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QUALITATIVE THEORY OF CODIMENSION-ONE FOLIATIONS
KAZUO YAMATO

Introduction. The object of the present paper is to give a method
of studying the topological properties of integral manifolds defined by a
completely integrable one-form.

Our method is differential-topological. Through the singular points
of the variation equation of the given one-form, we investigate the
qualitative properties of the integral manifolds.

The plan of this paper is as follows. In §1, we state our main
theorems, which assert that under certain conditions, foliated structures
are classified into three groups, ‘“bundle foliations”, “Reeb foliations”,
“hyperbolic foliations”. In §2, which is one of the most important parts
in our theory, we introduce the concept of a vein. A vein is a leaf of
a certain codimension-two foliation associated with the given foliation.
Proposition 2.2.1 is concerned with the existence of compact veins. In
§3, we study precisely the distance between two leaves along a curve
contained in one of them. ‘“Admissible tangential curves” and their
“lifts” are the fundamental tools in the proofs of the main theorems.
In §4, we introduce a special Riemannian structure convenient for the
proof of Proposition 4.2.1 from which we prove three fundamental
lemmas 4.1.2-4.1.4. TUsing these lemmas, we prove our theorems I, II,
III, in §§5, 6, 7, respectively. §8 is devoted to the proofs of Proposi-
tions 4.1.1 and 4.2.1. In the appendix, we prove that our condition (T)
is “generic”.

The main results of this paper have been announced in [8].

The author wishes to express his gratitude for the guidance and
encouragement received from Professor Y. Shikata.

Notation. R denotes the field of real numbers, and R™ denotes the
real m-space, regarded as a real vector space or as a smooth manifold.
S™ denotes an ordinary wm-dimensional sphere. By an m-manifold, we
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mean an m-dimensional manifold with or without boundary, of class C*
By a closed m-manifold, we mean a compact m-manifold without bound-
ary. All functions, maps, curves, and vector fields are assumed to be
of class C' unless otherwise stated. All Riemannian structures are as-
sumed to be of class C:. We denote by %, the Lie derivative with
respect to a vector field X. A one-form « on a manifold M is to be
understood a map of the tangent bundle T(M) into R, which induces, at
each point x, a linear map «, of the tangent space T.(M) at x into R.
For two subsets A4, B of a Riemannian manifold, we shall write dis (4, B)
for the distance of A and B, and diam (A) for the diameter of A. For a
map f of a manifold M into another manifold M’, we write f, for the
bundle map of T(M) into T(M’) induced by f. For a curve ¢ on a man-
ifold, we denote by é(t) the tangent vector at a point ¢(f). If a curvee

is defined on an interval [a, b], we write j a for the integral of «
cla,u]

over [a,u] C [a, b], i.e.,

[ o= et

For a piecewise C' curve, the same integral as above can be defined.
We write (M, «) for a manifold M with a specified one-form «, and (M,
a,g) for (M,a) with a specified Riemannian structure g. We shall say
that (M,«) is a foliated manifold if « is completely integrable, i.e.,
a N\ da =0, If «is nonsingular, a maximal connected integral manifold
of a foliated manifold (M,«) will be called a leaf (of (M,«) or of M).
Given a foliated manifold (M, «) by “almost every leaf”, we mean except
for leaves whose union has measure zero in M. It is clear that for a
finite set A in a foliated manifold, almost every leaf does not intersect A.

§1. Statement of the main theorems

Suppose that we are given a connected, closed (» + 1)-manifold V**!,
n>1, of clags C™*' with a nonsingular, completely integrable one-form
o of class C'. Throughout this paper, we denote by (V,w) this foliated
manifold and assume, for simplicity, that » is sufficiently large, e.g.,
+>21. (From the proofs, one will see that our main theorems hold if
r>4.)

1.1. The critical cycle 3. Since » is nonsingular and completely
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integrable, it is well known that for each point p of V there is a local
coordinate system (z!, --.,2z**) of class C” in a neighborhood U of p
such that w|U = fda™*' for some positive-valued C"~! function f defined
on U. Then the set (U, f;al, -, is called an F-chart (at p).
Now, let X be the set of zeros of the exterior derivative of o, i.e.,

Y={peV|(dw, =0}.
For a point p of X, we define the type of p as follows. Let (U, f;«,

<., 2"*) be an F-chart at p, and consider two matrices

7@ = (fu@sy L)

0 get||of);t v boon Tt 1) ,
ox? j—1,--,n

127 @)] = ( Fist@,

where f;(x) = 3*f(x) /oxtox’.

Let 2=0,1,...,%n. The point p is said to be of type (1) if the matrix
10*f(p)|| is nomsingular and if the number of negative eigenvalues of
116%f(p)|| is equal to 2. We say that p is of type () if ||6*f(p)| is singular.
It is obvious that the type of a point of ¥ is well defined independently
-of the choice of %#-charts. For t=0,1,...,%n or *, let X, be the set of
points of type (f). Then we have

=23, U U2 U---U2Z%, (disjoint union) .

We shall assume that o satisfies the following condition:

) For any point p of 3, there is an F-chart (U, [f;a', ---,2"*") at
p such that ||3*f(p)|| is nmonsingular.

‘One sees then that the same condition holds for any %#-chart at peX,.

One sees also that Condition (T) implies that Y is a closed one-manifold.

Hence if o satisfies (T), then X will be called the critical cycle (of (V,

). In the appendix, it will be proved that Condition (T) is generic.

1.2. The main theorems. Assume that o satisfies Condition (T).
Then we have the following three theorems.

THEOREM I. If 3,# 0 and X, =0, then there exists a CT fibre
bundle B**' over S* and a C* diffeomorphism h: B**' — V**! such that

(i) the fibre of B™*' is a connected, simply connected, closed n-
manifold of class C.
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(ii) for each fibre M™ of B"™*', the diffeomorphism h induces a CT
diffeomorphism of M™ onto a leaf of V.

THEOREM II. If 3,+0, 2,_, =0, and X, =0, then for any point p
of 3,, there exists a C* fibre bundle R**' over S!, and a C7 imbedding
h: R** — V**isych that

(i) the fibre of R*" is a connected, simply connected, moncompact
n-manifold without boundary.

(ii) for each fibre N* of R™*!, the imbedding h induces a C™ dif-
feomorphism of N™ onto a leaf of V.

(iii) the set WR™) N X, coincides with the connected component
of X containing p.

@{iv) if Cl1(Z, N WR**Y)) C h(R™1Y), then there exist a finite number
of compact leaves K,, ---,K,, such that

K U..-.UK,=CwR") — WR")=CIL - L
for any leaf L in h(R™™).

THEOREM III. If 5, = 0, then there exists an open, dense subset V,
of V such that for any peV, the leaf through p is locally dense in the
sense of Reeb (see 7.1).

§2. The veined structure

2.1. The veined structure. Let X be a vector field on V such that
o(X) =1, and put o = —Z 0.

LEMMA 2.1.1. For an %-chart (U, f;x!, ---,2"""), we have

o'|U = 32, (@01og f/oxd)dxt + (—X(f) + 0 log f/ox™ )dar+! .

Proof. This is an easy consequence of the following elementary
formulas:

(Zx0)(Y) = X(0(Y)) — o([X, Y],
[9Y,hZ] = ghlY,Z] + 9(YWZ — MZ9)Y
for vector fields Y, Z and functions g, 2 on V, where [,] denotes the
bracket.

By this lemma, we know that the map o’|0™(0): 0 (0) — R is defined
independently of the choice of X, where v '(0) denotes the subbundle of
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T(V) defined by w = 0. Furthermore, we see that the one-form o’|L
on each leaf L is closed. Hence, the following definition makes sense.

DEFINITION 2.1.1. The wveined structure of the foliated manifold
(V, ) is the “codimension-two” foliation on V defined by o = o’ = 0. The
leaves of this “codimension-two” foliation will be called the wveins of
(V,w).

More precisely, a vein of (V,w) is a nonempty subset J in V having
the following properties:

(i) any two points z, yecJ can be joined by a piecewise C' curve
¢:[0,7] - V such that w(é(?)) = o’'(é(t)) = 0 for all te[0,z] at which ¢ is
differentiable ;

(ii) any point € V which can be joined to a point eJ by a piece-
wise C' curve c¢ satisfying the same condition as in (i), belongs to J.

A vein J will be said to be nonsingular if J does not contain any
singular point of «'|w '(0), i.e., any point xzeV such that o/, =0 on
©,%0). Clearly, a nonsingular vein is a connected (n — 1)-submanifold-
without-boundary (not necessarily closed) in V, of class C".

2.2. Closed one-forms and Morse theory. Let M™ be a connected, com-
plete Riemannian n-manifold of class C°, without boundary. Let « be a
closed one-form of class C:. Denote by a* the dual vector field of « and
denote by || || the norm of tangent vectors or cotangent vectors of M.
For a singular point p of «, the index of p is defined to be the number
of negative eigenvalues of the Jacobian matrix of « at p. The one-form
« is said to be proper if every singular point is nondegenerate and the
vector field «* is complete, and if there exist two families {F };.;, {]E?i}ie 7
of open sets of M satisfying the following conditions:

(i) E,c E, for each eI, and E, N E’j =0 for every 4, 7,1+ 7;

(ii) for each singular point p of «, there is eI such that pe F;, C E.;

(iii) there exist three positive constants «a, b, ¢, such that (a)
llaoll > a, for all ke M — s, By, (b) dis (B,M — E) > b, for all i¢el,
and (c) diam (£,) < ¢, for all iel.

ProOPOSITION 2.2.1. Suppose that « is proper and has at least one
singular point of index 0. If a has no singular point of index 1, then
the following hold:

(i) There exists a C* function f: M — R which is proper, i.e., every
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inverse image of compact sets is compact, such that o = df.

(ii) M™ is simply connected.

(i) If o has no singular point of index n, then M™ is noncompact.

(iv) The number of the singular points of index 0, is equal to one.

(v) For any ye M, there exists a piecewise C* curve a:[0,z] > M
such that a(t) =y and a(0) is the singular point of index 0, and such
that for any x = a(t) at which the vector field o* does not vanish, the
tangent vector a(t) coincides with of /|||

This will be proved in 2.3. The following proposition can be proved
similarly (cf. [9D.

PROPOSITION 2.2.2. Suppose that « is proper. Suppose that there
exists o closed (n — 1)-manifold J* ' and an immersion i:J — M such
that for any xeJ, the subspace t,(T,(J)) of T;., (M) does not contain the
vector of,, and such that the cohomology class [t*a] € H'(J ; R) is trivial,
where iy, t* are the induced maps. If a has no singular point of index
1 and no singular point of index m — 1, then « is rational, i.e., for any
x e M, there exists an open subset U of M containing x and o function
f: U— R of class C* such that a« = df on U and each level manifold f~'(h),
helm f, is compact.

Remark 2.2.1. If V is Riemannian and if o satisfies Condition (T),
then for any leaf L of (V,») which does not contain any point of %,
hence for almost every leaf L, the closed one-forms +o’|L on the mani-
fold L with the induced Riemannian structure, are proper in our sense.
This may be seen as follows. Condition (T) implies that the critical

cycle Y is a closed one-manifold S* U --- U S! and is tangent to the leaves,
at the finite set ¥,. For each peX,, choose an F-chart (U, f;«', .-,
x**) at p such that z'(p) = ... = 2**(p) = 0 and put

Up) ={qeUllzi(@| <ei=1, ---,n;|z" ()] < ¢/2},

where ¢ is a small positive number such that U(p), U(p) are homeomorphic
to the open sets

{xeRnHHxil <5/2?i= 1’ RPN (2 + 1} ’
{xeRn+ll|xi| <e,i= 1, ...,n;|xn+1| < 5/2} ,

by ¢ = (', ---,2"*"), respectively. Let T, T be two sufficiently small
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tubular neighborhoods of ¥ in V such that C1T C T, and put
E=Up)U - ---UU@)UT, E=0U@U---Ulp)UT,

where {p,, ---, 0} = 2. Then, for a leaf L which does not contain any
point of Y, it is easily verified that the forms +«’|L on L have only
nondegenerate singular points (by Lemma 2.1.1.) and are proper, with
the families {F}cs, {E’i}iel of open sets E,, E, defined by the following
conditions: | J;e; E; = L N E, User £; = L N E (disjoint unions), and E,,
E, are connected components of L N E, L N E, respectively.

