Vi1 < W0))"1 - KΓ

Now, from this fact, applying Lemma 6.2.3 to J$, aiθ) and each number
in [0,σ(#)], one can easily construct an immersion F: Jθ X [0,ε] —> V with
the required properties.

To apply Lemma 6.2.2, moreover, we need:

Assertion 3. For any connected component W of f~K( — oo,v]),
there exists a point zf of V and a real number ij such that

\yf\<η*9 z'eR, Ψsη,{z')eR for 0 < s < 1, and φ^zOeW.

Proof. Since Σo = 0, for such a set W there exists an admissible
tangential curve 6: [0, oo) —> V with the image contained in W. Then
since V is compact, there is a limit point of b, i.e., a point y of V such
that any neighborhood of y in V intersects the curve b. Using (v) of
Lemma 6.2.1 and the fact /(b(ί))->—oo (t -> oo), we see that* ye R.
Therefore, since R is open, taking t sufficiently large, we have a point

such that the open ball around b(£) with radius ζ^, where ζ* is as
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in Lemma 5.1.1, intersects V — R. Then, we can find a point z' of V
— R and a real number ηf with the required properties.

We .are now ready to prove our lemma. Consider the disjoint union

ΓK(-oo,v]) = W U Wx U U Wm ,

where each Wt is a connected component of /"*(( —oo,t;]), and W is the
connected component of f~K( — OO,Ί;]) containing the image of α. Apply-
ing Assertion 3 to each Wίy we find a point z\ of V and a real number
ηΊ having the same properties as the given z and η. Let ht: [0, oo) -> 7
be an admissible tangential curve starting at z[, and let J(bi(t)) be the
vein through &$(£). The arguments in the proofs of Assertions 1 and 2
show that for each i, there exists a positive number θt satisfying the
following condition: for almost every θ in [θi9 oo), there exists an im-
mersion

Ft .JiUθ)) X [0,e]-*7

with the same properties (i)-(v) as in Lemma 6.2.2.
Taking a real number w so that

w < min (fiaφVtfiUθJ), ,/(6w(0m))) ,

and so that w is a regular value of / (in other words f~ι(w) is a union
of nonsingular veins), and applying Lemma 6.2.2 to f'Kw), which has
a "nice fence", we conclude that the leaf L(z) is compact, which proves
Lemma 6.2.4.

Remark 6.2.3. With the same hypotheses and notation of Lemma
6.2.1, if CK2Ί Π R) (ZR, and if a point z oί V and a real number η
satisfy the conditions (i), (ii) of Lemma 6.2.4, then the leaf L(z) through
z is compact.

This may be seen as follows. From Remark 6.2.1, we see that the
one-form ω\R on R can be written as

ω IR = Pa ,

where P is a positive-valued function on R, and a is a nonsingular, closed
one-form on R. By Lemma 2.2.1, for each leaf N in R, we have

α/|JV =

Using this and the compactness of Cl (2\ Π R), we find a real number Δ
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such that for any leaf N in R and a first integral g: N - » R of ωf \ N

with g(π(N)) = 0, where π :R —• Sx(p) is as in Lemma 6.2.1, we have

Using this fact, we can find a point z and a number ^ satisfying all the

conditions (i)-(iv) of Lemma 6.2.4, and such that z e L(z). Consequently,

our assertion follows from Lemma 6.2.4.

LEMMA 6.2.5. Suppose Σo = 0. // there exist two distinct compact

leaves Kl9K29 then the distance between Kλ and K2 is not less than ζ*,

where ζ* is the same constant as in Lemma 5.1.1. In particular, the

number of compact leaves is finite.

Proof. If there were two points x9 y such that xeKl9 y e K29 dis (x9 y)

< ζ*, then by Lemma 5.1.1 there would exist a real number η such that

\η\ < j?*, φη(x) eK2. On the other hand, by Lemma 4.1.4, there exists an

admissible tangential curve α: [0, oo) —> V with the initial point x. By

Lemmas 4.1.2 and 4.1.3, the ^-lift of α, which is contained in compact

K2} would approach compact Kx. This contradiction proves our lemma.

Proof of Theorem II. Let p e Σn9 and let R be as in Lemma 6.2.1.

By Remark 6.2.1, we know that R is a Cr fibre bundle over S\ whose

fibres are noncompact, simply connected leaves. Hence, the required

imbedding is given by the inclusion map R aV. This proves (i)-(iii) of

our theorem. Let z be a point of Cl R — R. In order to prove that

the leaf through z is compact, we consider the subset Q of [—37̂ ,37̂ ]

consisting of those points s such that φs(z) e R, where η* is as in Lemma

4.1.3. It is clear that Q is open in [—3?*, 27*], and OeClQ — Q. Hence

there is an infinite sequence q19q2, •••,#*-*(), of points in Q. Taking a

subsequence if necessary, we may assume that every qt has the same

sign, say every qt is positive. We shall prove that there exists qt such that

(0, qt) c Q. Then, putting η = qi9 and applying Remark 6.2.3, one will

prove that the leaf through z is compact. Now, suppose that for any

qί9 the interval (0, qt) were not contained in Q. Then for each qi9 there

would exist rt such that

0 < r, < qi , (r,, qt) c Q , r, ei Q .

By Remark 6.2.3, the leaf through φu(z) would be compact. Hence we

should have an infinite number of compact leaves, which contradicts
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Lemma 6.2.5. Finally, for any leaf L in R, we shall prove CIL — L =

CIR-R. Let zeC\L-L. From (v) of Lemma 6.2.1, we see that

z & R. Hence zeClR — R. Conversely, let z e Cl R — R. The same argu-

ment as in the proof of Assertion 1, Lemma 6.2.2, shows that z e Cl L.

Hence ze CIL — L. This completes the proof of Theorem II.

6.3. The rationality of ωf\Kt. We shall prove:

PROPOSITION 6.3.1. With the hypotheses and notation of Theorem II,

for the "limit" compact leaves Kί9 i = 1, ,m, the one-forms ωf\Kt are

rational, i.e., for any point z of Kt there exists an open set S in Kt con-

taining z, and a function P: S —» R such that ω' \ S = dP, and every in-

verse image P~ι(v), v e R, is compact.

Proof. For simplicity of notation, put K = Ki. In order to make

the method clear, we shall first go through the proof for the case when

ωr IK is nonsingular, in other words K Π Σ = 0. In that case, we have

at once:

Assertion 1. There exists a tubular neighborhood T of K and a

projection χ: T —> K such that T Π Σ = 0, and such that

( i ) χ is compatible with X, i.e., for any xeT, χ*(Xx) — 0, where

χ*: TX(V) —> Tχix)(K) is the induced map

(ii) for any xeT, the tangent subspace of TX(V) defined by ωx —

ωx = 0, is mapped by χ* into a subspace of Tχ{x) sufficiently close to the

subspace defined by ωx(x) = ω'x(x) = 0.

On the other hand, the proof of Theorem II shows that for the Ky

T above, there exists a nonsingular, compact vein / contained in T and

an immersion F: / X [0, ε] —> V such that

( i ) the restriction F \ J x 0 is the identity

(ii) for each se[0,ε], the image F(J X s) is contained in a leaf,

and F(J X e ) c K ;

(iii) F is "tangent" to X, more precisely, for each xeJ, there exists

an imbedding p: [0, ε] -> R satisfying

p(0) = 0, F(x, s) = φpW(x) for all s e [0, ε] .

Since χ is a projection compatible with X, the restriction χ\J: J -> K is

an immersion. Furthermore, from (ii) of Assertion 1 it follows that for

any xeJ, the subspace χ*(Tx(J)) of Tχ{x)(K) is transversal to the vector
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YX(x), i.e., does not contain Yxix). Using the immersion F, we see that

the cohomology class [(χ| J)*ω'] e Hι(J R) is trivial. Consequently, our

assertion follows from Proposition 2.2.2.

For the proof in the case where ω'\K has singular points, we in-

troduce the following word: A tubular neighborhood T of the compact

leaf K, with a projection χ: T-+K, will be said to be "nice" if

( i ) χ is compatible with X

(ii) for any xeT - (T Π Σ), the subspace of TX(V) defined by ωx

= β)x = 0, is mapped by χ* into a subspace of Tχix)(K) which is trans-

versal to the vector Yx(x).

It is obvious that if such T, χ exist, our proposition follows from

Proposition 2.2.2 again, because K Π Σλ = 0. In the general case, we

use the following technique. First, take a Cr+1 positive-valued function

h sufficiently close to the constant function 1 so that the critical cycle

Σ for the completely integrable one-form ώ = hω, is transversal to K.

Using the fact that every point of Σ has an J^-chart of "type (λ)" or

of "type (*,μ)" (see Proposition 4.1.1), one has such a "deformation"

of ω. It should be also noted that ώ defines the same leaves as ω, i.e.,

any leaf of (F, ώ) is a leaf of (F, ω), and vice versa. Next, change the

vector field X to a Cr vector field X with ώ(X) = 1 so that for any

p e K Π Σ and a suitable neighborhood U of p in V,X is expressed on

U as

X\U = a(x)(d/dxn+1) ,

where a(x) is a function on U, and (U,f;x\ -- ,xn+1) is an ^-chart of

type U) U = 0,1, ,n), for (V, ώ). Noting that since Σ is transversal

to K, any point p of K Π Σ is not of type (*), and using again the

fact that for λ = 0, , n, every point of type (X) has an J^-chart of

type (X) for (V, ώ), one obtain such a vector field X. Now, from the

properties of X, it follows that K has a "nice" tubular neighborhood

with respect to ώ,X, and hence that ώ'\K is rational, where ώf = — if^ώ.

Using the relation

(ώ/ - ω / ) | X = d (log ft IX) ,

we conclude that O/|JK is also rational. This completes the proof of

Proposition 6.3.1.

6.4. Proof of Lemma 6.1.1. With the notation in 6.1, we have the
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following lemma, which implies Lemma 6.1.1.

LEMMA 6.4.1. ( i ) There exist two positive constants c1,d1 such

that the inequality

cx

holds for any nonsingular, compact vein J satisfying

diamj (J) > dί .

(ii) If Σo = 0, and Σn_x = 0, then there exist three positive con-

stants c2, d19 e such that the inequality

mesn_ι(J) < mesn f (J J[u])
\0£u<Zμ I

holds for 0 < μ < e and for any nonsingular, compact vein J satisfying

the following conditions:

dianij (/) > dx

/ n J[u] = 0 f or 0 < u < μ .

(iii) There exists a positive constant cz such that the inequality

U

holds for 0 < σ < 1 and for any compact n-submanifold H of V, with

or without boundary, satisfying the following conditions: H is contained

in a leaf; and

H Π φs(H) = 0 for 0 < s < σ .

We shall first prove the part (iii).

Proof of (iii). It is obvious that there is a positive constant a such

that

α mesπ (D) < mesn (φs(D))

for 0 < s < 1 and any imbedded closed w-disk D in V. Then, put

b = m i n l l X ^ - (XΨs{x)\(φ8)*Px)\\

the minimum being taken over all x in V and all s in [0,1], where Px

is the subspace ω-\0) of TX(V), and XΨΛx) | (φs)*Px is the orthogonal
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component of the vector XΨs{x) to the subspace (φs)*Px. Then it is easily

verified that c3 = ab is the required constant. The part (iii) is proved.

Proof of (i). Let Γ*, f * be two Y-preferred neighborhoods of Σ such

that Cl f* c T* (see 4.2 for the definition and the existence). Let 6f,

of, 6? be the same constants as in (v) of Definition 4.2.1, i.e., satisfy

the following conditions:

(1) dianv* (/*) < bf for any T*-vein /*

(2) diam^* (J*) < 6* for any T*-vein J *

(3) mesn_! (J*) > bf for any noncompact T*-vein J * .

Let W19 , Wm be open sets of V such that

v = ?* u u w< > Σ n cif u *

Let ^ be a Lebesgue number of the open covering {T*, WΊ, , Wm}.

Put

where <52 is the distance between the sets Γ* and V — Γ*. Then, since

Σ Π Cl (Ui^m T̂ <) = 0> there is a positive constant Δ such that

for any x e Ui^^m Wt satisfying Bj(x, δ) c Uî î m W<, where j?^^, 3)

denotes an open ball in a vein J through x, with center x and radius δ.

We shall prove that the constants defined by

cγ = min (J/2(5, δ?/6f) , dx = bf ,

have the required properties.

Now, let a nonsingular, compact vein J with diam^ (J) > dx be given.

Put λ = dianv (/). Since J is a closed manifold, there is a curve γ: [0,λ]

—̂  / which is a geodesic in J and is parametrized by arc-length, and is

minimal in the following sense:

disj (r(0, r(tθ) = I* - «Ί for any t, t ; e [0, Λ] .

Let s be an integer satisfying

λ/2δ <s< (λ/2δ) + 1 ,

and put tQ = 0, tL = 23, , ts_, = 2(s - 1)3. Denote by # the set of all

elements i e {0, , s - 1} such that BjiγiU), 3) Π Γ* ^ 0, where Bj(r(U), δ)
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is the open ball in /, with center γ(tt) and radius δ. Put Ec =

{0, , s — 1} — E, and denote by #£7, %Ee the numbers of the elements

of the sets E, Ec, respectively. Then

Assertion 1. (a) If ieE, then we have

BAritiXδ) n J n f* Φ 0 , BΛr(tj,δ) c j n f ,

(b) // ieEc, then we have

to, δ) n / n f * - 0 , mes^ os/rίί*), ί» > J .

Proof of (a). The former part is obvious. The latter part follows

from the facts that disF (?*, V - Γ*) > 25, dis^ (α, j/) > disF (», j/) for

x,y eJ. Proof of (b). The former part is obvious. Since δ is a Lebesgue

number of the open covering {f*,W19 - ,Wm}9 we have Bj(γ(tt), δ) c

U TF̂  for ie Ec. Hence the latter part follows from the definition of Δ.

On the other hand,

Assertion 2. We have a disjoint union

j n T* - J* u . u .It,

where each Jf is a noncompact f*-vein with m e s ^ (Jf) > bf.

Proof. We shall prove that a connected component J * of J Π f*,

which is by definition a T^-vein, is noncompact. Then (3) above will

imply m e s ^ (J*) > bf. Now, suppose that J * were compact. Then J *

would coincide with /. Since diamj* (J*) < 6? by (2), we should have

diam^ (J) < bf = dlf which is a contradiction. Assertion 2 is proved.

Now, for each j*,j = 1, , k, since Γ* c Γ*, there is a Γ*-vein

Jf such that J* a Jf. Then, for each /f, since 7- is minimal, and

άiaaij*(Jf) < bf, we observe that the number of the elements ieE

satisfying Bj(γ(tύ,δ) c Jf, is bounded by 6?/25. From Assertion 1 (a),

we know that if ieE, then Bj(γ(ti),δ) is contained in some Jf,j = l, ,k.

Consequently, we obtain

%E < kbfβδ .

Since / contains a disjoint union

U Bj(γ(tz),δ) U U
ieEc l<j<k
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by Assertions 1 (b) and 2, we have

mesn.x (J) > (#Sc)i +

Since #E.2δ/b* < k, it follows that

sn.! (J) > ($EC)Δ + %E.(2δ/bf)b} , and hence

Since s = #(# U # c), and s > Λ/2<S, we obtain finally

m e s ^ (/) > Λ min (J/25, bf/bf) = Ci diamj (/) ,

which proves the part (i) of Lemma 6.4.1.

Proof of (ii). Let T* be a Y-preferred neighborhood of Σ, as before.
Let S be an open set of V such that

Put

3 = disF OS, V - Γ*) , α = min || YJ , e = aδ .
xev-s

It is easily verified that there is a positive constant Cg such that the

inequality

iCG) < mesw ( (J GM

holds for 0 < μ < e and any compact or bounded open (n — l)-manifold
G which is contained in a vein and satisfies the conditions

S Π U GM = 0 , G Π G[u] = 0 for 0 < u < μ .

Now, for this constant c'2 and the same constants bf,bf,bf,df as in (v),
(viii) of Definition 4.2.1, put

c2 = min (c£, dfbf/bf) , ^ = δf .

We shall prove that these c2, dl9 and e above have the desired properties.

Assertion 1. If a T*-vein J* satisfies

s n u J*M
0<u<e

then
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U J*M C T* .
0<,u<e

To prove this, for an admissible tangential curve α: [0, r] —> V, note
that if ϊmα Π S Φ 0, and I m α f Ί ( 7 - Γ*) =£ 0, then r > 3, and that if
Im a Π S = 0, then

f ω ' = -
J o[0,τ]

- α τ .

Then we observe that if α: [0, τ] —> V is an admissible tangential curve
such that

Im α Γϊ S ^ 0 , | ω' > —aδ = — e ,
J α[0,r]

then Imα c Γ*. This proves Assertion 1.

Assertion 2. If a noncompact T*-vein J* satisfies

U J*[u] c T* ,

then

mesw( U «/"*M) > c2 i« mesw_1 (J*) for 0 < μ < e .

Proof. Let L be the leaf containing the set Uô «̂ β ̂ M * a n ( i let ^*
be the connected component of the subset L Γ) T* of L, containing
Uo^u^β^*M Let Q be an imbedded closed w-disk in L containing L*,
and let h: Q —> i? be a function satisfying α/|Q = dfe. For 0 < μ < e,
let α:[0,τ]—>y be an admissible tangential curve such that α(0)eJ*,
α(τ) e J*[μ\. Then it is clear that Im a c T*. Put ^ = fc(α(ί)). It is
clear that Im α c fe'^t^, fe0]), and μ = h0 — hτ. We denote by {{h~ι[hτ, h0]
Π Γ*)) the connected component of the subset hr\[ht, hj) Π T* of Q9

containing Im a. Using the assumption Σn_x — 0 and the property (vii)
of Γ*, one can prove

yj J*\u\ = {(h~\\hτyh^\) Π T*)) .
0<U<μ

Then, by the property (viii) of Γ*, we obtain

mesJ U J*M) > df.μ inf mes^CC/r1^) Π Γ*)) ,
\0̂ M</i / t€[0,r]

where i{h~\ht) Π Γ*)) denotes the connected component of the subset
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h~\ht) Π Γ* of Q, containing the point α(ί). It is clear that (ίh-ι(lιt) Π
Γ*)) is a T*-vein. Furthermore, using the property (vi) of T* and the
assumptions that ΣQ = 0, and /* is noncompact, we know that this T*-
vein is also noncompact. Hence by the property (v) of T*, we have

inf m e s ^ ((h-\ht) Π Γ*)) > 6* > (&,*/&,*)• m e s ^ (/*) .
«G[0,r]

From this and the inequality above, we obtain the required inequality.
Assertion 2 is proved.