2.3. Proof of Proposition 2.2.1. We begin with some definitions. For
b
a C' curve c: [a, b] — M, the integral of « on ¢ is defined to be f a(c)dt

and will be denoted by j «. A compact leaf of (M,«) is defined

c(t),ast<d
to be a nonempty, arcwise connected, compact subset J in M satisfying

the following condition: for each x e J, there exists a neighborhood U of
xz in M and a function f: U — R such that e =df on U and J N U =
Y f(®). A compact leaf J is said to be singular if J contains any
singular points of «. Clearly, a nonsingular, compact leaf is a connected,
closed (n — 1)-submanifold in M. Let {y,} be the one-parameter group
of transformations generated by «*. The proof of Proposition 2.2.1 will
be preceded by six lemmas, 2.3.1-2.3.6.

2.3.1. There exist positive constants d,, h, satisfying the following
condition: for xe M and = >0, if dis(z,.(x)) > d,, then the integral of
o on the curve ¥, (x), 0 < t <z, is greater than h,.

Proof. Let {E]}, {E’i}, @, by, €, be as in the definition of ‘“proper”.
Put d, = max (b,, ¢;), b, = a,b,, and let the curve 4, (x), 0 < t < 7, satisfy
dis (z, ¥.(x)) > d,. First, consider the case where the curve ¥,(2),0 <t <,
does not intersect E, for any ¢e I. Then, ||af | = [lawml > &, hence we
have

[ « = [atat)it = [age | dt
$1(2),0<t<7 0 0
>, [lafinll dt = a,dis @, @) > aody > by
0

Next, in the case where the curve .(x), 0 < t < r, intersects some F,,
since dis (z, v.(x)) > d,, dis (B;, M — E,) > b,, and diam (£,) < ¢, we see
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that there exist real numbers ¢, t,, 0 < t, < t, <z, such that the curve
v (@), t, < t <t, is contained in E; — E;, and such that the length of
Y (x), t, <t < t, is greater than b, Since |af .l > a, for telt,t,l],
similarly to the preceding case, we have

j a> aby=hy .
$e(z),t1<t<ts

Hence, we obtain

j o> f a>h,,
¢t(x),0<t<7 Ge(x),t1<t<tg

which proves 2.3.1.

2.3.2. Suppose that there exists a connected, compact n-submanifold
W= in M* such that the boundary oW is the finite union of nonsingular,
compact leaves of (M, ), and such that for any x e oW, the vector a¥ is
directed toward the outside of W. Suppose further that there exists a
function f: W — R such that « =df on W. Let J be a connected com-
ponent of oW, and let 6 be a positive constant satisfying the following
condition: for each xeJ, there is a positive number c(x) such that the
integral of « on the curve v, (x), 0 <t < «(x), is equal to 6. Then, the
set W=WU {y@|ze, 0<t< ()} is a connected, compact n-sub-
manifold in M such that the boundary oW is the finite union of mon-
singular, compact leaves of (M,«), and such that for any xeW, the
vector of is directed toward the outside of W. Furthermore, there exists
o function 7:W — R such that f = f on W and « = dj on W.

This is easily verified.

2.3.3. Let p be a nonsingular point of a. Suppose that there is a
positive number o, having the following properties:

(i) for any 0¢€(0,d,), there is a positive number t(5) such that the
integral of a on the curve ¥,(p), 0 < t < (), s equal to d;

(ii) for any >0, the integral of « on the curve ,(p), 0 < t <,
18 smaller than o,

Then lim,_ ., ¥,(p) exists and is a singular point of .

Proof. Using 2.8.1, we know that the subset | J,»,V.(p) is bounded
in M. In fact, this set is contained in the compact set

{we M|dis (p, @) < d,(3h* + D} ,
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where d,, h, are the same constants as in 2.3.1. Therefore, since M is
complete, there is an infinite sequence ¢, < t, < ..., t, — oo, such that
lim,.., ¥, (p) exists in M. It is easy to verify that the limit point is a
singular point of «. Since every singular point of « is nondegenerate,
the limit point is uniquely determined. This proves 2.3.3.

2.3.4. Suppose that there is a mnonsingular, compact leaf J of
(M,a). Let 5, be a positive number satisfying the following condition:
for any 6¢(0,0,) and any xcJ, there exists a positive number <(x,0)
such that the integral of o« on ¥, (x), 0 <t < z(x,0), is equal tod. Let S
be the subset of J consisting of those points x such that for any r > 0,
the integral of a on ¥(x), 0 <t <<, is smaller than &, If S+ 0, then
S, = {lim,_... v, () | p € S} is a finite set, whose elements are singular points
of a.

Proof. By 2.3.3, for each peS, the limit point of ()t — o)
exists and is singular. Similarly to the proof of 2.3.3, using 2.3.1,
we see that the set S, is bounded in M. Since M is complete, and every
singular point of « is nondegenerate, we can conclude that S, is finite.

2.3.5. Under the same hypotheses and notations as in 2.3.4, if S+ 0
and if S, contains no singular point of index 1, then the set

J =8, U {Yuo@|ze] — S},

where t(x) is a positive number satisfying a = d,, 18 a singular,
¢e(x),0<t < (2)

compact leaf of (M, ).
This is proved in [9].

2.8.6. Let a singular, compact leaf J of (M,«) which contains no
singular point of index 1, be given. Then, there exists a connected,
compact n-submanifold W* in M® containing J and there exists a func-
tion f: W — R satisfying a = df on W, such that the boundary oW is
the finite union of nonsingular, compact leaves of (M,«), and such that
the subset 3_W of oW consisting of those points x at which the wvector
a¥ is directed toward the inside of W, is connected (therefore o_W is a
nonsingular, compact leaf if o_W + 0).

This is also proved in [9].

Proof of Proposition 2.2.1. Fix a singular point p of index 0. By
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Morse’s lemma, there exists an imbedded n-disk D” in M” containing p
such that the boundary is a leaf of (M, «), and there exists a function
S:D"— R such that « = df on D. TUsing this fact and 2.3.1, and applying
2.3.2, 2.3.5, and 2.3.6, we can easily construct a function f: M — R of
class C* which is proper and satisiies « = df. Applying Morse theory
to the proper function f: M — R, we see that M is simply connected and
the number of the singular points of index 0 is equal to one. Part (iii)
is obvious. In order to prove (v), it suffices to verify the following.

2.3.17. Let U be an open set in R® with a Riemannian structure g
of class C', and let f:U — R be a function of class C* with a non-
degenerate critical point p. Denote by grad f the gradient of f with
respect to g. Suppose that there is an integral curve c:[0,c00) — U of
grad f such that c¢(t) —p as t— co. Then, there exists a C' curve
d:[0,7] - U such that d(0) = ¢(0), d(z) = p, and for every tcl0,], the
tangent vector d(t) coincides with grad f/|grad f| at d(t).

This lemma is a consequence of [1, Th. 6.1 (p. 242), Cor. 16.4 (p. 314)].
This completes the proof of Proposition 2.2.1.

§3. Tangential curves and their lifts

Fix a Riemannian structure g on V and a vector field X of class
C* on V such that w(X) = 1. Let o' = — % 0, and {¢;} the one-parameter
group of transformations generated by X.

3.1. Tangential curves and their lifts.

DEFINITION 3.1.1. A continuous curve ¢ in V is called tangential if
the image of ¢ is contained in a leaf. For a tangential curve ¢: [0,7] - V
and »¢ R, suppose that there is a continuous function ¢: [0, z] — R such
that » = ¢(0) and such that the curve d: [0, z] — V defined by 5(¢) = ¢,,((®),
is tangential. Then » is called the 7-lift of ¢, and ¢ is called the height
parameter of the y-lift of c.

Let & be a positive number such that the inequality

5> %]%m,*w»{

holds for all v ¢ T(V) and all s satisfying |s| <1, where T,(V) denotes
the tangent sphere bundle of V. This # has the following property.
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LEMMA 3.1.1. Let ¢:[0,7z] -V be a tangential, piecewise C' curve
such that ||¢(f)] = 1, o’'(¢(t)) < 0 for every te[0,c] at which ¢ is differen-
tiable. -Let n be a real number such that 0 <|p| <1. If the inequality

Jr (expj‘ w’) du < 1—1yl
0 [0,2] K |77|

holds, then ¢ has the y-lift, whose height parameter o satisfies
o () <o) <a*(®) for all te(0,7],

where

o*(t) = (77 exp a)’) /(1 F oy f (expf w’) du) .
¢[0,¢] 0 [0,%]

This lemma will be proved in 3.2.

COROLLARY 3.1.2. Let k be as above. Let c:[0,7]—V be a tangential,
piecewise C' curve such that ||¢(t)] = 1, o' (¢(t)) = 0 for every tel0,z] at
which ¢ is differentiable. If a real number 7 satisfies

Iy <1/(ke + 1),
then ¢ has the y-lift.
Proof. Since every tangential curve always has the 0-lift, we may

assume 7 % 0. The inequality |y| < 1/(sz + 1) implies that || <1 and
<A —|yD/|p). Therefore, since I o = 0, the curve ¢ satisfies the

c[0,u]
assumption of Lemma 3.1.1. Hence ¢ has the y-lift.

3.2. Proof of Lemma 3.1.1. The proof will be preceded by four
lemmas, 3.2.1.-3.2.4.

LEMMA 3.2.1. Let ne R. Suppose that a tangential, C* curve ¢ has
the n-lift. Then the height parameter s = o(t) satisfies the differential
equation

%j— = —alps (D))

with initial condition s(0) = 1.

Proof. For the curve ¢: [0,7] —V, consider the map F:[0,7] X R—V
defined by F'(t,s) = o,(c(t)), tc[0,7], se¢ R. Let y be the vector field on
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[0, 7] X R defined by 7(t,s) = 8/9t — w(p,.¢(t))d/os where (Z, 8) is the canon-
ical coordinates on [0,7] X R. It can be checked directly that (F*w)y =0.
Let ¢:[0,z] — R be the height parameter of the »-lift of ¢. Let d:[0,<]
—[0,7] X R be the curve (of class CY) defined by d(t) = (¢,0(t)). Since,
by definition, the set Fod([0,z]) is contained in some leaf, we see that
(F*w)d(t) = 0 for all te [0,z]. Hence, we see that for each ¢, the two
vectors 74uy, d(t) are linearly dependent, because the one-form F*u is
nonsingular. Using the identity dt) = 9/ot + (de/dt)d/ds, we conclude
that 7., and d(t) coincide, and therefore the function o satisfies the
differential equation de¢/dt = —w(g, .¢(t)) with initial condition ¢(0) = 7.

LEMMA 3.2.2. Let £ be the same positive number as in 3.1. Then
the following inequalities hold:

@' (V)8 — £8* < —alp; ) < &' (V)8 + £§°

for any nonzero s with |s|] <1 and any ve T(V) N o '(0), t.e., any unit
tangent vector v such that o(®) = 0.

Proof. Regarding —a(yp,«v) as a function of s, by Taylor’s formula,
we have

= o0~ (L)oo~ 3L )

S

where £¢e[0,s]. Since, by definition,

(4] oo = (Zz0)®) = —0 @),

we have
_ oy, 1 (d )2 > .
(ps,,v) = o’(v)s > ( vy s=ec¢)(gz>s,*’LJ) s

for vew™(0). Hence we obtain the desired inequalities.
The following is a direct consequence of a classical result, due to
Ricatti, on ordinary differential equations.

LEMMA 3.2.3. Letk;pe R. Letc:[0,7] -V be a C' curve. Consider
the differential equations

ﬁ = o’'(¢(t))s + ks?.

dt
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Then the solutions s = ¢*(t) with ¢=(0) = 5 are given by

o*(t) = (77 exp w’) / (1 F £y J-t (epr. w') du) .
¢[0,¢] 0 cfo,u]

LEMMA 3.2.4. Let £ be the same positive number as in 3.1. Let gy
be a real number such 0 < |y < 1. Let c:[0,c] —V be a tangential, C*
curve such that ||¢(D)| = 1, o’ (&) < 0 for every te[0,z], and such that

the inequality
J‘T (expj (t)/) du < }:M
0 €[0,u] £|y]

is satisfied. Then ¢ has the n-lift, whose height parameter o = o(t)
satisfies the inequalities

a (t) < alt) < a*(t) for all te(0,],

where

o*(t) = <77 exp a)') / (1 F Ky j%expf w’) du) .
¢[0,¢] 0 c[0,u]

Proof. For simplicity we assume » >0, the proof in the case 7 <0
being similar. By Lemma 3.2.3, the solutions of the differential equa-
tions ds/dt = o'(é(t))s = ks* with initial condition s(0) = 5, are given by
s = o*(t). It is clear that 0 < ¢ (t) for te[0,z]. Since, by assumption,

f‘ (expf a)’) du < (1 — p)/(ky) for t € [0, ], we see that ¢¥(f) < exp o
0 c[0,u] ¢[0,¢]
for te[0,7], and therefore ¢*(t) < 1 for tc[0,z]. Note that by Lemma

3.2.2, the following inequalities hold:
@' (¢(8)s — kst < —alp;, (1) < o' (E(E))s + ks°

for se(0,1] and te[0,7z]. Using these inequalities and Lemma 3.2.1,
and comparing the functions ¢*(f) and the solution s = ¢(¢) of the dif-
ferential equation ds/dt = —w(y,,.i(t)) with initial condition s(0) = 5, we
can conclude that the curve ¢ has the #-lift, whose height parameter o
satisfies the inequalities ¢~ (t) < o(t) < ¢*(t) for te (0, <], as desired.

Proof of Lemma 3.1.1. Using Lemma 3.2.4, we can easily prove
our lemma.

3.3. Admissible tangential curves. For the Riemannian, foliated mani-
fold (V,w,q), it is clear that there is a vector field Y (of class C>) on V
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satisfying the following conditions:

(i) w(¥) =0 (.e., 0,(Y;) =0 for all xeV);

(i) o’(@) = g(Y,v) for all vew(0), i.e., o,(v) = g(Y,, v) for every
eV and every tangent vector v at x such that w,(v) = 0.
We observe that for each leaf L of (V,w), the vector field Y induces a
vector field Y|L on L, which is the dual vector field of o’ with respect
to the Riemannian structure g|L, and hence that, by Lemma 2.1.1, the
vector field Y is determined independently of the choice of X.

DEFINITION 3.3.1. This vector field Y is called the leaf-gradient
field of (V,w,q).

By Lemma 2.1.1, we note that the set of singular points of Y coincides
with the critical cycle X of (V,w).

DEFINITION 3.3.2. Let Y be as above. A tangential curve a will
be called an admissible tangential curve of (V,w,g) if a is piecewise C!
and if, for any x = a(t) at which Y does not vanish, the tangent vector
a(t)(exists and) coincides with —Y,/||Y .||

PrOPOSITION 3.3.1. Let Y be the leaf-gradient field of (V,w,g). Let
Z be the vector field on V — X defined by

for xeV — 3. Let W be an open subset in V such that CIW N 2 = ¢.
Then for any positive number e, there exists a positive number h hav-
ing the following property: for any ne(—h,h) and any integral curve
2:[0,7] = W of Z, there is the 3-lift of 2, whose height parameter o
satisfies

7] e~ < |a(t)| < [l e~ for all tel0,7].

Proof. Let ¢ > 0. Applying the mean value theorem to the func-
tion

s> —wlpsZ,) — o' (Z)s
where z e Cl W, and using the identity

(;'Zl;) 09, 20) = —o/(Z,)

and the compactness of Cl W, we can find a positive number % such that
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l_w(GDs,*Zz)S—l — ((/(Z:,;), e

for any e Cl W and any nonzero se (—h,h). Hence, for this number
h, we have

—e— 1< —olps Z)s'<e—1

for xe ClW and nonzero se (—*h,h), because o' (Z,) = —1. Let z:[0,7]
—W be an integral curve of Z. It is clear that

—e— 1< —alp;2(0)s' <e—1
for nonzero se (—h,h), and therefore

—(1 4+ s < —aps2(1) < —(1 — o)s for se(0,h) ,
—(1 + &8s > —alps,2(1) > —(1 — ¢)s for se(—h,0).

Let pne(—h,h). Similarly to the proof of Lemma 3.2.4, using Lemma
3.2.1 and comparing the functions ne~"*¢ and the solution of the dif-
ferential equation ds/dt = —a(p;,2(t)) with initial condition s(0) =z, we
can conclude that the curve z has the y-lift, whose height parameter ¢
satisfies |p|e "+t < |a(t)| < || e *2¢ for te[0,z], as desired.

§4. w-preferred Riemannian structures

4.1. @-preferred Riemannian structures. We shall say that (U, f; ',
co, 2™ is an F-chart (at p) of class C* A <s<r + 1) if (2!, ..., 2™
is a local coordinate system of class C°® in a neighborhood U of peV,
and if the identity o|U = fdz"*' holds for some positive-valued C**
function f on U.

DEFINITION 4.1.1. Let A be an integer on the range 0,1, -.--,n.
An F-chart (U, f; ', --.,2"*) of class C* is said to be of type (1) if U
is mapped onto a neighborhood of the origin in R"*!, by (!, ..., 2"}
and if the identity

log f = g@™*) — @) — - — @) + @) + -+ + @)

holds throughout U, where g is some suitable function defined on an open
set in R.

Let ¢ be an integer on the range 0,1,-.-.,n —1. An Z-chart (U,
St -, avh) of class C* is said to be of type (x,p) if U is mapped
onto a neighborhood of the origin in R**!, by (z, -.-,2*") and if the
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identity
log f = g(a", n"*) — (@) — -+ — (@) + @) + -+ + (@)

holds throughout U, where g is some C°® function which is defined on an
open set U, is R® and satisfies the following conditions:
(i) the set X(g) defined by

2(9) = {(@", &™) e U,|9g(a", 2*1) [ox" = O} ,
coincides with either the set
{(xr, 2" e U,| (@")? — 2! = 0}
or the set
(@, &) e U, | (2 + a2 = 0} ;

i)  oglam, xmt)/(@x™) = 0 at (z*, 2" = (0,0) ,
*g(x™, x™*1) /(0x™)® + 0 at (x*, 2**) = (0,0) ,
o*g(x™, x™*Y) ez o™t = 0 at (2*, 2 = (0,0) ,
o*g(x™, ™) /(0x™)* + 0 at any (2", ") € 2(g9) — {(0, 0)} .
DEFINITION 4.1.2. A Riemannian structure g of class C* on V will
be called an o-preferred Riemannian structure if for any pe 2, there

exists an &-chart-at-p (U, f;z', -.-,2""") of class C* satisfying one of
the following conditions:

(i) W, f;a, .-,z is of type (1) for some 2 and satisfies

y —— | = 04 for 1<, 1< n;
g<axi ox’ ! !

3 W, iy ---, 2" is of type (x,p) for some p and satisfies

0 0 ) ..
, = 0, forl1<i, j<n-—1,
g(axi ox ! =bI=

g( a,, a)——-O forl<i<n—1.
oxt " ox™

(6;; is the Kronecker delta.)

ProPOSITION 4.1.1. If o satisfies Condition (T), then V admits an
w-preferred Riemannion structure.

We shall prove this proposition in § 8.
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The following three lemmas are important for the proofs of the main
theorems. Let X,o” be as in §3.

LEMMA 4.1.2. Suppose that an w-preferred Riemamnnion structure g
is given on V. Then there exist two positive constants a,,t, such that
for any admissible tangential curve a:[0,z1 -V of (V,w,q), the follow-
ing inequality holds:

J o < —ayt for any t satisfying =, <t <.
a[0,t]

This lemma will be proved in 4.3. The following lemma concerning
the lifts of admissible tangential curves is fundamental.

LEMMA 4.1.3. Suppose that an w-preferred Riemannian structure g
18 given on V. Then there exist two constants 5, B, such that 0 < 5, <1,
0 < By < 1/9, and such that, if 7 is a real number satisfying 0 < || < 7y,
then any admissible tangential curve a:[0,7z]1 >V of (V,w0,8) has the 7-
lift, whose height parameter o satisfies the following inequalities:

gz () < a(t) < ai(®) for all te[0,7],
where oi(t) are defined by

oi(t) = (7] exp LW] w’)/(l F 7By) -

Proof. Let ay,r, be the same constants as Lemma 4.1.2, and let «
be the same positive number as in 3.1. Put
o=ty +az', Be=1rx0, 79,=1/1 + ka).

Now, let » be a real number satisfying 0 < |y| < 54, and let a: [0,7] —
V be an admissible tangential curve. It is clear that o < (1 — [3)/(x|y),
and that

¢
J (exp w’) du <t, because J o <0.
al0,%]

0 af0,u] -

First, we shall prove that

.r (exp a)’) du < a for all te[0,<].
al0,%]

0

In the case ¢ < z,, clearly this inequality holds, because ¢, < a. There-
fore we assume ¢ > r,. From Lemma 4.1.2 we know that
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exp o' < exp (—ayt) for t >z, .
a[0,¢]

Hence, for te[0,z] we have
f(exp w’) du = f "4 f <oy + f’ (exp (—a,u))du
0 al0,u] 0 % 0

=, taz'=a, as desired .

Hence, from Lemma 3.1.1 we see that the curve a has the »-lift, whose
height parameter ¢ satisfies the inequalities ¢~ (t) < a(t) < a*(t) for t € (0,7],
where ¢* are the same functions as in Lemma 3.1.1. It is easy to verify
that

az(t) < o™ (), o*(t) < oi(d) for all ¢e[0, 7],

because

/cr (exp w') du < By .
al0,u]

0

Hence we conclude that o3(¢) < o(®) <oi(®) for all te[0,z]. Our lemma
is proved.

Remark 4.1.1. In the preceding lemma, putting pi = 1/(1 F 7.8,),
we observe that 0 < gz <1 < B, and that the inequalities

plnlexp [ o <lo®)] < pi-lplexp [ o
af0,¢] af0,¢]

hold.

The next lemma gives us the existence of the maximal admissible
tangential curves.

LEMMA 4.1.4. Suppose that an w-preferred Riemamnion structure g
is given on V. Then for any point p of V, there exists an admissible
tangential curve a which passes through p and satisfies one of the
following :

(i) a s defined on (—oo, c0);

(ii) a is defined on (—o0,0], and a(0) e 2;;

(iii) a s defined on [0, o), and a(0) e X, ;

(iv) a is defined on a finite interval [0, 7], and a(0) e X,, a(z) € X,.

This will be proved in 4.3.
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4.2. Y-preferred neighborhoods of Y. Let g be a Riemannian structure
on V, and let Y be the leaf-gradient field of (V,w,g) (3.3).

DEFINITION 4.2.1. An open set T* in V will be called a Y-preferred
neighborhood of the critical cycle Y if the following nine conditions are
satisfied:

(i) YcrT*

(ii) There exist two positive constants a¥, a¥ such that, if an admis-
sible tangential curve a:[0,7z] — V satisfies Ima C T*, then ¢ < a¥, and
such that, if an admissible tangential curve a: [—7,7] — V satisfies the
following conditions:

a@eClT*N(V —T% ; < af,
then
either a([—z, 0D NT*=06 or a[0,c)NT*=0.

(iii) For any x e T*, there exists an admissible tangential curve
a: [0,7z] — V such that x ¢ Ima C Cl T*, and such that one of the follow-
ing is satisfied:

a0 eT* and a(r)eT* ;
a0 e, and a(r)eT* ;
a(0)gT* and al(r) e, ;
a(0)e, and a(r)el,.

(iv) There exists a positive constant af such that for any
zeClT*NV —-T%,

there is an admissible tangential curve a: [0,7] — V satisfying the follow-
ing conditions:

> af; ImanNT*=0;
and
either a(0) =z or alr)=x.

Here in order to describe (v)-(viii), we introduce the following word:
A nonempty subset J* of V will be called a T*-vein if there is a vein
J such that J* coincides with some connected component of the subset
T*NJ in J. For a T*-vein J*, we denote by diam,.(J*) the supremum
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of the distances in J* between any pairs of points of J*.
(v) There exist three positive constants b¥, b¥, b such that

diamg. (J*) < b¥ , mes,_, (J*) < b¥
for any T*-vein J*, and such that
mes,_, (J*) > bf

for any noncompact T*-vein J*, where mes,_, (J*) is the total measure
of the (n — 1)-manifold J* — (J* N 3) with the Riemannian structure
induced by g.

(vi) If a T*-vein J* is compact, then there exists an imbedding
2: D — L of a closed unit n-disk to a leaf such that for each e-sphere
S* 1), 0 <e <1, the image #(S*"!(c)) is a vein and #(S*"'(¢)) = J* for
some ¢’.

(vii) (local Y-invariance) Let a: [0,7] — V be an admissible tangential
curve such that Ima C T%*, and let o’: [0,7] — V be another admissible
tangential curve such that

either a’(0) e J*(a(0)) or o' () e J*(a(z)),

where J*(a(0)), J*(a(r)) are the T*-veins containing a(0), a(z), respectively.