Now, let μ be a positive number < e. Let a nonsingular, compact
vein / such that

dianv («/) > &? , J Π J[u] = 0 f or 0 < u < μ ,

be given. Then using Assertion 2 in the proof of the part (i) and the
property (ix) of Γ*, we have a disjoint union

J = 6 U / f U U/f,

where G is a compact O — l)-submanifold of / such that G Π T* = 0,
and each /:f is a noncompact T*-vein. It is clear that

G Π G[u] = 0 , /* n JJM = 0 for 0 < u < μ, j = 1, . . . , k .

Furthermore, by Assertion 1, we know that S ΓΊ Uo^«^ 6 M = 0, and
that if S Π Uoέuέμ J*lu] Φ 0, then U o ^ ^ JfM c T*. Hence we have

U G[u]\ > ^.^.mes^.! (G) ,
U<μ /

mesn[ U /^M) > c2 ^ mesw_1 (Jf) for y = 1, . . . , k .

Using the assumption Σn_λ = 0 and the property (vii) of T*, one can
prove that

U j[u] = u GM U U U Jfbiϊ
0<.U<μ 0<,U^μ l<j£k 0<<

is a disjoint union. Consequently, we obtain

mesj

This proves the part (ii) and completes the proof of Lemma 6.4.1.
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§7. Proof of Theorem III

We fix an ω-preferred Riemannian structure and use the notations

{φs}, ω' -as in § 5.

7.1. Proof of Theorem III. We begin by recalling a definition and

a lemma by Reeb. A leaf L is said to be locally dense if for some point

x of L, the closure of the intersection of the set {pβ(a0}ι»i£i and L con-

tains a neighborhood of x in {φs(x)}ls]<^ It is clear that if a leaf L is

locally dense, then for any point of L, the same property as above is

-satisfied.

LEMMA 7.1.1. // the closure of a leaf M contains a locally dense

leaf, then M itself is locally dense.

This is proved in [6, p. 108, (A, II, 10)].

For the proof of our theorem, we need two lemmas.

LEMMA 7.1.2. Suppose that Σn — 0. Then for any nonempty open

.subset U of V, there exists a point x of U such that the leaf through

.x is locally dense.

Proof. Suppose that this were not the case, and let U be a non-

empty open subset of V such that for any point x of U, the leaf through

x is not locally dense. Fix a point x0 of U, and let h be a positive

number such that the set {φ8(x0)}\9\^h is imbedded in U. For simplicity

of notation, we identify the interval [ — h, h] with the transversal segment

{φs(%o)}\s\<.h- We also denote by L(y) a leaf through a point y of V. Now,

by assumption, for the leaf L(x0), the closed subset

CUL(x0) n[-h,h])c:[-h,h]

does not contain any neighborhood of xQ in [ — h, h]. Hence there exists

an open interval (aί9 bλ) Φ 0 such that

(au &x) c [-h, h] , (al9 6X) Π Cl (L(x0) Π [-h, h]) = 0 .

By our assumption again, for a point xι of (a19 bj and a leaf L(X), the

closed subset

CKLfo) ΓΊ [-h,h]) c [-h,h]

does not contain any neighborhood of x1 in [a19 &J, and hence there exists

-an open interval (α2, b2) φ 0 such that
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(α2, δ2) c [a19 6J , (α2, b2) Π Cl (Lfo) Π [-ft, ft]) = 0 .

Repeating this process, we obtain an infinite sequence of points x0, xxr

x2, in [ — ft, ft] such that if i < , then

xjeCKUxt) n [-ft, ft]).

For these points xi9 we define points x? of V as follows. Since Σn = 0,

by Lemma 4.1.4, there exists, for each xi9 an admissible tangential

curve at: ( — oo,0] —> 7 with α̂ O) = ίc€. Since V is compact, an infinite
sequence ctt(O), α€(—1), α*(—2), of points of 7 has a convergent sub-

sequence, whose limit point we denote by x™. Thus, we have an infinite

sequence #J% x?, x?, in V. Let ζ* be the same constant as in Lemma

5.1.1. Then there exist two positive integers i, j with i < j such that

the distance between x™ and α J is smaller than ζ#/3. For these i, y, there

exists a positive number £ such that

U ψs(χj) n C K L ( ^ ) n [-ft,ft]) = 0 .

For this δ and the same constants a*, τ%, η*, β* as in Lemmas 4.1.2 and

4.1.3, take a real number τ so that

τ* < τ , η* e χ P ( — ̂ 0 / ( 1 - ^ ^ < δ .

For this τ, by the definition of xj9 there exists an integer m such that

τ < m , dis (α̂  C—m), #~) < ζ^/3 .

Let fc be a positive integer such that

dis(α,(-fc),zr)<ζ*/3.

Put 7/ = α<(—fc), « = α̂  (—m). Then we observe that

dis (T/, «) < dis (y, x?) + dis (a?Γ, xj) + dis (a;;, «) < ζ* .

Hence by Lemma 5.1.1, there is a real number η with | ^ | < ^ # such that

<pη(z) e L(y). Let b: [0, m] ~* 7 be an admissible tangential curve defined

by

B(ί) = α/ί - m)

Then b(0) = «, b(m) = xj% By Lemma 4.1.3, there exists the ^-lift c of

6 with height parameter σ satisfying
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\σ(t)\< fl^lexpί ω')/(I - |?li3*) > te[0,m] .

From this inequality and Lemma 4.1.2, it follows that

I (Km) I < \η\exp(-a*m)/(l - |J?|]8#) .

Hence we have

\oim)\ < η* exp (~^m)/(l - ^0*) < δ .

On the other hand, since the curve c is contained in L(y), and L(y) is
nothing other than L(^), we conclude that c(m) = φσim)(xj) e L(Xi). This
and the inequality obtained above contradict the choice of δ. This proves
Lemma 7.1.2.

LEMMA 7.1.3. Suppose that Σn = 0. Let L be a locally dense leaf.
Then there exists an open subset W of V containing L such that for
any point y of W, the closure of a leaf through y contains L.

Proof. Fix a point x of L. Let α: ( — oo,0]-+F be an admissible
tangential curve with α(0) = x, and consider a point x™ as before, i.e.,
define x~ to be a point of V such that any neighborhood of x°° contains
infinitely many points of the set {α(—Ό}ί=o,i,... Let ζ* be as in Lemma
5.1.1. Then there exists a positive integer i such that

We shall prove that for an open ball B around the point α(—i) with
radius ζ*/3, the closure of any leaf through points of B contains the
point x. Then one will see that the open set W consisting of those
leaves which intersect B, has the desired property (cf. [6, p. 106, (A, II, 4),
(A, II, 6)]). Now, let y be a point of B, and let ε be a positive number.
Then, first, we take a real number τ so that

τ* < τ , η* exp (-a*τ)/(l - η^) < ε ,

where a*, τ*, η*, β* be as in Lemmas 4.1.2 and 4.1.3. Next, we take an
integer m so that

τ < m , dis (a(—m), x°°) < ζ^/3 .

Put z = a(—m). Then we observe that

dis (y, z) < dis (y, a(-ϊ)) + dis (α(-ΐ), x°°) + dis (x°°, a(-rn)) < ζ* .
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As in the proof of Lemma 7.1.2, considering an admissible tangential

curve 6: [0, m] —> V defined by

hit) = ait - m) ,

we conclude that the leaf M through the point y intersects the trans-

versal segment {φs(x)}\s\^ This proves that the closure of M contains x>

and proves Lemma 7.1.3.

Proof of Theorem III. By Lemma 7.1.2, the set Vo consisting of

locally dense leaves is a dense subset of V, which is open by Lemmas

7.1.1 and 7.1.3. This proves our theorem.

§8. Proofs of Propositions 4.1.1. and 4.2.1.

Propositions 4.1.1 and 4.2.1 will be proved in 8.2 and 8.3 respec-

tively.

8.1. Preliminary lemmas. Here, we shall use the following notation.

Let 071"1, 0n and 0n+1 denote the origins of Rn\ Rn and Rn+1, respectively.