If
o= L
a’[0,77] a[0,7]
then Im o’ C T*.

(viii) There exists a positive constant d¥, and for each z e T*, there
exists an imbedded closed n-disk @ in the leaf L(x) through =z, such that
Q contains the connected component of 7* N L(x) containing z, and such
that for a function %: Q@ — R satisfying

o' |Q =dh,
the following inequality holds:
df-(hy — R, inf mes,_, (h~'(h,) N T*)) < mes, (A"'([k,, kD) N T*))

tef0,7]
for any admissible tangential curve a:[0,7z] — V such that Ima C T%,
where i, = h(a(t)), and (()) denote the connected components of the sets in
the parentheses, containing the point a(t), and where the right side of the
inequality denotes the total measure of the n-manifold ((~*((%., k) N T*))
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with the Riemannian structure induced by g.
(ix) For any vein J, the subset J — (J N T%*) is-an. (n — 1)-submani-
fold with or without boundary, of J — (J N ).

PROPOSITION 4.2.1. Suppose that an o-preferred Riemannian structure
g s given on V. Let Y be the leaf-gradient field of (V,w,g). Then for
any netghborhood W of X, there exists a Y-preferred neighborhood T* of
2 such that T* C W.

We shall prove this proposition in §8.

4.3. Proofs of Lemmas 4.1.2 and 4.1.4. For the w-preferred Rieman-
nian structure g and the leaf-gradient field Y of (V,w,g), let T* be a Y-
preferred neighbourhood of 3.

Proof of Lemma 4.1.2. Put

nas
2a

)

p= min |Y,||, e=¢af +af, r,=20, a,=
TEV-T*

where a¥,a¥ are the same constants as in (ii) of Definition 4.2.1. Now
let a: [0, 7] — V be an admissible tangential curve. Let ¢, <t <. Choos-
ing an integer % so that 0 <t¢ — ka < a, we have

a 2a i3
j d:j‘w'(a(u))du:j +f +---+f .
af0,¢] 0 0 a ka

For u [0, 7] such that a(u) e V — T*, we observe that

o'(au)) = &' (=Y, /Il Yo D = (¥, =Y /|| Y Doy
= '—”Ya(u)” S -7.

We also see that o’(a(w)) < 0 for all ue[0,7]. Hence

f o' @w)du < 0 .

ka

By (ii) of Definition 4.2.1, we have for each ¢t =1, ..., k,

f T ) du < —na .

Since k> (t — a)/a, using the fact that (t — @)/t > 1/2, we have

t—a

nay
f o < —kpat < — gait < =1%ot = _at,
a[0,¢] 2a
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which proves our lemma.

Proof of Lemma 4.1.4. Since every admissible tangential curve in
V — T* is an integral curve of the vector field —Y/||Y| defined on
V — T*, the lemma is a direct consequence of the conditions (iii) and (iv)
in Definition 4.2.1.

§5. Proof of Theorem I

Throughout § 5, § 6, and § 7, we assume that Condition (T) is satisfied.
Let g be an o-preferred Riemannian structure. (Such a Riemannian
structure exists by Proposition 4.1.1.) Let X be a vector field of class
C” on V gsuch that o(X) =1, and {p,} the one-parameter group of trans-
formations generated by X. Let Y be the leaf-gradient field of (V,w,g)
(see 3.3) and put o = —Z 0.

5.1. Proof of Theorem I. Let 7., 8, be the same constants as in
Lemma 4.1.3. We begin with a lemma.

LEMMA 5.1.1. There exists a positive constant {, having the follow-
ing property: for any x,y eV satisfying dis (x,y) <, there is a real
number y with |y < y, such that the point ¢, (x) is contained in the leaf
through .

This is an easy consequence of local triviality of the foliated structure.

Proof of Theorem 1. Note that X, is a one-manifold and is trans-
versal to leaves. From Remark 2.2.1 we know that there exists a leaf
L containing a point p € 2,, such that the closed one-form o'|L on L is
proper. For ¢=0,1,.-.,n, and g ¢ L, note that ¢ belongs to %, if and
only if ¢ is a nondegenerate singular point of o'|L, with index 4, be-
cause for an Z-chart (U, f;z!, - ---,2*") and qe U N 2, the following
identities hold:

dlogf _ 1 &f ——
W(Q)—7W(Q) for 4,7 =1,.--,n.
Hence we can apply Proposition 2.2.1 to (L, '|L).

We shall prove L is compact. Since X, is transversal to leaves,
there is a positive number é such that for any nonzero s with '|s| <9,
the leaf through the point ¢y(p) intersects 2, — {p}. Suppose that L were
not compact. Then there would exist x ¢ L and < R having the follow-
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ing properties:

0<n<ny, 9/ —1B) <5, g@elL.

By (v) of Proposition 2.2.1, there would exist an admissible tangential
curve a: [0,z] —» V such that x = a(0), p = a(z). By Lemma 4.1.3, there
would exist the »-lift of a, with the height parameter ¢ satisfying

0 <oa(x) <p/A — 7By .

Since the leaf through ¢,.,(p) would be nothing other than L, the leaf
L would intersect 3, — {p}, which contradicts (iv) of Proposition 2.2.1.
Thus L is compact. Since, by (ii) of Proposition 2.2.1, L is simply con-
nected, our theorem follows from the Reeb global stability theorem [1,
(B, III, 11)].

5.2. The orientation of 3. We orient X as follows. Let peJX, and
let (U, f;a'---,2*") be an F-chart at p. Denote by 0 the origin of
R*. Consider the map 9f: U — R" defined by

af(@) = (g—j;(x), gg{ (x)) .

Note that U N 2 = (@/)7'(0). Let
(af)*p: Tp(U) - o(Rn) = R"

be the map induced by af, where T,(U), To(R") are the tangent spaces
of U,R" at p,0, respectively. It follows from Condition (T) that the
map (3f)4, is onto. Since the kernel of (31),, coincides with the tangent
space T,(2) of X at p, we have a direct sum

Ty(0) = Ty(D)+DTp(2),
and we see that the restriction
@) yp | Tp(D)L: TH(2)+ — R

is an isomorphism. This isomorphism and the standard orientation of
R" define an orientation &(p) of T,(2)L. Let &) be an orientation of
T,(U) determined by the base

( a_ ... _Q_>
axt’ T xrtt e
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Then we define the orientation &,(p) of T,(3) so that
§(p) = &(p) @ &) ,

i.e., so that the orientation &(p) agrees with the orientation determined
by a base (v, -+, vy, Vys,) 0of T,(U), where (v, ---,v,) is a representative
of &(p) and v,,, is a representative of &,(p). (Orientation is to be under-
stood as an equivalence class of basis.) It can be checked directly that
the orientation &,(p) of T,(2) is defined independently of the choice of -
charts and varies continuously with pe . Hence &, defines an orien-
tation of Y. In 5.3, we shall suppose that 3 is oriented by this &,.

5.3. Corollaries. Let S' be an oriented, one-dimensional sphere of
class C7, and let 4 be a nonsingular one-form of class C™~! on S' such
that the integral of 6 on S! is equal to 1.

As another version of Theorem I, we have:

THEOREM I’. Let the hypotheses be as in Theorem 1. Then there
exists a C™ submersion

z: V-8t
such that the identity
o = fr*d

holds throughout V, where f is some positive-valued function of class
Cton V.

Proof. Obvious.
The following assertion is an immediate consequence of Theorem I’.

COROLLARY 5.3.1. Under the same hypotheses as in Theorem 1, the
one-form o can be written in the form

o= fa,

where f is a positive-valued function of class C™, and « is a nonsingular,
closed one-form of class CT*.

Next, we consider the relation of the homology class of X and the
Euler characteristics of leaves.

PrOPOSITION 5.8.2. Let SY 0 be as above. Suppose that (V,w) has
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the following property: there exists a C*' submersion n: V — S' such that
the identity o = fr*0 holds throughout V, where f is a positive-valued
function. Then for beS', the Euler characteristic of the closed n-mani-
fold =n=(b) is equal to the integral of n*@ on the critical cycle X (with the
orientation given in 5.2).

Proof. Denote by x, the restriction of = to 2. Let beS'. We may
assume that the map =,: 3 — S! is transversal to b. Because, the set of
regular values of =, is dense in S!, and for any b’ ¢ S', the two manifolds
z~4(b), =~Y(b’) are diffeomorphic and hence their Euler characteristics are
equal. Note that z7'(b) N 3, = 0. We denote by degr, the degree of
the mapping =, between the oriented manifolds 2, S'. It is easy to verify
that the integral of z*@ on X is equal to degs,. On the other hand, let
m, (or m_) be the number of points p in #7%(b) such that

0y (mu&y(p)) > 0 (or 0,(m&(p) < 0),

where 7.t Tp(2) — T,(SY) is the induced map, and &,(p) is to be understood as
a nonzero vector in 7,(2) which defines the orientation of X at p. It is
well-known that deg s, = m, — m_. We shall prove that the Euler char-
acteristic of »~'(d) is equal to m, — m_. The following fact is essential:
if a point p e zf(b) is of type (), for some i =0, ...,n, then

(=1)0,(m&,(p)) > 0 .

This fact can be checked directly. For ¢ =0, .-..,n, we denote by ¢; the
number of elements in the finite set z~(d) N 2;. From the fact that for
1=20,..--,n and a point pea~(b) N 2;, the index of the closed one-form
o' |z~(b) at the singular point p is equal to ¢, we know that the Euler
characteristic of #7'(b) is equal to > »,(—1)%;. From the relation

m, = >, Ci, m_ = >, ¢,

t:even 4:0dd

we conclude that the Euler characteristic of #~'(b) is equal to m, — m
This proves our proposition.

The next corollary is an immediate consequence of Theorem I,
Theorem I’ and Proposition 5.3.2.

COROLLARY 5.3.3. Let the hypotheses be as in Theorem 1. Let v be
a vector field of class C* on V such that w,(v,) # 0 for all xe V. Denote
by [2] the integral homology class of 2 (with the orientation defined in
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5.2), in H(V;Z). If [X]1=0, then there exists a closed integral curve
of v.

§6. Proof of Theorem II.
Let g, X, {0}, Y, be as in §5.

6.1. Notations and a lemma. For a connected, compact (n — 1)-mani-
fold G of V, with or without boundary, which has a Riemannian structure
induced by g, we denote by diamg;(G) the diameter of the Riemannian
manifold G, i.e., the maximum distance in G between any pairs of points
of G, and we denote by mes, ,(G) the total measure of G with respect
to the Riemannian measure on (G. Similarly, for an open subset G of a
compact (n — 1)-submanifold of V or for an open subset H of a compact
n-submanifold of V, we can define mes,_, (G or mes, (H), and we can
also define diam.(G) if G is connected. For an open or closed sub-
set C of V, let mes,,, (C) denote the measure of C with respect to the
Riemannian measure on V.

For a subset G of a vein of (V,w) and a number % > 0, we denote
by Glu] the subset of V consisting of those points x such that there ex-

ists an admigsible tangential curve a: [0,7] — V satisfying the following
conditions:

a0 eG; alt) =2z ; L ]w’:—u.
af0,7

For a vein J and positive numbers o, ¢, we define

cub (7,0, = Up, ( U J[u]) .

LeMMA 6.1.1. If 3, =0, and X, , =0, then there exist three posi-
tive constants c,,d, e such that the inequality

Cy-0-pu-diam; (J) < mes,,, (cub (J,q, p)

holds for any numbers o, p satisfying 0 <o <1, 0< pu<e, and for any
nonsingular compact vein J satisfying the following conditions:

diam;(J) > d ;
JNJul =0 for 0<u<yp;

(QOJ[M]) n ¢S(QOJ[u]) =0 for0<s<oa.
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This lemma will be proved in 6.4.

6.2. Proof of Theorem II. The proof will be preceded by five lemmas,
6.2.1-6.2.5.

LEMMA 6.2.1. Suppose that 3, + 0, 2,_, =0, X,=0. Let p be a
point in 3,, and S'(p) the connected component of X containing p. Put

g€ S1(p)

where L(q) is a leaf through o point q. Then:

(i) Ewvery point in S'(p) is of type (n).

(ii) R 1is a connected, noncompact, open subset in V.
Further, there exists a C'~' submersion = of R onto S'(p) hoving the
following properties:

(ili) The restriction =|S'(p) is the identity.

(iv) For each qe S'(p), the n-submanifold ==(q) is a noncompact,
simply connected leaf of (V,w).