The sets O71'1 X R\ 0n X R are to be understood as the subsets of Rn+K

Let (x\ >,xn+ί) be the standard coordinate system of Rn+1. Denote by

x the point with coordinates (x\ ,xn+1). Let U be a bounded, open

subset of Rn+1 containing 0n+1. Let / be a positive-valued function

defined on U, and put F — log /. For a C3 function g defined on a sub-

set of Rn+\ we introduce the following notations:

, i = 1, .. .,rc + 1 ,

II dg(x) || = (dtQ i -> 1, , n) (ra-tuple) ,

= (gio{x) ;i,j = l,. .,ri) (n X ^-matrix) ,

j -+1, - ,n

(n + 1 x n + 1-matrix) ,

where gίά = d1g\dxidxK

The index of a real symmetric matrix is defined to be the number of

negative eigenvalues. For numbers a19 , am9 we denote by diag [a19 ,

am] an m x m-diagonal matrix with the diagonal elements a19 , αTO. Let

λ, μ be integers such that 0 < λ < n, 0 < μ <n — 1. For a positive

integer s and an open subset or, more generally, an in + l)-submanifold

W of Rn+\ we denote by ΓS(W) the set of all Cs diffeomorphisms
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Φ: W —> Φ(W) c U which are written in the form

Φ(x\ , xn+1) = (Φ\x), , Φn(x), xn+1) , x e W ,

with suitable real-valued functions Φι defined on W. For a subset S of

Rn and two real numbers a, b with α < &, we denote by S£ the set

Sb

a = {(x\ --,xn+1)eRn+1\(x\ .- ,xn)eS,a<xn+1 < b] .

We shall prove the following four lemmas, from which Proposition

4.1.1 will follow.

LEMMA 8.1.1. Suppose that f is of class C8, s > 6, and satisfies the

following conditions:

( i ) | |d/(0" + 1 ) | | = 0»;

(ii) ||d2/(0w+1)|| is nonsingular and has index λ.

Then there exists a neighborhood W of 0n+1 and a dίffeomorphism

ΦeΓs~\W) with Φ(0n+1) = 0n+1 such that the function Foφ ==logfoφ is

expressed as

) _ (Xγ - ... _ (X*γ + ... + (x*y , x e w ,

with a suitable function g depending only on xn+1.

LEMMA 8.1.2. Suppose that f is of class C% s > 11, and has the

following properties:

( i ) | |d/(0*+ 1) | | = 0*;

(ii) | |d2/(0π+1)|| is singular and has index μ;

(iii) | |d3/(0π+1)|| is nonsingular.

Then there exists a neighborhood W of 0n+1 and a dίffeomorphism

ΦeΓs~8(W) with Φ(0n+1) = 0n+1 such that the function Foφ = log foφ is

expressed as

( F o φ ) O O = g(χ», χ n + ι ) - O 1 ) 2 - - (xμ)2 + + ( a * " " 1 ) 2 , x e W ,

where g is a Cs~8 function which depends only on xn, xn+1 and is "similar"

to functions (xny/3 ± xn+ιxn, i.e., satisfies the same conditions (i), (ii) as

in Definition 4.1.1.

LEMMA 8.1.3. Suppose that f is of class Cs, s > 5, and F = l o g /

is expressed as

F(x) = g(xn+ί) - (x1)2 - . . . - (χλ)2 + . . . + (xn)2 , x e U ,
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with a suitable function g depending only on xn+1. Let A be an open

subset of Rn containing 0π, and let Ul9 U2 be open subsets of U. Suppose

that there are four real numbers a, b, c, d satisfying a < b < c < d,

such that

AiaU , A\ c ϋx , At c U2 .

Let

r « : Ui -> WtWi) c Λ» + 1 , i = l , 2 ,

fee two diffeomorphίsms of class Cs which are expressed in the forms

W,{x\ , xn+1) = GT}(a;), , 5Γ?(a;), W?+Kxn+1)) , a e tf 4 ,

where Ψ[ are real-valued functions on Ui9 and the functions Ψ%+1 depend

only on xn+ι. Suppose that WSJJi Π (On X R)) = ΨiiUi) Π (Ow χ ί ) , i = 1, 2.

Suppose that the functions Fo(Wί)~\ % = 1, 2, are expressed as

FoQFJ-Kx) = <7,C*-+1) - (x1)2 W 2 + + (£n) 2 , a e ^(17,) ,

with suitable functions gt depending only on xn+1.

Then there exists an open subset B of A containing On and a dif-

feomorphism Φ e Γs~\Bd

a) such that

c Uλ , Φ(Bf) c U2

and

φ-\x\ . . , xn+ι) =

Φ" 1 ^ 1 , . . . , xn+1) = ( β T ^ ) , , en??(a0, ίcw+1) , a; e Φ(B*) ,

/or suitable ej = ± 1 , and ŝ cfc ίfeaί

(Foφ)(χ) = h(xn+1) - (x1)2 - . . . - (χ*γ + . . . + Ow)2 , x e B% ,

/or a suitable function h depending only on xn+1.

LEMMA 8.1.4. Suppose that f is of class Cs, s > 3, and F = log/

is expressed as

Fix) = g(xn

9 xn+1) - (x1)2 - - (x*)2 + - + (xn~1)2 , x e U ,

where g is a suitable function which depends only on xn, xn+1-and is

"similar" to functions (xny/S±xn+1xn, i.e., satisfies the same conditions

(i), (ii) as in Definition 4.1.1. Then for any point
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p e {x e U n (0"-1 X R2)\\\dF(x)\\ = 0n} - {0*+1} ,

there exists an open set W of U containing p and a diffeomorphism

ΦeΓs~\W) such that

(i) Φ(x\ , xn+1) = (x1, , α*"2, Φn(ίcΛ, xn+1), xn+1), xeW,

for a suitable function Φn depending only on xn, xn+1

(ii) the function Foφ is expressed as

(Foφ)(χ) = h(xn+1) - O1)2 - - (x~μ)2 + + (xn)2 , xeW ,

where h is a suitable function depending only on xn+\ and β is μ or

μ+1.

To prove these lemmas, we need twelve lemmas, 8.1.5-8.1.16. The

following two lemmas are easily verified:

LEMMA 8.1.5. Let W be an open subset of Rn+1, and let p be a

point of W. Let ΦeΓ\W), and put q — φ{p). Suppose that f is of

class C2 and has the following properties:

(i) ||3/(?)|| = 0*;

(ii) \\d2f(q)\\ is nonsingular and has index λ.

Then F and f* — foφ have the same properties as /, i.e.,

(i) ||3F(β)|| = ||3/*(p)|| = 0»;

(ii) ||d2F(g)||, ||d2/*(p)|| are nonsingular and have index λ.

LEMMA 8.1.6. Let W be an open subset of Rn+1 containing 0n+1.

Let Φ be an element of Γ\W) satisfying Φ(0n+1) = 0n+1. Suppose that f

is of class C3 and has the following properties:

( i ) ||a/(0*+1)|| = 0";

(ii) ||d2/(0π+1)|| is singular and has index μ;

(iii) \\d3f(0n+1)\\ is nonsingular.

Then F and f* = foφ have the same properties as f, i.e.,

( i ) \\dF(Q^)\\ = \\df*(On+ί)\\ = Qn;

(ii) \\d2F(On+1)\\, | |a2/*(0n + 1)|| are singular and have index μ;

(iii) | | d 3 W + 1 ) | | , \\d3f*(0n+1)\\ are nonsingular.

LEMMA 8.1.7. Suppose that f satisfies the following conditions:

( i ) f is of class Cs, s > 2

(ii) ||d/(0*+1)|| = 0";

(iii) ||32/(0n+1)|| is nonsingular and has index λ.

Then there exists an open subset W of U containing 0n+1 and a dif-
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feomorphίsm Φ e Γ*~\W) such that Φ(0n+1) = 0n+1, and such that the

function / * = / o φ satisfies the following conditions:

( i ) {xeW\\\df*(x)\\ = 0n} = W Π (0n X R);

(ii) for any x e W Π (0n X R), ||32/*(a?)|| is nonsingular and has index

λ.

Proof. Let Ψ: U ->Rn+1 be a Cs~ι map defined by

W(x) = (djix), •• ,dnf(x),xn+1)

for x = (a?1, .,£TC+1) e E7. Since ¥(0n+1) = 0n+1, and the Jacobian of r

at O71"'"1 is nonzero, by the inverse function theorem there exists an open

subset W of U containing 0n+1 and a diffeomorphism φ e ΓS~\W) such

that Φ(0n+ί) = 0n+1, and ¥oφ is the identity map on T7. Since 0,/)(Φ(aO)

= ^ j , we see that f* = foφ satisfies the desired condition (i). Further-

more, by Lemma 8.1.5 we see that ||d2/*O0|| is nonsingular for any

xe W Π (0n X R), and that ||d2/*(0n + 1)|| has index λ. Hence we conclude

that ||d2/*(α0|| has index λ for any x e W Π (0n X 2?). Lemma 8.1.7 is

proved.

LEMMA 8.1.8. Suppose that f satisfies the following conditions:

( i ) f is of class C% s > 5

(ii) ||3/(0*+1)|| = 0»;

(iii) ||32/(0TO+1)|| is singular and has index μ;

(iv) ||33/(0n+1)|| is nonsingular.

Then there exists an open subset W of U containing 0n+ί and a diffeo-

morphism Φ e ΓS~\W) such that Φ(0n+1) = 0n+1, and such that the func-

tion / * == foφ satisfies the following conditions:

( i ) {xeW\dtf*(x) = 0,i = 1, -,w - 1} = W Π (O""1 X i?2)

(i i) ίfce seί {α; e W|| |3/*(ίc) | | = O71} coincides with either

{(0, , 0 , x n , x n + 1 ) e W\(xn)2 - xn+1 = 0}

or

{(0, . , 0, xn, xn+ι) e WI (xn)2 + xn+1 = 0}

(iii) /or αni/ x eW f] (O71'1 X R2)9 the matrix

(φf*/dxWXx) i, = 1, , n - 1)

is nonsingular and has index μ.

(iv) (32/*/(a^)2)(a0 ^ 0 for x e {x e W\\\df*(x) \\ - 0n} - {0n+1}.
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Proof. From the properties (iii), (iv) of /, we see that the rank of

||32/(0w+1)|| is n - 1. Hence there is Φ'eΓ°°(W), where W is some open

set of Rn+1 containing 0n+1, such that Φ'(Qn+1) = Qn+1, and the matrix

((92/oΦ79aj*3α;0(0n+1) ί, = 1, -,n - 1) is nonsingular. Therefore by

Lemma 8.1.6, from the first we may assume that

(v) ((92//9ίc*9a0(0n+1) i, j = 1, --,n - ΐ) is nonsingular. Now, let

if be a C5"1 map defined by

ψ(x) = (^/(αj), . . , 9^/ίaO, α», xw+1)

for a? = (x\ , xw+1) e £7. From (v) above and the inverse function

theorem it follows that Ψ has the inverse function ψ defined in a neigh-

borhood W of 0n+1 in Rn+1. Then <p(0n+1) = 0n+1 and 9 e Γ'-^Ψ0 Further-

more, ψ is written in the form

φ(x) = (^(χ)? . . . , pn-1(»), ̂ , ^π + 1) , » e W ,

with suitable functions p*. Put

h = foφ, hid = d'h/dx'dx' , fenwn - dzh/(dxnf .

Then we have:

Assertion 1. Ann(0»+1) - 0, Λnn+1(0»+1) Φ 0, Λnnn(0»+1) Φ 0.

Proof. If 1 < i < n - 1, then (dtf)(<p(x)) = α;* for a? e W7. From this

it follows that if 1 < i < w — 1,

Hence we see that if 1 < i, j < n — 1,

and that if 1 < i < n — 1,

on

Thus we have

ι+ι);i,j = 1, ,n — 1|| Φ 0 ,
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Since det||32Λ(0n+1)|| = 0 by Lemma 8.1.5, we have

hnn(0n+ι) = 0 ,

and hence

IA] det\\d2h(x)\\ = d e t ί u o w + 1 ) , ^ - ( O κ + 1 ) ; 2 * l>--,n
\dxn!o \ ιJ dxn j-+l, - ,n-l

Since det \\d3h(On+1)\\ Φ 0 by Lemma 8.1.5, we conclude that

/Wi(On+1) Φ 0 , 1-<L) det\\d2h(x)\\ φ 0 ,

and hence

Assertion 1 is proved.

Now, since the function (dnh)(O, ,0,x n ,x n + 1 ) of xn, xn+1 is of class

Cs~2 and satisfies dnh(On+1) = 0, Ann+1(0n+1) ^ 0, by the implicit function

theorem, there exists uniquely a Cs~2 function a: (—ε',ε') ~>R with small

ε' > 0, such that α(0) = 0 and (3nΛ)(0, , 0, t, α(t)) = 0 for ί e (-ε7, εO

From Assertion 1 and the formula

dί Λ»n+i(0, •• O,t,α(t)) '

we see that

(0) = o , ^ ( 0 ) = - h***®l Φ o .

Applying Morse's lemma to the function a, and taking e > 0 sufficiently

small, we obtain a Cs^4 diffeomorphism

such that t2 = |α(^(ί))| on (—ε, ε). Now we define φ by

, xn~\ θ{xn), xn+1)

for x = (x\ - ,xn+1) in a sufficiently small neighborhood W of 0w+1 in

W. Then it is checked directly that Φ: W -> Φ(W) is the required dif-

feomorphism. Lemma 8.1.8 is proved.

LEMMA 8.1.9. Suppose that F satisfies the following conditions:
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( i ) F is of class Cs, s > 4

(ii) {xeU\\\dF(x)\\ = 0n} = U Π (0n x R)

(iii) /or ei>er?/ cc e £7 Π (071 X R), the matrix \\32F(x)\\ is nonsingular

and has index λ;

(iv) there are two real numbers 6, c with b < c such that

\\32F(x)\\ = diag [-2, . , - 2 , 2 , . ,2]

for xe(Πb U E7C) Π (0n x /?), ^/?,ere

Ϊ7δ = {(x\ ...,xn+ι)eU\xn+1 < b} ,

Πc = {(x\ - ,xn+1)eU\xn+ι> c} .

Then there exists an open subset W of U containing U ΓΊ (0n X R) and

a diffeomorphism Φ e ΓS~\W) such that

( i ) φ(χ) = x for xeW Π (On X R);

( i i ) ΦO) = x for xeW Π Ub;

(iii) ΦGr1, , xw+1) = (eιx\ , ewxw, a;π+1) for x e W Π Γ/\

are suitable integers satisfying |e*| = 1;

(iv) the function F* = Foφ satisfies

\\dΨ*(x)\\ = diag [-2, , -2,2, , 2] for x eW Π (0n X R)

Proof. Since for each xeU Π (0n x R), the w X ^-matrix ||a2F(^)|| is

symmetric and nonsingular, one obtain easily a Cs~2 map

JΊ: ?7 Π (0n XR)->Rn

such that

( i ) r i(α) = (l, 0, , 0) for x e Ub Π (Qn X R),

( i i ) 2 φFldxidx'XxMWrlix) = ± 2 ίor xeU Π ( 0 n x R),

where ?ΊOZO = (7-}̂ ), ,r?0&))>

(iii) riW = (± 1,0, .. , 0) for xeϋc f) (Qn X R).

Next, considering for each x e U Π (0n x R) the "orthogonal" subspace

to γγ(x) one obtain a Cs~2 map

r2: 17 Π (0n X R)-^Rn

such that

( i ) Ϊ2(χ) = (0,1,0.. -0) for x e Ub Π (0n X R),

(ii) Σ {dΨldxίdx^{x)γ\{x)γi{x) - 0,
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Σ {dΨldxidxj)(x)γ\{x)γ{{x) = ± 2 for x e U Γ) (0n X R) ,

where 7-2(3) = (rί(s), * >r?G*O),

(iii) r2(^) = (0, ± 1 , 0 0) for x e Πc Π (07* x /?).

Eepeating the process n times, we obtain the n "vector fields" γ19 , γn

of class Cs~2 defined on UΓ\(0nχR) such that for each k = 1, ,n,

( i ) f; (32F/3a?*3a;O(aj)rί(a?)rί(«) = ±2^™ on £7 Π (0* X R),

where τ-fc(aj) — 0iG&), , Γfc(̂ ))> a n ( i ^ i s the Kronecker delta,

(ii) γk(x) — (0, 0,1,0- 0) (1 is the ifc-th component)

for x e Ub Π (0n x J?),

(iii) γk(x) — (0, 0, ±1,0- 0) ( ± 1 is the fc-th component)

for x e Uc Π (0n x i?).

Now we define Φ: U ->Rn+1 by

Φ(^ x , . . , ̂ w+1) = (xln(on, χn+1) + + ^ % ( θ w , ^ w + 1 ) , χ w + 1 ) ,

and put Tί7 = Φ~\U). Then it is easily verified that the diffeomorphism

Φ: W -»Φ(TF) has the required properties.

The following two lemmas are proved similarly.

LEMMA 8.1.10. Suppose that F satisfies the following conditions:

( i ) F is of class C*9 s > 4

(ii) {xeU\diF(x) = 0, i = 1, . . ,n - 1} = U Π (O^1 x # 2 ) ;

(iii) /or every x e U Π (O^"1 x i?2), ίfeβ matrix

i, j = 1, , w - 1)

is nonsίngular and has index μ.

Then there exists an open subset W of U containing 0n+1 and a

diffeomorphism Φ e ΓS~2(W) such that

( i ) Φ(x) = x for x e W Π ( O * " 1 x i ? 2 ) ,

(ii) Φ(x) = (Φι(x), - --yΦ^Kx), xn, xn+1) for xeW,

where Φι are suitable real-valued functions,

(iii) the function Foφ satisfies

i,j = 1, ,n - 1) = diag [-2, . . , - 2 , 2 , . . 2]

x i?2).
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LEMMA 8.1.11. Suppose that F satisfies the same conditions (i),

(ii), (iii) as in Lemma 8.1.9 and

( v ) there are two real numbers b,c with b < c such that

\\dΨ(x)\\ = d i a g [ - 2 , , - 2 , 2 , .,2,α(a)] /or a? e Ϊ7δ Π (0Λ X R),

\\dΨ(x)\\ = d i a g [ - 2 , . . - , - 2 , 2 , ...2] for x e Uc Π (0* x Λ),

where Ub, U
c denote the same set as in Lemma 8.1.9, and a is a suitable

real-valued function.