(v) For each qe S\(p), there exists an open set I in S'(p) containing
q and a C™' diffeomorphism

O:1 X a ' q) — ')

such that =(@y,x)) =y for all yel and all x e '(q), and such that for
each point x,¢c n~(q), there exists a C™! imbedding 6: I — R satisfying

DY, ) = @y () for all yel.
Furthermore, for any point x of R and any real number 5 satisfying
o) eR for all se(0,1],
there exists a C7 diffeomorphism
Aoy L(@) — Lip, @)

where L(x), L(p,(x)) are leaves through z, ¢,(x), respectively, such that
the following condition is satisfied: there exists a C* function A: L(x) —
R satisfying

Ax) =9, 4, = ¢;)(®)  for all ye L(x) .

Proof. Part (i) follows from the assumption 3, , = 0 and the fact
that X is covered by F-charts of “type (1)” or of “type (x,)” (see 4.1).
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Note that (i) implies that the one-dimensional sphere S'(p) of class C!
is transversal to leaves.

Assertion 1. Suppose that a leaf through a point q of S'(p) does not
intersect X,. Then L is simply connected and noncompact, and satisfies
LN2X,=aq.

Proof. From Remark 2.2.1 we know that the closed one-form —o'|L
on L is proper. For ¢=20,1,...,n and a point x of L, note the follow-
ing fact: x belongs to X, if and only if x is a nondegenerate singular point
of —&'|L, with index (n — 7). Hence, by the assumption Y,_, = 0, we
can apply Proposition 2.2.1 to (L, —’|L). Assertion 1 follows from (ii),
(iii) and (iv) of Proposition 2.2.1.

Assertion 2. There exists a positive number p having the following
properties:

(i) |pl < 9y, where 7, is the same constant as in Lemma 4.1.3;

(ii) for each qeS'(p), o mapping defined by s+ o(qQ) of (—p,p)
into V, is one-to-one;

(iii) for each qe S'(p), there exists an imbedding l: (—p, p) — S'(p)

of class C™* such that for any se(—p,p), the leaf through ¢ q) passes
through I(s).

Proof. Since S'(p) is a one-dimensional sphere of class C7!, and is
transversal to leaves, using the facts that for a point ¢ of V, there exists
an Z-chart at ¢ of class C7, and the curve ¢,(¢) (seR) is of class C~
(X is assumed to be of class C7), one easily verifies Assertion 2.

Assertion 8. Let p be as in Assertion 2. Let qge SY(p). If a tan-
gential curve ¢:[0,7] — V satisfies

(0) = @), o(v) =o.(q@)  for some s,5" € (—p,p),
then ¢(0) = c(7), and s = ¢'.

Proof. Suppose that ¢(0) # c(z). Recall that for almost every
ne (—p,p), the leaf through ¢,(¢) does not intersect ¥,. Then, considering
a suitable lift of ¢, we should find a leaf which does not intersect X,
and passes through two distinct points ¢,(9), ¢,(Q), 5, 7€ (—p,p). By
(iii) of Assertion 2, such a leaf would intersect at least two points of
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2,, which contradicts Assertion 1. Hence ¢(0) = ¢(r). Part (i) of As-
sertion 2 implies s = §’.

Assertion 4. Suppose that o leaf L through a point q of S'(p) does
not intersect 2,. Let p,l be as in Assertion 2. Then there exists a C”
imbedding

T:(-p,0) X LR
such that for each se(—p,p), the image U(s X L) is a leaf through U(s).

Proof. As in the proof of Assertion 1, we can apply Proposition
2.21 to (L, —o'|L). For (,x)e(—p,p) X L, let a:[0,z1 -V be an
admissible tangential curve such that a(0) = ¢, a{r) = 2. From Lemma
4.1.3 we know that a has the 7-lift with height parameter ¢. Then define

w(% x) = SDa(f>(a7) .

From Assertion 3 we observe that ¥(»,x) is defined independently
of the choice of admissible tangential curves a, and that ¥ is one-to-one.
Hence, it is obvious that ¥ is an imbedding. Using the fact that the
height parameters ¢ of the 7-lifts (|| < p) of admissible tangential curves
a:[0,7z] — V are bounded, indeed, we have, by Lemma 4.1.3,

o] < o/ — ps) »

where 8, is as in Lemma 4.1.3, we know that for each ye(—p,p), the
image ¥'(» X L) coincides with a leaf, which passes through I(y). That
¥ is of class C7 follows from the facts that for every point x of V, there
exists an #-chart at « of class C7, and the curve ¢z) (se R) is of class
C7. Thus ¥ satisfies our requirements.

We can now prove (ii)—(v) of our lemma. First, for x ¢ R, we define
n(x) to be a point where the leaf through x intersects S'(p). The similar
argument to the proof of Assertion 3 shows that the map z: R — S'(p) is
well-defined. By definition, each inverse image z7'(q), q¢ € S'(p), is a leaf.
That the map = is of class C™! follows from the fact that the one-sphere
Si(p) is of class C"7'. It is obvious that the restriction =|S(p) is the
identity, and therefore that n is a submersion. Now, let p be as in
Assertion 2, and let ¢’ be a point of S'(p). Then we can find L, q, l, ¥
as in Assertion 4, such that ¢’ ¢ Im ¥, because for almost every q € S'(p),
the leaf through ¢ does not intersect X,. Hence z~'(¢’) is diffeomorphic
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to L, and thus z~(¢’) is noncompact and simply connected. Further-
more, putting I = Im !, and using the maps ¥,[, one obtain the required
diffeomorphism @: I X #~%(¢’) — n~'(I) to prove (v). Our last assertion is
an immediate consequence of (v). This completes the proof of Lemma
6.2.1.

Remark 6.2.1. Let the hypotheses and the notation be as in Lemma
6.2.1. Let S* be the ordinary one-dimensional sphere. Then there exists
a C" submersion # of R onto S* having the similar properties to . More
precisely, # satisfies the following conditions:

(i) The restriction #|S'(p): S'(p) — S*' is a diffeomorphism.

(ii) Each inverse image #7(q) is a noncompact, simply connected
leaf.

(iii) For each ¢qe 8!, there exists an open set I in S' containing ¢
and a C7 diffeomorphism

0:1X 7 — 7'
such that #(@(y,x)) =y for all yel and all x e 7"'(q).

This fact may be seen as follows. Since S'(p) is a one-dimensional
sphere of class C7! which is transversal to leaves, smoothing this im-
bedded one-sphere, we have a C"*' imbedding

i: Sl — V'n,+1
such that the composition zoi: §' — S'(p) is a diffeomorphism. It is easy

to verify that a map # defined by

(@) = (o) '(z(x)) , zeR,
gives us the required submersion.

LEMMA 6.2.2. Let the hypotheses and the notation be as in Lemma
6.2.1. Let L be a leaf which is contained in R and does not intersect 2.
Let f: L — R be a first integral of o'|L, i.e., satisfy

df = o|L .

(Such o function does exist by (i) of Proposition 2.2.1.) Let v be a real
number. Assume that f'((—oo,v]) N 3, = 0. Suppose that f'() is a
finite union of nomsingular, compact veins J37', j=1,---,m, and has a
“nice” fence in the following sense: There exists an immersion
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F: f'(v) X [0,e] -V

such that

(i) the restriction F|f~'(v) X 0 is the identify;

(ii) for each sel0,¢] and each j =1, ..., m, the image F(J; X 8) s
contained in o leaf, and if s + ¢, the restriction F|J; X s is an imbedding ;

(iii) the image F(f~'(v) X [0,¢)) is contained in R;

(iv) the tmage F(f~'(v) X ¢) does not contained in R ;

(v) for each xe f~'(v), the curve c¢:[0,e] -V defined by c(s) =
F(x,s) can be expressed in the form

c(8) = ¢, , sel0,¢],
for a suitable imbedding p:[0,e] — R satisfying
p0) =0, o] <7y,

where 7, s the same constant as itn Lemma 4.1.3. Then for each J,,
the leaf containing F(J; X €) is compact.

Proof. We shall prove that the leaf containing F(J, X ¢) is compact.

Assertion 1. There exists an infinite sequence s,,S,, - -+ of points in
[0,¢) such that lim,..s; =e, and for each s;, the set F(J, X s;) is con-
tained in L.

To prove this, fix a point z, of J,. By assumption, a curve ¢,: [0, ¢]
— V defined by c¢,(s) = F(x,s), is transversal to leaves. Hence, for
z: R — S'(p) as in Lemma 6.2.1, the composition

T o cl: [Oy 6) g Sl(p)

is a submersion. Since c¢,(¢) ¢ R, we observe that lim,.,_,7o¢,(s) does not
exist, and hence that for a point q = z(L), the set (zo¢) '(q) is infinite.
Since (7o¢;)"'(q) does not have the accumulating point in [0,¢), there ex-
ists an infinite sequence s,,S,, ---,8; — ¢, such that c¢(s)),¢,(s,), - -+ € L.
From the condition (ii) of F', it follows that F'(J, X s;) C L for all 7.

Assertion 2. For any real number w and any J;, there exists o € (0, ¢)
such that if F(J; X 8) C L for some se (3,¢), then

F(J; X8 C f{(—o0,w) .

To prove this, fix a point « of J;, and consider the subset
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F(z x[0,e) N L

of L. It is clear that any sequence of points in this set does not con-
verge in L. Since f([w — 1, c0)) is compact (by (i) and (v) of Proposi-
tion 2.2.1), the subset of F(x X [0,e]) N L consisting of those points ¥
such that f(y) > w — 1, is finite. Hence there exists 4, € (0,¢) such that,
if F(x,s)e L for some se (9,,¢), then

JE @) <w-—1.

Using the fact that there exists an £ -chart whose coordinate neighbor-
hood contains the set F(x x [0,¢]), we see that for a sufficiently small
neighbourhood U, of = in J;, the inequality

|f(FW,s) — fF@, )] <1

holds for any vy ¢ U, and any s € [0, ¢) satisfying F'(x,s) ¢ L. Consequently,
the number §, has the following property: if F(x,s) ¢ L for some s € (d,,¢),
then f(F(y,s)) <w for all ye U,, that is,

F(U, x 8 C f((—o0,w)) .

Since J; is compact, we can find é € (0,e) with the desired property.
Now, for each j=1,...,m, fix a point z;eJ;, and let ¢;,p; be as
in (v) of Lemma 6.2.2, i.e.,

F(z;,8) = ¢;(s) = ¢,,0(y) , sel0,e] .

Suppose for definiteness that p,(¢) > 0. We may assume that for some
integer 1> 1,

0i(& >0 for 1<i<I,
p:(e) <0 forl+1<i<m.

The following is essential to our argument.

Assertion 3. There exists a compact n-submanifold W in L having
the following properties:
(i) the boundary oW coincides with the union of

Jl""le) a/nd F(Jlxrl)y"'7F(JL><Tl)’

where 1, -+, 7, are suitable numbers in (0,¢);
(ii) for any point y of W, there exists an admissible tangential
curve starting at some point of \ i, J;, with the terminal point y;
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(iii) for two admissible tangential curves a;:[0,7,] -V, 1=1,2,
with a,(t) = a)(z) e W, if a,(0) e J;, and a,(0) € J,,, then i, = i,;

@iv)  for any point x of J;, j =1, ---,1, there exists a neighborhood
U of v in L and a neighborhood U’ of F(x,r;) in L such that the map

Axmwﬁt L —>L

as in Lemma 6.2.1, induces a diffeomorphism of U onto U’, and maps
UNW onto U — (U N (W — aW)), where p is as in (v) of Lemma 6.2.2.

Proof. For the fixed point x, ¢J, and a number s¢c[0,¢), let

/| : L — L(F(x,, 9))

r1,p1(8) *

be as in Lemma 6.2.1. If F(x,,s)e L, we denote this map by 4%, for
simplicity of notation. By Assertion 1, there is an infinite sequence
8158+, 8; — ¢ — 0, such that F(J, X s;) C L. It is clear that for the
base points z;,, j=1,--.,m, and any ¢ = 1,2, ..., the points A%(x;) are
contained in L, and that if 1 < j <, there are suitable r;; € (0, ¢) satisfying

ASi(xj) = @Pj(fji)(xj) = F(xj’frﬁ) .
Note that for each 1<j <, r;;,—>¢— 0 as ¢ —> co. From Assertion 2,
it follows that for any real number w, there is an integer ¢ such that

f<w  for all yeFWJ,,7;), §=1,---,1.