Then there exists an open set W of U containing U Π (0n x R) and a

dίffeomorphism Φ e ΓS~2(W) such that

( i ) φ(χ) = x for x e W Π (0n x 2?),

( i i ) ΦO 1, . , xn+1) = (a?1, , α*-1, Φn(α;n, ^ w + 1 ) , ^ w + 1 ) for x e Ub,

where Φn is a suitable real-valued function of xn,xn+1,

(iii) Φ(x) = x for x e U° Π W,

(iv) the function F* = Foφ satisfies

||d2F*<>)|| = d i a g [ - 2 , , - 2 , 2 , .. ,2] for x e W Π (0n x R) .

The following two lemmas are well known ([5, p. 14, Lemma 2.3]).

LEMMA 8.1.12. Suppose that F satisfies the following conditions:

( i ) F is of class Cs,s>2;

(ii) {ae I7|||3F(aO|| = 0n} = U Π (0n X R).

If U is convex in Rn+1, then

F(x\ , xn+1) - F(0, . , 0, xn+1) = JZ aij{x)xix^ , x e U ,

where atj are suitable functions of class Cs~2 on U and satisfy

atj = aji9 2α,/0, . . . , 0, xn+ί) = (JPF/dx'dx'XO, , 0, xn+1) .

LEMMA 8.1.13. Suppose that F satisfies the following conditions:

( i ) F is of class Cs,s>2;

( i i ) {xe U\diF(x) = 0, i = 1, , n - 1} = Γ7 Π (0"" 1 X 2?2).

// i7 is convex in Rn+\ then

F(x\ , xn+1) - F(0, , 0, xn, xn+1) = X; cLtMWx* , α € C7 ,

where aίό are suitable functions of class Cs~2 on U and satisfy

= aJt, 2α^(0, . . , 0, xn, xn+1) - (dΨ/dxW)(0, , 0, x\ xn
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The following two lemmas are proved by the same methods as in

the proof (iii) of Theorem 4.1 of Morse and Cairns [5, p. 25].

L E M M A 8.1.14. Suppose that there exist real-valued functions aij9

i, j = 1, , n, which are defined on U and satisfy the following

conditions:

( i ) aυ are of class Cs, s > 1

( i i ) atj = aji9i,j = 1, . >,n;

(iii) Fix1, , xn+ι) - F(0, , 0, xn+ι) = ΣJj-i dijWxW, xeU;

(iv) (aυ(x) i, j = 1, , n) = diag [ — 1, , — 1,1, , 1] (the number

of "-1" is X) for xeU ΓΊ (0n X R)

( v ) there are two real numbers b,c with b < c such that

(fltj(x);i,3 = 1, ••-,%) = d i a g [ - l , , - 1 , 1 , , U for x e Ub U Πc ,

where Ub, Uc are the sets defined in Lemma 8.1.9.

Then there exists an open subset W of U containing U ΓΊ (0n x R) and

a diffeomorphism Φ e ΓS(W) such that

( i ) φ(χ) = x for x e W Π (0n x R),

( i i ) φ(χ) = x for xeW Π (Ub U Uc),

(iii) Fo φ(χ) - Fo φ(0, , 0, xn+1) = -(x1)2 - - (xψ + + (xn)2

for x e W.

L E M M A 8.1.15. Suppose that there exist real-valued functions aίj9

i, j = 1, 9n — 1, which are defined on U and satisfy the following

conditions:

( i ) dij are of class Cs, s > 1

( i i ) aυ = dji, i,j = l, -,n — l;

(iii) F(x\ , α;w+1) - F(0, , 0, x», xn+1) = ΣSjii (liiίscWx', xeU;

(iv) (dtj(x) i, j = 1, , n — 1) = diag [ — 1, , — 1 , 1, , 1] (the

number of "-1" is μ) for x e U Π (O^"1 x R2).

Then there exists an open subset W of U containing U Π (O71'1 x R2) and

a diff eomorphism Φ e ΓS(W) such that

( i ) φ(x) = x for x e W Π (071-1 X R2)

( i i ) Φ(x) = (Φι(x), , Φn-\x), xn, xn+ι) for xeW,

where Φι are suitable real-valued functions)

(iii) Foφ(χ) - F o φ ( 0 , ., 0, xn, xn+1) - ~(x1)2 - . . . - (x*)2 + ...

+ (xn~1)2 for xeW.

L E M M A 8.1.16. Let A be an open subset of Rn containing Qn, and
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let a, b, c, d be four real numbers satisfying a < b < c < d. Suppose

that Ad c U. Let Uly U2 be two open subsets of U such that Ab

a c U19

Ad c C72. Let two dίffeomorphίsms Φt e Γs(Ui),i = l ,2,s > 2, be given

and satisfy

φt(x) =z x for xeUi Π (0n X 2?) .

Then there exists an open subset B of A containing On and a diffeo-

morphism Φ e Γs(Bd

a) such that

( i ) Φ(x) = x for x e Bd

a Π (0n x R),

(ii) Φ(x) = Φλ(x) for xeBb

a,

(iii) Φ(α ) = (eW2(x), , enΦζ(x), xn+1) for x e Bd,

where Φ2(x) = (ΦK )̂> , Φiix), %n+1), and eι are suitable integers satisfying

\e*\ - 1.

Proof. Using the uniqueness theorem of tubular neighborhood

(Lang [2, p. 77]), we find easily an open set Br of A and a diffeomorphism

Φf e Γ8~K(β%) satisfying the conditions (i)-(iii) above. Smoothing this Φ'9
we obtain the desired diffeomorphism Φ e Γ8(]B%) with an open subset B

of A containing Qn. Lemma 8.1.16 is proved.

Proof of Lemma 8.1.1. For the proof, we denote by ΓS'(W\ U')>

where s' is a positive integer, and W, U' are subsets of Rn+1, the set of

all Cs' diffeomorphisms Φ: W' -» Φ(W) c U' which are written in the

form

Φ(x\ , xn+ι) = ( Φ 1 ^ ) , , Φn(x), xn+1)

with suitable real-valued functions Φι defined on W.

Now, for the function f:U~>R, by Lemma 8.1.7, there exists an

open subset Wλ of U containing 0n+1 and a diffeomorphism Φ1 e ΓS~\W19 U)

with Φ^Q71*1) = 0w+1, such that the function /x = foφx satisfies

( i ) {xeWλ\Wdf&n - 0-} = Wx Π (0» X i?)

(ii) for any x e Wx Π (0w x i?), the matrix ||d2/i(#)|| is nonsingular,

with index λ.

By Lemma 8.1.5, we see that the function Fx — log/j satisfies the same

conditions (i), (ii) as fx. Applying Lemma 8.1.9 to the Cs~ι function

F1: Wx -> R (it being understood that the sets (WJb, (Wϊf0 a r e empty), we

obtain an open subset W2 of Wx containing 0n+1 and a diffeomorphism

Φ2 e ΓS~XW2, Wλ) such that Φ2(x) = a? for x e W2 Π (0w x i?), and such that

the function F2 — Fλoφ2 satisfies
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- 2 , . . . , - 2 , 2 , . . . ,2] for x e W2 Π (0* X R) .

Using Lemma 8.1.5 again, and applying Lemma 8.1.12 to the Cs~3 func-

tion F2: W2 —> 1?, we see that for a suitable open subset TF3 of W2

containing 0n+\ the function F2 is written as

FJLx) - F2(0, , 0, £*+1) = £ ati{x)xW , xeW3,

where atj are suitable functions of class Cs~δ satisfying

aυ = aJU (atj(x) ί, i = 1, , n) = diag [ - 1 , , - 1 , 1 , . , 1]

for x e W3 Π (0n x R) .

Hence, the function F 2 : W3 —> 7? satisfies the assumption of Lemma 8.1.14,

with the Cs~5 functions atJ (it being understood that the sets (W3)b9 (Wz)°

are empty). Thus there exists an open set WA of Wz containing 0n+1 and

a diffeomorphism Φ4 e ΓS'\W^ W3) such that

( i ) φA(χ) = a; f or x e WA Π (071 x i?)

(ii) F2oφA(χ) - F2oφ4(0, ,0 ,^ + 1 ) = - O 1 ) 2 (^)2 + + (%n)2

for a; e PF4.

Consequently we observe that the diffeomorphism Φ = Φx o Φ2 o φ4 e

T 7 *"^^, 17) satisfies the following properties:

(ii) log / o φ(χ) = F 2 o Φ4(O, , 0, α;w+1) - (x1)2 + (xn)2 for x e Ψ 4

This proves Lemma 8.1.1.

Proo/ o/ Lemma 8.1.2. Similarly to the proof of Lemma 8.1.1, using

Lemmas 8.1.6, 8, 10, 13 and 15, one proves Lemma 8.1.2.

Proof of Lemma 8.1.3. We use the same notation Γ8'(W, Ur) as in

the proof of Lemma 8.1.1. For the diffeomorphisms Ψίy i — 1,2, we

consider diffeomorphisms Φt defined by

Φt{x\ , xn") = (¥\(x), . , 8r?(aθ, x-^) , xeϋΛ.

Let Z7{, i = 1,2, be open subsets of ϋt containing Ut (Ί (0n X i?) such that

Φi(U0 c ?7. Then Φ* e Γs(U'ίfU). Let ε be a sufficiently small positive

number, and let A' be an open subset of A containing 0n such that

(A')*_ε c Z7ί,(A0?+i c [Jo*. Applying Lemma 8.1.16 to Φ*, we obtain an

open subset C of Ar containing 0n and a diffeomorphism 0 e Γs(C^s

β) such

that

https://doi.org/10.1017/S0027763000015373 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000015373


CODIMENSION-ONE FOLIATIONS 221

( i ) Θ(x) = x for x e Cd

a

+Jε Π (0n X R),

( i i ) Θ(x) = (iPftaO, •, ?r»(a;), xw+1) for x e Cδ

α_ε,

(iii) θ(α) = (eΨl(x), , enψ%(x), xn+1) for α e C?+% e* = ± 1 .

Using the relations

(Ψ,oΘ~ι)(x) = (x\ '-,xn, Ψr\xn+1)) , x e

(Ψ2 o θ " 1 ) ^ ) = {eιx\ . . . , enxn, Ψr\xn+ι)) , a? e Θ(Cd

c

+ε) ,

w e o b s e r v e t h a t f o r x e ^ e ,

F o Θ~\x) = ( F o ( ϊΓ j- i o r x

where ^x is a suitable function depending only on xn+\ and that for

x e Θ(Cd

c

+e),

= 92(xn+1) - (x1)2 + (X71)2 ,

where g2 is a suitable function depending only on xn+ι.

Applying Lemma 8.1.9 to the Cs function FoΘ~ι: Φ(Int Cd

a

+Jε) -> R, we

obtain a convex, open subset D of C containing 0n and a diffeomorphism

A e Γs~2(Dδ

a, Θ(Cd

at\)), where a, β are suitable numbers satisfying a — ε <

a < a, d < δ < d + ε, such that

( i ) Λ(x) = a; for x e Dδ

a Π (Qn X i?),

(ii) yl(α ) = x for ίt e β j ,

(iii) Λ(x) = (β1^1, , έwxn, £w+1) for a; e D ,̂

where eι are suitable integers satisfying \eι\ = 1,

(iv) the function F * = FoΘ~ιoΛ satisfies

||d2F*0*0|| = d i a g [ - 2 , , - 2 , 2 , ,2] for ^eD δ

α Π (0w x R) .

From Lemma 8.1.12, it follows that the Cs~2 function F* = Foθ^oΛ is

written as

F*(x\ , xn+1) - F*(0, , 0, xw+1) = Σi UiAχ)χiχj > x e c « f

where aυ are suitable functions of class Cs~4 and have the following
properties:
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( i ) aυ = aji

( i i ) ( α < i ( 0 , - - , 0 , a ; n + 1 ) ; ί , ; = l , , w ) = d i a g [ - l , . . . , - 1 , 1 , • • • , ! ] ;
( i i i ) ( a ί : l ( x ) ; i , j = 1 , -- , n ) = d i a g [ - l , , - 1 , 1 , - , 1 ] f o r x e D b

a

By Lemma 8.1.14, we find an open subset B of D containing 0n and a

diffeomorphism Ξ e Γs~\Bd

a,D
δ

a) such that

( i ) Ξ(x) = x ίor xeBd

a Π (0n x 2?),

(ii) Ξ(x) = x ίor xeBb

a \J Bd,

(iii) F * o £0*0 - F * o £(0, , 0, α;w+1) = -Or 1 ) 2 (a1)2 + + (^w)2

for xeBd

a.

Now, we put Φ = Θ'1OΛOΞ. Then Φ e Γs-\Bd

a,U). It is obvious that

c C» c UlfΦ(Bf) c C* c C/2, and that

Fo φ(χ) = F * o £Ό*0 = F * o £(0, . . , 0, xn+1) - (x1)2 - . . . + (xn)2

for xeBd

a .

From the relations

ΛoΞ(x) = x on Bb

a , ΛO^GB) = (±» 1 , , ±xn,xn+1) on Bd

c ,

and the properties

00*0 = (Ψ{(x), , Ψ»(x), xn+ι) for a; e Φ{B\) ,
= (± W&x), , ± y?(a?), xw+1) for a? e

of θ, we know that

Φ~\x\ , xn+1) = (?r}(»), , ?PΪ(a?), ̂ + 1 ) , » e

Φ~\x\ , α;w+1) = (±Ψ\(x), , ±?Γ2

W(^), α;w+1) , x e

Consequently, the diffeomorphism Φ satisfies the required properties.

Lemma 8.1.3 is proved.

Proof of Lemma 8.1.4. It is easily verified.

8.2. Proof of Proposition 4.1.1. The proof will be preceded by some

definitions and three lemmas. We shall say that an J^-chart

(£7, f x1, , xn+1) of type (X), λ = 0, , n, is regular if there is an

.^-chart (17, / , x\ , xn+ί) of type (X) such that Cl U c ϋ, and α;1 =

x\ , £ n + 1 = xw+1 on J7, and such that Z7 is mapped by 9 = (x1, , ^n + 1)

onto an open set of the form B x (α, 6), of Λn+1, where β is an open

subset of Rn, and α, & are real numbers. We shall say that an J^-chart

https://doi.org/10.1017/S0027763000015373 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000015373


CODIMENSION-ONE FOLIATIONS 223

(C7, / x\ , xn+1) of type (*, μ), μ = 0, , n — 1, is regular if there is

an J^-chart (£7, / x\ , xn+ι) of type (*, μ) which has the same properties

as above and in addition, satisfies the following condition: U is mapped

by ψ onto an open set of the form C X ( — 2c, 2c) x ( — c2, c2) of Rn+1, where

C is an open subset of Rn~ι, and c is a positive real number. Recall

that an J^-chart (U, f x\ ,x n + 1 ) is said to be of class Cs(l <s<r + l)

if (x\ >,xn+1) is of class Cs (and / is of class O"1), and recall that ω

is assumed to be of class C r, r > 21.

LEMMA 8.2.1. Assume that ω satisfies Condition (T). Then:

( i ) For cmT/ poinί p o/ Σλ, 0 < Λ < n, there exists an &'-chart at

p, of class Cr~6 and of type (X) and with regularity.

(ii) For any point p of Σ*, there exists an £F-chart at p, of class

Cr~9 and of type (*,μ) for some μ = 0,1, , n — 1.

Proof, (i) For peΣλ9 there is an J^-chart (C7,/; x\ ,xn+1) at p,

of class Cr such that x\p) = . . . = xw+1(p) = 0. Let ψ: U -> (̂17) c Rn+1

be a C r diff eomorphism defined by the local coordinate system (x\ , xn+1).

Applying Lemma 8.1.1 to a function f°φ~ι defined on φ(U), we obtain

an open subset W of φ(U) containing the origin Qn+1 of Rn+1 and a Cr~6

diίfeomorphism Φ: W -+ Φ(W) c £>([/) such that Φ(0w+1) = 0n+\Φ*(dxn+1) =

dα;n+1 on T7, and such that

log/o^-^φfx) = g{χn+ι) - (x1)2 - . . . + ( ^ ) 2 , x e W ,

for a suitable function ^ depending only on xw+1. Then taking a suitable

open subset of ψ~\Φ(W))9 we observe that the restriction to it of the

diffeomorphism Φ~ιoψ: φ~\φ(W)) -> W c i?w+1 defines an J^-chart at p, of

class Cr~6 and of type U), and with regularity. This proves the part (i).

Using Lemma 8.1.2, one proves (ii) similarly. Lemma 8.2.1 is proved.

LEMMA 8.2.2. Let λ be an integer on the range 0,1, , n. Suppose

that three ^-charts (U, f x\ , xn+1), ([/„/, x\, ., x^1), i = 1,2, o/

cϊαss C r"1 2 and o/ type (X), are regular and have the following properties:

u n Όi n Σ Φ 0, [/, n Σ ςt u, ci uλ n ci c/2 = 0 , i = 1,2 .

ίfeere β^isίs an &-chart (W, ft j / 1 , , ̂ /n+1) 0/ ctoss Cr~17 and of

type (X) and with regularity, such that U C) Σ a W, and
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(y1, - , y n ) = (χ\, •-,&?) o n w n u 1 9

(2/i, . . . , y») = (eιx\, , e%w) on W Γi U2

for suitable eι = ± 1 .

Proo/. Let (#, / α1, , xn+1), Φ» /«;&!,•••, xΐ+1) be the "extensions"

of the regular J^-charts ([/, / a;1, . . . , an + 1), (C7<,/< »ί, , »?+1), £ = 1,2,
respectively. Let

be the Cr~12 diίfeomorphisms defined by the local coordinate systems
(xι, , xn+1), (x\, , »f+1), respectively. Now, to apply Lemma 8.1.3, we
consider two diffeomorphisms of class Cr~12

n Uj - Ψ ι φ Π &x) ,
r 2 - ψ2oΨ-1: Ψ φ n t/2) ->^2(ί7 n c/2).