Hence, taking sufficiently large ¢, and putting s, = s;,, we observe that
F(z,s,) e L, and for any point y of A*(J;), j=1,.--,1, there exists an
admissible tangential curve starting at some point of ( J!_,J;, with the
terminal point y. To prove this, suppose that there were any admissible
tangential curve a:[—1,7] -V, a(—1) e X,, such that

a@ed ) G=1,---,), and Iman\JJ,=0.
i=1

Then the curve a would intersect | J»,,,J;. We might assume a(0) e J,
k=1+4+1,---,m). Since p;(e) <0, by (v) of Lemma 6.2.2, there would
exist a real number » such that

7% <7<0, and ¢/(0)eE.

Considering the »-lift of a, and applying Lemma 4.1.3, one would conclude
that for the point a(z) € 4%(J,) and some negative number ¢ sufficiently

https://doi.org/10.1017/5S0027763000015373 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000015373

188 KAZUO YAMATO

close to 0, ¢,(a(z)) g R. This contradicts the fact that there exists a
curve ¢: [0, e] — V which passes through a(z), near the point ¢(e), and which
is written in the form

c(s) = ¢,(@) , sel0,¢],

where 2eJ;, and p is as in (v) of Lemma 6.2.2, and p(s) > 0 (since
1 <j<D. Now, in order to prove Assertion 3, consider the decomposition

L= f'wvoe)uLu---uL,UuL,,U---UL,,
LNL =0 ifi%g,

where each L; is a connected, noncompact n-submanifold in L, with
boundary oL, = J,, such that

S Ww, ) N L, = 3L, ,

and such that for any ye< L,;, there is an admissible tangential curve
starting at some point of J,, with the terminal point y. (Such a decom-
position exists, since L is simply connected.) We put

W=,V .-+ UL) NA(Sf[v,00) ULy U -+- ULy,

where s, is the number mentioned above. From the property of s,, we
know that for each ¢ =1, .-.,1, the manifold A%*(J,) is contained in some
L;,j=1,-..,1. Furthermore, for<=1,---,1, if 4%(J,) is contained in L;,
then A%(L,) is also contained in L;. (If A*(L,) were not contained in L,,
then A*(L;) would contain L — L;. This contradicts the fact that there
exists a point pe L — L; such that {¢,(»)};s, € B (Lemma 6.2.1).) From
the assumption that S '((—oco,v]) N 2, =0, it follows that for any
w < v and each L,, the set L; N f~'(w) is connected. Using these facts,
we conclude that W is a compact n-submanifold, with boundary

oW=J,U---UJ, Ud*J)U .- UL*J]) .

It is clear that each A%(J,), ¢=1,.-.,1, can be expressed in the form
F(J, xr) for some r,€(0,¢). Furthermore, one verifies that W satisfies
the desired properties (ii), (iii), (iv). This completes the proof of
Assertion 3.

Now, in order to prove Lemma 6.2.2, for the manifold W in As-
sertion 3, we define a map 4A: W — V as follows. For a point y of W,
let a:[0,z] —» V be an admissible tangential curve such that
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a(O)eQJi, at) = v .

By (iii), (v) of Lemma 6.2.1, there exists a real number 5 such that

0 <n <7y,
F(a(0),¢) = ¢,(a(0)) ,
0, (@(0) e R for 0<s<1.

Let b:[0,z] > V be the »-lift of a. Then we define A(y) = b(z). Using
(iii) of Assertion 3 and the fact that every leaf in R is simply connected,
one easily verifies that the point A(y) is determined independently of the
choice of admissible curves a (cf. the proof of Lemma 6.2.3), and that
this map 4 is expressed locally in the following form: for each y e W,

AR) = @3, (?) for ze U,

where U is a neighborhood of ¥ in W, and 2 is a suitable positive-valued
function defined on U. Furthermore, by (iii), (iv) of Lemma 6.2.2, for
each F(J, x r) in (i) of Assertion 3, the image A(F(J; X 7;) coincides
with F'(J, X ¢). Hence we see that /4 is a submersion of W into the leaves
K, - --,K, A< k<1l containing the sets F(J, X ¢), ---,F(J;, X ¢). From
this and (iv) of Assertion 3, it follows that 4 maps W onto K, ---, K,
and hence that X,, - - -, K, are compact, as desired. Similarly, it is proved
that the leaves containing FI(J; X ¢), 1 =1+ 1, ..., m, are compact. This
.completes the proof of Lemma 6.2.2.

Remark 6.2.2. With the hypotheses and notation of the preceding
lemma, for each J;, there exists a connected, compact n-submanifold W,
in L having the following properties:

(i) the boundary oW; consists of J; and F(J; X 7}), where 7 is a
.suitable number in (0,¢);

(ii) there exists a function A: W; — R such that |a(z)| <7, for all
z€d;, and such that the map A4;: W; — V defined by

A;@) = ¢3,(2) for ze W, ,

is a submersion of W, onto the compact leaf containing F(J; X ).
To prove this, recall the proof of Assertion 3. For the map A%, con-
sidering a suitable iteration (/*)! we have

UJIpcL;, j=1,---,1.
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Then we define W; to be the manifold bounded by J; and (A%)¥J;). It
is essentially proved above that W, satisfies the required properties.
Similarly, for j =141, .--,m, we find W; as above. Thus our assertion
is proved.

LEMMA 6.2.3. Suppose that a nonsingular, compact vein J* ', a
point x, of J, and a real number 5 satisfy the following condition: for
any xed, there exists a tangential curve c:[0,7] — V which satisfies

0 =2, o)==, ImccJ,

and has the p-lift. If for any sel0,1), the leaf through ¢ (x) is simply
connected, then J with the base point x, has the y-lift, i.e., there exists
a function 2:J — R with A(x) =y, such that for any xeJ, the point
Oamy(@) s contained in the leaf through ¢, (x,).

Proof. Let xeJ, and let ¢;: [0,7,]— V, i =1,2, be two tangential
curve satisfying z, = ¢,(0) = ¢,(0), * = ¢,(r}) = ¢,(z,), and having the y-lifts
with height parameters o,. We shall prove that ¢,(r;) = g,(z,). Then,
defining 2 by A(x) = 0,(z,), one will obtain the required function 2. Now,
to prove o,(r,) = 0,(r,), we consider a curve c,,: [0,7, + 7,] — V defined by

¢p(t) = () for te[0, 7],
¢p(®) = ¢z, + 7, — 1) for telr,n, + 7.l .

It is clear that z, = ¢,,(0) = ¢,(z; + 7,), and that ¢, is tangential and has
the y-lift. For definiteness, we assume 5> 0. For each hel0,5], let
d,: 10,7, + 7,] — R be the height parameter of the h-lift of ¢,. Now, say
o,(7,) were smaller than ¢,(z,). Then for the map H: [0, y]— [0, y] defined by

H(h) = O'n(‘ﬁ + Tz) ’

the point H(y) would be smaller than 5, and furthermore for any integer
1 >1, H¥») would be smaller than H*"'(y). Hence for the limit point 5, =
lim,_, Hi(p), the p-lift of ¢, would be closed and have a non-trivial
holonomy, which contradicts the assumption that the leaf through ¢, (x,)
is simply connected. This proves Lemma 6.2.3.

LEMMA 6.2.4. Let the hypotheses and the notation be as in Lemma
6.2.1. Let 5, be as in Lemma 4.1.3. Let a point z of V and a real
number y have the following properties:

(1) gl <my
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(ii) zeR, ¢,)eR for 0 <s<1;

(iii) the leaf L through ¢,(2) does nmot intersect 2, ;

(iv) the set f~'((—oo,?]) does mot intersect 3, where f: L — R is
a first integral of o'|L, and v = f(p,(2).
Then the leaf L(z) through z is compact.

Proof. Let 5, B4 be the same constants as in Lemma 4.1.3. For
simplicity, we assume » < 0. The proof in the case » >0 is similar.
Now, by Lemma 4.1.4 we have an admissible tangential curve a: [0, o)
— V with a(0) = ¢,(2). Put § = —y, for simplicity of notation. Clearly
2z = ¢;(a(0)). Let o be the height parameter of the §-lift of a. Let J, be
the vein through the point a(f). For any te¢[0, ), by definition, we
know that J, is a connected component of f~'(v,), where

v, = + o .
a[0,¢]

From (i) of Proposition 2.2.1, we see that J, is compact, and for almost

every te [0, c0), the vein J, is nonsingular. The following is important.

Assertion 1. There exists a positive number § such that for almost
every 0eld, ), the vein J, is nonsingular and satisfies

0(0) <1/(kdiam,, (J,) + 7z ,

where k is the same positive number as in Corollary 3.1.2.

Proof. Put q = n(a(0)), and let I,@ be as in (v) of Lemma 6.2.1.
For the vein J, and a nonnegative number u, the set J,[u], by definition
(6.1), is contained in f~Y(v, — u). Since f'((—oo,v]) N 2, = 0, it follows
that J,[u] coincides with a connected component of f-'(v, —u). Now,
let ¢ be the same constant as in Lemma 6.1.1. Since the set | J_,J[u]
is compact, we can find a positive number p, such that the set

cub (Jo, por'€) = Uo 0, ( Uo Jo[u]>

is contained in z7'(I). It is clear that p, < = —5 <z,. For tel0, c0),
consider the set

eub (U, o0, ©) = U U it

where
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0= (s ]+ 000

Then, we contend that
cub (J;, p(t), &) C z'(I) for all te[0, ) .

This is proved as follows. By (v) of Proposition 2.2.1, any point of the
set on the left can be written as

xr = Sos(a/(t/)) ’

where 0 < s < p(t), and where o’:[0,%] — V is an admissible tangential
curve such that

a’(0) e J{ul for some u e [0,e], and o = o .
a’[0,¢’] a[0,¢]

By Lemma 4.1.3, there exists the p,lift of o/, whose height parameter
o’ satisfies

0 <p) <d).

From this, we conclude that the point x is contained in a leaf through
some ¢,(a’(0)) with se[0,p,], and hence that x € #7!(I), as desired. From
the relation proved above and (v) of Lemma 6.2.1, it follows that

cub (7, p(®), ) N cub (J., p(), &) = 0
for t¢,t [0, o) such that

t<t, and o < —e.

alt,t’]
Thus, since V is compact, we have
mes, ., (cub (J,, p(¥),e)) -0 as t-— oo,

because, by Lemma 4.1.2, we have
J o — —oo as t — co .
a[0,t]

On the other hand, for any te[0, co) it is clear that

0<p®) <1 (since 0 < p<7,<1),
J, NJu] =90 ifu>0,

and that
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(C_JOJt[u]) n gos(LiJOJt[u]) —0 i 0<s< ().
For simplicity, we assume that

diam,, (J,) > d for any t sufficiently large,

where d is the same constant as in Lemma 6.1.1. In the general case,
using the fact that by Lemmas 4.1.2 and 4.1.3,

a(t) -0 as t — oo,

one will prove Assertion 1 similarly. Thus we may apply Lemma 6.1.1
to obtain

Cyp(t)-e-diamy, (J,) < mes,,, (cub (J;, p(9), €)) ,
where c, is as in Lemma 6.1.1. Consequently, we have
cy o) -e-diam,, (J,) — 0 as t— oo .
Recall that the height parameter ¢ of the §-lift of a satisfies
0 < a(®) <oaz(®) for all te[0, o),
where
i) = (5 exp LM co’> / 1 — 68, .
Note that
p(8) [a5(t) = o1 — 6B,) /01 + pofs)
which is constant. Hence we have

a3(t)-diam,, (J,) — 0 as t — oo,
and thus

o(t)-diam,, (J,) — 0 as t— oo .
Using the fact ¢(t) — 0 (t — o) again, we obtain
o(t)(x diam,, (J,) + 7z) —0  as t > o0,
which in particular proves Assertion 1.

Assertion 2. Let 6 be as in Assertion 1. Then there exists an im-
mersion

F:J,x[0,e] >V
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which satisfies the same conditions (1)—(v) as in Lemma 6.2.2, such that
the image F(J, X ¢) is contained in the leaf L(z) through z.

Proof. 1t is clear that the point a(f) and the number ¢(f) have the
following properties:

Osa(a(@) e R for 0 <s<1;
0,0@@) € L(2) .

For any x e J,, by definition there exists a C' curve ¢: [0,7] — V such that
al@ =¢0); z2=c); Imccd,; @ =1 for tel0,7],

and such that the length of ¢, which is equal to z, is smaller than or
equal to diam;,(J,). Then, by Corollary 3.1.2 the tangential curve ¢ has
the ¢(0)-lift. Furthermore, from Lemma 3.1.1 (and the proof of Corol-
lary 3.1.2) we know that its height parameter is smaller than or equal
to a(0)/(1 — £-0(0)-7), which is smaller than 7,, because our assumption
concerning 6 implies

75 < (@@ — k.

Now, from this fact, applying Lemma 6.2.3 to J,,a(d) and each number
in [0, ¢(6)], one can easily construct an immersion F': J, X [0,e] — V with
the required properties.

To apply Lemma 6.2.2, moreover, we need:

Assertion 3. For any connected component W' of [ (—oo,]),
there exists a point 2’ of V and a real number 7' such that

17 <9s, Z¢R, ¢,@)eR for 0<s<1l, and ¢,.@)eW .

Proof. Since X, = 0, for such a set W’ there exists an admissible
tangential curve b6: [0, 0) — V with the image contained in W’. Then
since V is compact, there is a limit point of b, i.e., a point y of V such
that any neighborhood of ¥ in V intersects the curve 5. Using (v) of
Lemma 6.2.1 and the fact f(06(f)) - —oo (t — o0), we see that y e R.
Therefore, since R is open, taking t sufficiently large, we have a point
b(?) such that the open ball around b(f) with radius {,, where ¢, is as
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in Lemma 5.1.1, intersects V — R. Then, we can find a point 2’ of V
— R and a real number 5’ with the required properties.
We.are now ready to prove our lemma. Consider the disjoint union

f_l((—OO,’U])=WUW1U e UWm,

where each W, is a connected component of f~'((—oo,v]), and W is the
connected component of f~!((—oo,v]) containing the image of a. Apply-
ing Assertion 3 to each W,, we find a point z; of V and a real number
7; having the same properties as the given z and 5. Let b;: [0,00) >V
be an admissible tangential curve starting at z], and let J(b,(t)) be the
vein through b,(f). The arguments in the proofs of Assertions 1 and 2
show that for each ¢, there exists a positive number 4, satisfying the
following condition: for almost every 6 in [4,, o), there exists an im-
mersion

F.: J(0,00) X [0,e] >V

with the same properties (i)—(v) as in Lemma 6.2.2.
Taking a real number w so that

w < min (f@@), £6,0), - - -, fO0)) ,

and so that w is a regular value of f (in other words f~'(w) is a union
of nonsingular veins), and applying Lemma 6.2.2 to f~%w), which has
a “nice fence”, we conclude that the leaf L(z) is compact, which proves
Lemma 6.2.4.

Remark 6.2.3. With the same hypotheses and notation of Lemma
6.2.1, if C1(, N R)C R, and if a point z of V and a real number 7
satisfy the conditions (i), (ii) of Lemma 6.2.4, then the leaf L(z) through
z is compact.

This may be seen as follows. From Remark 6.2.1, we see that the
one-form w|R on R can be written as

o|R = Pa ,

where P is a positive-valued function on R, and « is a nonsingular, closed
one-form on R. By Lemma 2.2.1, for each leaf N in R, we have

o' |N = d(log P|N) .

Using this and the compactness of CI(2, N R), we find a real number 4
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such that for any leaf N in R and a first integral g: N - R of o'|N
with g(z(N)) = 0, where = :R — S'(p) is as in Lemma 6.2.1, we have

g (=0, D N2 =¢.

Using this fact, we can find a point Z and a number 7 satisfying all the
conditions (i)-(iv) of Lemma 6.2.4, and such that ze L(z). Consequently,
our assertion follows from Lemma 6.2.4.

LEMMA 6.2.5. Suppose 3, = 0. If there exist two distinct compact
leaves K., K,, then the distance between K, and K, is not less than .,
where {, is the same constant as in Lemma 5.1.1. In particular, the
number of compact leaves is finite.

Proof. If there were two points «,y such that x ¢ K,, y € K,, dis (z, )
< ¢, then by Lemma 5.1.1 there would exist a real number 7 such that
7l < 74, ¢,(®) € K,. On the other hand, by Lemma 4.1.4, there exists an
admissible tangential curve a: [0, 0) — V with the initial point x. By
Lemmas 4.1.2 and 4.1.3, the y-lift of a, which is contained in compact
K,, would approach compact K,. This contradiction proves our lemma.

Proof of Theorem II. Let pel,, and let R be as in Lemma 6.2.1.
By Remark 6.2.1, we know that R is a C” fibre bundle over S!, whose
fibres are noncompact, simply connected leaves. Hence, the required
imbedding is given by the inclusion map R C V. This proves (i)—(ii) of
our theorem. Let z be a point of C1R — R. In order to prove that
the leaf through z is compact, we consider the subset @ of [—z,, 7]
consisting of those points s such that ¢(2) € R, where 7, is as in Lemma
4.1.3. It is clear that @ is open in [—7,,74], and 0 C1Q — Q. Hence
there is an infinite sequence ¢, q,, - -+, q; — 0, of points in Q. Taking a
subsequence if necessary, we may assume that every ¢; has the same
sign, say every gq; is positive. We shall prove that there exists g; such that
0,9;) © Q. Then, putting » = q;, and applying Remark 6.2.3, one will
prove that the leaf through z is eompact. Now, suppose that for any
q;, the interval (0, ¢,) were not contained in Q. Then for each gq,, there
would exist r;, such that

0<r<q, (r,a)CQ, 71,¢Q.

By Remark 6.2.3, the leaf through ¢,,(2) would be compact. Hence we
should have an infinite number of compact leaves, which contradicts
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Lemma 6.2.5. Finally, for any leaf L in R, we shall prove C1L — L =
ClR—-R. Let 2z¢ClL — L. From (v) of Lemma 6.2.1, we see that
22 R. Hence ze¢ ClR — R. Conversely, let z¢ CIR — R. The same argu-
ment as in the proof of Assertion 1, Lemma 6.2.2, shows that ze Cl L.
Hence ze¢ CIL — L. This completes the proof of Theorem II.

6.3. The rationality of w’'|K;. We shall prove:

PROPOSITION 6.3.1. With the hypotheses and notation of Theorem 11,
for the “limit” compact leaves K;, 1 =1, --.,m, the one-forms o'|K, are
rational, i.e., for any point z of K, there exists an open set S in K, con-
taining z, and o function P:S — R such that o'|S = dP, and every in-
verse image P~'(v), v e R, is compact.

Proof. For simplicity of notation, put K = K,. In order to make
the method clear, we shall first go through the proof for the case when
«®’| K is nonsingular, in other words K N Y = 0. In that case, we have
at once:

Assertion 1. There exists a tubular neighborhood T of K and o
projection y: T — K such that T N 2 =0, and such that

(i) yx ts compatible with X, i.e., for any ze T, 3. (X,;) = 0, where
1x: To:(V) > T,,(K) is the induced map;

(ii) for any xe T, the tangent subspace of T,(V) defined by w, =
o), = 0, is mapped by y, into a subspace of T,., sufficiently close to the
subspace defined by w,, = W, = 0.

On the other hand, the proof of Theorem II shows that for the K,
T above, there exists a nonsingular, compact vein J contained in T and
an immersion F':J X [0,¢] — V such that

(i) the restriction F|J X 0 is the identity;

(ii) for each se[0,¢], the image F(J X s) is contained in a leaf,
and F(J X¢) C K;

(iii) F is “tangent” to X, more precisely, for each x ¢ J, there exists
an imbedding p: [0,¢] — R satisfying

0(0) =0, F(x,8) = ¢,,(x) for all se[0,¢] .

Since y is a projection compatible with X, the restriction y|J:J — K is
an immersion. Furthermore, from (ii) of Assertion 1 it follows that for
any e J, the subspace y,(T,(J)) of T,.,(K) is transversal to the vector
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Y,.,, i.e., does not contain Y,,,. Using the immersion F, we see that
the cohomology class [(x|/)*«’]le H'(J; R) is trivial. Consequently, our
assertion follows from Proposition 2.2.2.

For the proof in the case where «'|K has singular points, we in-
troduce the following word: A tubular neighborhood T of the compact
leaf K, with a projection y: T'— K, will be said to be “nice” if

(i) x is compatible with X;

(ii) for any zeT — (T N X)), the subspace of T.(V) defined by o,

= o}, = 0, is mapped by y, into a subspace of T,,,(K) which is trans-
versal to the vector Y,.,.
It is obvious that if such 7T,y exist, our proposition follows from
Proposition 2.2.2 again, because K N 2, = 0. In the general case, we
use the following technique. First, take a C7*! positive-valued function
h sufficiently close to the constant function 1 so that the critical cycle
3 for the completely integrable one-form & = hw, is transversal to K.
Using the fact that every point of X has an Z-chart of “type (1)” or
of “type (x,p)” (see Proposition 4.1.1), one has such a “deformation”
of w. It should be also noted that & defines the same leaves as o, i.e.,
any leaf of (V,®) is a leaf of (V,w), and vice versa. Next, change the
vector field X to a C7 vector field X with #(X) =1 so that for any
peK N 3 and a suitable neighborhood U of p in V,X is expressed on
U as

XU = ax)@ /52" ,

where a(x) is a function on U, and (U, f; !, ---,2""") is an % -chart of
type () A1 =0,1,---,n), for (V,®). Noting that since 3 is transversal
to K, any point p of KN 2 is not of type (x), and using again the
fact that for 1 =0, ...,%n, every point of type (1) has an ZF-chart of
type () for (V, &), one obtain such a vector field X. Now, from the
properties of X, it follows that K has a “nice” tubular neighborhood
with respect to @, X, and hence that @'| K is rational, where &' = —%@.
Using the relation

(@ — o)|K = d(og h|K) ,

we conclude that «'|K is also rational. This completes the proof of
Proposition 6.3.1.

6.4. Proof of Lemma 6.1.1. With the notation in 6.1, we have the
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following lemma, which implies Lemma 6.1.1.

LEMMA 6.4.1. (i) There exist two positive constants c¢,,d, such
that the inequality

¢, -diam; (J) < mes,_, (J)
holds for any nonsingular, compact vein J satisfying
diam; (J) > d, .
(i) If 3, =0, and X, , =0, then there exist three positive con-

stants c¢,, d,, e such that the inequality

Crpemes, , (J) < mesn( U J[u])

0Su<y

holds for 0 < p<e and for any nonsingular, compact vein J satisfying
the following conditions:

diam; (J) > d, ;
JNJu] =0 for 0 <u<yp.

(iii) There exists a positive constant ¢, such that the inequality
¢;-g-mes, (H) < mean( U gos(H)>
0<s<e

holds for 0 <o <1 and for any compact n-submanifold H of V, with
or without boundary, satisfying the following conditions: H is contained
n a leaf; and

HNo(H) =0 for 0<s<og.
We shall first prove the part (iii).
Proof of (iii). It is obvious that there is a positive constant a such
that
a-mes, (D) < mes, (p/(D))
for 0 < s <1 and any imbedded closed n-disk D in V. Then, put
b = min | Xy, — (Xo,0) [ (@5) P2l

the minimum being taken over all x in V and all s in [0,1], where P,
is the subspace ;¥0) of T,(V), and X, ., |(ps)sP, is the orthogonal
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component of the vector X, ,, to the subspace (p),P,. Then it is easily
verified that ¢, = ab is the required constant. The part (iii) is proved.

Proof of (i). Let T*, T* be two Y-preferred neighborhoods of I such
that C1T* c T* (see 4.2 for the definition and the existence). Let b¥,
b, b¥ be the same constants as in (v) of Definition 4.2.1, i.e., satisfy
the following conditions:

(1) diamy. (J*) < b¥ for any T*-vein J*;

() diamj J*) < b for any T*-vein J*;

3) mes,_, J*) > b for any noncompact T*-vein J* .

Let W, ..., W, be open sets of V such that

V=Tru U W, EnCl(U Wi)zﬂ.

1<i<m 1<i<m

Let 4, be a Lebesgue number of the open covering {T*,Wl, <o Wak
Put

d = min (5, 4,/2) ,

where 4, is the distance between the sets T* and V — T*. Then, since
2 N Cl(Usicscm W3) = 0, there is a positive constant 4 such that

mes,,_, (B,(x,8) > 4

for any ze|Uicien W,; satisfying Bj(2,8) C Uicicn Wi, where B,(x,d)
denotes an open ball in a vein J through x, with center z and radius 4.
‘We shall prove that the constants defined by

¢, = min (4/25,05 /b3,  d, = b¥,

have the required properties.