It is clear that Ψ^ψΦ Π ̂ <) Π (0w X R)) = (ΨioΨ)Φ Π E7*) Π (0w X I?),
where 0w denotes the origin of i?w, and the product 071 x R is to be
understood as the subspace of Rn+\ Moreover, it is obvious that ψt are
written in the form

Wax) = (Ψl(χ), . . . , w»(χ), Ψr\xn+1)) , x = ix\ , ̂ n+1) e pίfr Π ί/,) ,

where Ψ{ are real-valued functions, and Wj+l depend only on xn+\ Hence
we have

(WϊΨdxn+ι = 3<(3n+1)<ten+1 on ^([7 Π C/,) ,

where zi are suitable functions depending only on xn+1. From the

relations

(JioφϊWx**1 - (foφ^XiΨrγdx^1) on (̂C7 Π Ĉ i) ,

we see that the functions log/*op-1 - logfoφ-1: ψiφ n Ut)-*R depend
only on xn+1. Hence the functions log / o ψ~ι o ̂ r 1 are written as

log/o^oψτ\χ) = ^,(xw+1) - (Λ;1)2 - + (xn)2 , a? e ^(ί/ Π &*) ,

with suitable functions gt depending only on xn+1. On the other hand,
by definition, the set ψ{U) is written in the form

φ(U) - 1 X (α,d) c r 1 ,
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where A is an open subset of Rn containing the origin 0n, and α, d are

real numbers. It is clear that <p(U Π Σ) — 0n x (a, d). It is easily verified

that the point 0n x a of Rn+1 is contained in either φφ Π U1 Π Σ) or

φφ Π U2 Π I7), say 0% x a e φφ Π ϋλ Π 21). Then 0w x cί is contained in

<pΦ Π £/2 ΓΊ 21), and there are two real numbers b, c satisfying a < b <

c < d, such that

φ(U Π CΛ n Σ) = 0n x (α, δ) , p(£7 n Z72 ΓΊ Σ) = 0n x (c, d) .

Then we can find a bounded, open subset A of 2?n such that

O w e A c C U c I ,

and

Cl A x (α, 6) c P(J7 Π ϋx) , Cl A x (c, d) c (̂C7 n C72) .

For this A, there is a positive number e such that

A x [α - ε, b] c (̂C7 Π ϋΊ) , A x [c, d + ε] c φφ Π U2) .

Now, applying Lemma 8.1.3 to the Cr~u function foφ-ι:φφ)-*R and

the C7"12 diffeomorphisms Wt: φφ Π [/<) -> ^(17 Π &<), we obtain an open

subset β of A containing Qn and a Cr~17 diίϊeomorphism

Φ: Bd

a

+Jε-> Φ(Bd

a

+Jε) c i ? w + 1

(with the notation of 8.1) such that

Φ*(dxn+ί) = dxw + 1 on B*+Jt ,

φ-^(x) = (ψ{(χ), . . ., y»(a;), xw+1) for x e Bb

a_e ,

φ- 1 ^) = (eΨl(x), , e»Ψζ(x), xn+1) for a; e B*+f, ê  = ± 1 ,

and such that

feo(^-+1) - (α;1)2 - + (xn)2 on β j t .

It is easily verified that the restriction of the diffeomorphism

Φ~ιoψ: (p~\Bd

at\) —> Φ~KB*t\) to a suitable open subset W of U, gives us

the required J^-chart. Lemma 8.2.2 is proved.

Using Lemma 8.1.4, one proves easily the following lemma.

L E M M A 8.2.3. Let μ be an integer on the range 0 ,1, •• ,w — 1.

Suppose that an &-chart (U,f;x\- -,xn+1) of class C r " 9 and of type

(*,μ) and with regularity, is given. For any point p of U Π (Σ — Σ*),
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there exists an ^-chart-at-p (W,h;y\ ,yn+1) which is of class Cr~12

and of type (μ) or type (μ + 1), and is regular, such that

(x\ , xn~ι) = {y\ , yn~ι) , xn = Φ(yn, yn+1) on U Π W

for a suitable function Φ.

Proof of Proposition 4.1.1. Applying Lemmas 8.2.1-8.2.3, and using

a partition of unity, one constructs easily an ω-preferred Riemannian

structure on V. Our proposition is proved.

8.3. Proof of Proposition 4.2.1. Suppose that an ω-preferred Riemannian

structure g is given. In the case Σ = 0, our proposition is trivial.

Therefore we assume Σ Φ 0. For a point p of Σ and two positive numbers

ε, δ, we define an open subset E7*(e, 3) of 7 containing p as follows. By

assumption, there exists an J^-chart (£/,/ ; x\ , xn+1) at p satisfying

one of the following conditions:

( i ) it is of type (X) for some λ, and

80/3&S 3/33') = 3<y for l<i,j<n;

(ii) it is of type (*,μ) for some μ, and

δid , g(3/Sa;*, 3/axw) = 0 for 1 < i, j < n - 1 .

In the case where the condition (i) is satisfied, we define E7*(ε, d) to be

the set of those points z of U satisfying the following inequalities:

- - {x\z)f + . + (xn(z))2\ < ε ,

( i )* {(x\z))2 + + (^(«))2)((aJi+1(«))2 + + (xn(z))2) < e ,

\xn+ί(z) - xn+1(p)\ < δ .

Next, in the case where the condition (ii) is satisfied, to define U*(ε,δ),

we consider a continuous function G: U -* R having the following

properties:

(a) GO) > 0 f or x e U,

(b) G(x) = 0 f or x e U Π Σ,

(c) Y(G) = 0 on U,

(d) for any B e U Π 21, the restriction G of G to the subset f~Kf(x))

Π S(ΛJ), where S(x) is the connected component containing x, of the

intersection of U and the leaf through x, is of class C1 except at points

of Σ, and the set of critical values of G has measure zero in R,
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(e) for any x e U Π Σ and the map G as above, there exists a

positive number ε such that the set G~ι([0,ε\) is compact.

By elementary, geometric arguments, one can verify that such a

function G exists. Now, in the case where (ii) is satisfied, we define

U%(ε,δ) to be the set of those points z of U satisfying the following

inequalities:

+ ... + (xn~
(ii)* + g(xn(z), xn+1(z)) - g(xn(p), xn+\z))\ < a ,

G(z) < ε, \xn+ι(z) - xn+1(p)\ < δ ,

where g is the same function as in the definition of an J^-chart of "type

(*,/*)" (Definition 4.1.1).

For each point p of Σ, one can prove that for small ε, if δ is

sufficiently small, the set £7*(ε, δ) above has the properties corresponding

to the conditions (ii)-(ix) of Definition 4.2.1. Consequently, since Σ is

compact, we find a finite number of points pl9 , pm of Σ and positive

numbers εί9 δi9 i = 1, , m, such that the union

m

has the required properties. Proposition 4.2.1 is proved.

APPENDIX

The generality of Condition (T).

Our purpose is to prove:

PROPOSITION A. For the given foliated structure ω on V, there

exists a completely integrable one-form ώ of class Cr which satisfies (T)

and is arbitrarily close to ω in the Cr topology and is expressed as

ώ = dω

with a suitable positive-valued function a defined on V.

One can easily prove this proposition by the usual argument as in

the proof of Milnor [4, p. 14, Theorem 2.7] if one verifies the following

lemma.
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LEMMA A.I. Let U be an open set in Rn+1 with coordinates func-

tions (x1, , xn+1). Let K be a compact subset of U, and f: U —> R a Cs

function, 3 < s < oo. Then there exist Cs functions g: U —> R which are

arbitrarily close to f in the coarse Cs topology, such that the restriction

to K of g satisfies the following condition:

If for some point p of K,

9ι(p) = = gn(p) = 0 , and det (fl^(p) ί, j = 1, , n) = 0 ,

(TO then

JJL) άet(gkl{x);k,l=l,...,n);i. l *> ->n +

j 1 ndxι j

Here gugiS denote dg/dx\d2gldxιdxj, respectively.

Proof. Consider a map h: RN —> Rn+1 defined by

',yn, t\ t\ ,ynn) = (y\ --,yn, det

Let 0n+1 denote the origin of Rn+1. Then the set P = fe-^O"4-1) is a

stratified set in the following way. For an integer k, 0 < k < n, we put

P. = {{y\y\ -,yn,yι\yι\ ,»nn)eΛ^11/1 - - yn = o,

rank (j/^) < ^ — Λ} .

Then it is easily verified that

( i ) P = PιDP2Z) . . . Z)Pn;

(ii) for fc = 1, ,n — 1, the subset Pfc — Pk+1 is a regular sub-

manifold of RN with codimension n + k2;

(iii) P n coincides with the submanifold R X O^"1 of RN. Further-

more, we see easily that P 2 coincides with the subset of RN where h is

not transversal to 0n+1, and hence that the restriction to RN — P2 of h,

is transversal to 0n+1.

On the other hand, for a Cs function g: U -> R9 we define a function

<72(#) :U-*RN by the formula

J\g)(x) = (#0), flr^a;), , flrn(«), flrn(a0, flr12(«), , flrnn(»)) , xeU .

By Thorn's jet transversality lemma ([7], [3]), we know that the map /

can be approximated, in the coarse Cs topology, as closely as desired,

by a "good" map g in the following sense: the restriction to K of J\g)

is transversal to P. Since for k > 2, the codimension of Pk — Pk+1 in

RN is greater than dim U = n + 1, such "good" maps do not intersect
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P2. Consequently, for the "good" map g9 the composition hoJ2(g) is
transversal to the origin of Rn+1. This fact implies that g satisfies the
condition (TO. Lemma A.I is proved.
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