Now, let a nonsingular, compact vein J with diam; (J) > d, be given.
Put 2 = diam, (J). Since J is a closed manifold, there is a curve 7: [0, 1]
— J which is a geodesic in J and is parametrized by arc-length, and is
minimal in the following sense:

dis, (@), y() = |t — ] for any ¢,t'€10,1] .
Let s be an integer satisfying
A/20 < 8 < (/20 + 1,

and put ¢, =0,¢ =25, --,t_, = 2(s — 1)6. Denote by E the set of all
elements 7€ {0, . .-, s — 1} such that B,(y(t)),8 N T* = 0, where B,(r(t,), 6)
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is the open ball in J, with center y(¢;) and radius 4. Put E°=
{0,---,s — 1} — E, and denote by #£,#E° the numbers of the elements
of the sets E, K¢, respectively. Then

Assertion 1. (a) If ie E, then we have
B;(t),d NI NT* %0,  B,(yt),8) cJ N T*.
(b) If ie E°, then we have
B,Gt), ) NI NT*=0, mes,  (B,((t),0) > 4.

Proof of (a). The former part is obvious. The latter part follows
from the facts that dis, (T*, V. — T%) > 25, dis 7 (@, y) > disy (2,y) for
z,yed. Proof of (b). The former part is obvious. Since J is a Lebesgue
number of the open covering {T*,Wl,---,Wm}, we have B,(y(t,),0) C
U W, for ic E°. Hence the latter part follows from the definition of 4.

On the other hand,

Assertion 2. We have a disjoint union
JNT*=JfU ... UJ¥,
where each J ¥ 18 a moncompact T*-vein with mes,_, (J *) > b,

Proof. We shall prove that a connected component J* of J N T,
which is by definition a T*-vein, is noncompact. Then (3) above will
imply mes,_, (J*) > bf. Now, suppose that J* were compact. Then J*
would coincide with J. Since diamz (J*) < b* by (2), we should have
diam, (J) < bF = d,, which is a contradiction. Assertion 2 is proved.

Now, for each j;!‘,j =1,...,k, since T* c T*, there is a T*-vein
J¥ such that J* c J¥. Then, for each J¥%, since 7 is minimal, and
diamg (J¥) < b¥, we observe that the number of the elements i1e¢ E
satisfying B,(y(t,)),d) C J¥, is bounded by b¥/25. From Assertion 1 (a),
we know that if <€ E, then B ,(y(t,), 9) is contained in some J¥,j = 1,---, k.
Consequently, we obtain

tE < kb¥ /25 .
Since J contains a disjoint union

U B,Gt),d U U Jf,

<j<k
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by Assertions 1 (b) and 2, we have
mes,_, (J) > ((4E9)4 + kb} .
Since $E-.25/b¥ < k, it follows that

mes,_, (J) > GE)4 + $E-(26/b})bf ,  and hence
> ($E° + $E)-min (4, (25/bF)b5) .

Since s = #(F U E°), and s > 1/25, we obtain finally
mes,_, (J) > 2-min (4/25, b} /b}) = ¢,-diam, (J) ,
which proves the part (i) of Lemma 6.4.1.

Proof of (ii). Let T* be a Y-preferred neighborhood of 2, as before.
Let S be an open set of V such that

cScClScrT*.
Put
0 =disy (S, V —-T%), a= min |Y,]|, e=ad.
xEV-8S

It is easily verified that there is a positive constant ¢, such that the
inequality

¢y pomes,_ (G) < mesn( U G[u])

0su<sp

holds for 0 < g < e and any compact or bounded open (n — 1)-manifold
G which is contained in a vein and satisfies the conditions

SN U Gul=0, GNGul=0 for 0 <u < p.

o<u<p

Now, for this constant ¢, and the same constants b¥, b¥, b¥, d¥ as in (v),
(viii) of Definition 4.2.1, put

¢, = min (¢;, d¥bF /bF) , d, = b¥.
We shall prove that these ¢, d,, and e above have the desired properties.
Assertion 1. If a T*-vein J* satisfies

SN U JHul £ 0,

0Lu<e

then
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U J*ul C T* .

0<su<e

To prove this, for an admissible tangential curve a: [0,7] — V, note
that if Ima N S+ 0, and Ima N (V — T*) + 0, then ¢ > 5, and that if
Ima N S =0, then

[ o= ~[1%.0ldt < —as.
a[0,7] 0

Then we observe that if a:[0,7] — V is an admissible tangential curve
such that

ImanS+0, I o > —ad= —e,
af0,7]

then Ima C T*. This proves Assertion 1.
Assertion 2. If a noncompact T*-vein J* satisfies

U J*u] < T*,

0<u<e

then

mesn( U J*[u]) > ¢,-p-mes,_; (J*) foro<u<e.

0<u<y

Proof. Let L be the leaf containing the set \ <, J*[u], and let L*
be the connected component of the subset L N T* of L, containing
Wo<uze /*¥[#]. Let @ be an imbedded closed n-disk in L containing L*,
and let 2: Q@ - R be a function satisfying «’'|Q = dh. For 0 < pu<e,
let a:[0,z] — V be an admissible tangential curve such that a(0) e J*,
a(z) e J*[p]. Then it is clear that Im a € T*. Put h, = h(a(?)). It is
clear that Ima C h~'([h,, ko)), and g = hy — k.. We denote by ((&~'[%,, k,]
N T*)) the connected component of the subset A ' ([A., h]) N T* of Q,
containing Ima. Using the assumption ,_, = 0 and the property (vii)
of T*, one can prove

U J*[ul = (h7'([k., kD) N T%) .

0<usy
Then, by the property (viii) of T*, we obtain
mes,,( U J*[u]) > d¥-p- inf mes,_ (") N T%) ,
0<u<y te[0,7]

where ((A~'(h,) N T*)) denotes the connected component of the subset
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h7Y(h,) N T* of @, containing the point a(t). It is clear that (A (%) N
T*)) is a T*-vein. Furthermore, using the property (vi) of T* and the
assumptions that 3, = 0, and J* is noncompact, we know that this 7*-
vein is also noncompact. Hence by the property (v) of T*, we have

inf]mesn—-l (B Ry N T*) = bF > (b /bF) -mes,_, (J*) .

tefo,r

From this and the inequality above, we obtain the required inequality.
Assertion 2 is proved.

Now, let ¢ be a positive number < e. Let a nonsingular, compact
vein J such that

diam; (J) > b¥, JNJul=290 for 0 <u <y,

be given. Then using Assertion 2 in the proof of the part (i) and the
property (ix) of T*, we have a disjoint union

J=GUJ¥U --- UJ¥,

where G is a compact (n — 1)-submanifold of J such that G N T* = 0,
and each J¥ is a noncompact T*-vein. It is clear that

GNGlul=0, JfFNJHul =0 for 0<u<pyji=1---,k.

Furthermore, by Assertion 1, we know that S N Uyc,<, Glu]l = 0, and
that if S N Uocuc, J5ul = 0, then Upc,c, J¥[u] € T*. Hence we have

mes,,( U G[u]) > ¢,-p-mes,_, (@ ,

0suy

mes,,( U J}‘[u]) > pemes,, (75 for =1, k.

0Su<p

Using the assumption 2, , = 0 and the property (vii) of T*, one can
prove that

U Jil= U GlU U U JHul

0Su<gy 0Su<y 1<k 0Su<p

is a disjoint union. Consequently, we obtain

mes,,( U J[u]) > cz-p(mes,,_l @ + 3 mes,_, (J;"))
0Suy 0<j<k
= ¢,-pu-mes,_, (J) .

This proves the part (ii) and completes the proof of Lemma 6.4.1.
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§7. Proof of Theorem III

We fix an w-preferred Riemannian structure and use the notations
{os}, o -as in §5.

7.1. Proof of Theorem IIl. We begin by recalling a definition and
a lemma by Reeb. A leaf L is said to be locally dense if for some point
xz of L, the closure of the intersection of the set {p,(®)};<; and L con-
tains a neighborhood of = in {p,(%)},,<;. It is clear that if a leaf L is
locally dense, then for any point of L, the same property as above is
satisfied.

LEMMA 7.1.1. If the closure of a leaf M contains a locally dense
leaf, then M itself is locally dense.

This is proved in [6, p. 108, (A, II, 10)].

For the proof of our theorem, we need two lemmas.

LEMMA 7.1.2. Suppose that ¥, = 0. Then for any nonempty open
subset U of V, there exists a point x of U such that the leaf through
& 18 locally dense.

Proof. Suppose that this were not the case, and let U be a non-
empty open subset of V such that for any point « of U, the leaf through
2 is not locally dense. Fix a point x, of U, and let 2 be a positive
number such that the set {p(®y)}, <, is imbedded in U. For simplicity
of notation, we identify the interval [—#%, 2] with the transversal segment
{os(@}s1<ne  We also denote by L(y) a leaf through a point ¥ of V. Now,
by assumption, for the leaf L(x,), the closed subset

Cl(L(xy) N [—h, k) C [—h,h]

-does not contain any neighborhood of z, in [—#/,k]. Hence there exists
an open interval (a,, b,) # 0 such that

(@, b) € [=h, k],  (a,b) N CL(LAxy) N [=h, k) =0.

By our assumption again, for a point x, of (a,,b,) and a leaf L(x,), the
.closed subset

Cl(L(x) N [—=h,k]D) C [—h, k]

-does not contain any neighborhood of z, in [a,, b,], and hence there exists
.an open interval (a,,b,) #= 0 such that
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(a2, b)) C la, 0],  (a,b) N Cl(L(x) N [—h,kD) =0.

Repeating this process, we obtain an infinite sequence of points z,, x,,
2y, - -+ in [—h, k] such that if ¢ < 7, then

;e Cl(L(x) N [—h, k) .

For these points z;, we define points z¢ of V as follows. Since Y, = 0,
by Lemma 4.1.4, there exists, for each z,, an admissible tangential
curve a;: (—o0,0] -V with q,0) = z,. Since V is compact, an infinite
sequence a;(0), a,(—1), a,(—=2), --- of points of V has a convergent sub-
sequence, whose limit point we denote by «7. Thus, we have an infinite
sequence 27, xy, 3, - - - in V. Let {, be the same constant as in Lemma
5.1.1. Then there exist two positive integers ¢, 7 with ¢ < j such that
the distance between x> and x7 is smaller than {,/3. For these ¢, j, there
exists a positive number 6 such that

Y os(x) N Cl(L(x) N [—h,hD) = 0.

For this § and the same constants «,, ., 74, fx as in Lemmas 4.1.2 and
4.1.3, take a real number r so that

<7, 75 €XP (—a,7) /(1 — 9By <6 .
For this z, by the definition of x7, there exists an integer m such that
rm, dis (a;(—m), 27) < {4 /3 .
Let k& be a positive integer such that
dis (a;(—Fk), ) < £i/3 .
Put y = a,(—k), 2 = a;(—m). Then we observe that
dis (y, 2) < dis (y, 27) + dis (&7, 27) + dis (@57,2) < 4 .

Hence by Lemma 5.1.1, there is a real number » with |5| <7, such that
¢,(2) e L(y). Let b:[0,m] -V be an admissible tangential curve defined
by

b(t) = a,(t — m)

Then b(0) =z, b(m) = x,. By Lemma 4.1.3, there exists the y-lift ¢ of
b with height parameter ¢ satisfying
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jo()] < (7] exp Lm ﬂw') /A =158, tel0,m].

From this inequality and Lemma 4.1.2, it follows that
lo(m)| < [7]exp (—a,m) /(L — [79]By)
Hence we have
la(m)| < 9y exp (—a,m) /(1 — 9.By) <8 .

On the other hand, since the curve ¢ is contained in L(y), and L(y) is
nothing other than L(x;), we conclude that ¢(m) = ¢,m,(*;) € L(x;). This
and the inequality obtained above contradict the choice of 6. This proves
Lemma 7.1.2.

LEMMA 7.1.3. Suppose that X, =0. Let L be a locally dense leaf.
Then there exists an open subset W of V containing L such that for
any point y of W, the closure of a leaf through y contains L.

Proof. Fix a point « of L. Let a:(—o00,0] - V be an admissible
tangential curve with a(0) = x, and consider a point z= as before, i.e.,
define z= to be a point of V such that any neighborhood of x* contains
infinitely many points of the set {a(—%9};_o,,.... Let {, be as in Lemma
5.1.1. Then there exists a positive integer ¢ such that

dis (a(—1), 2=) < {y/3 .

‘We shall prove that for an open ball B around the point a(—%) with
radius £, /3, the closure of any leaf through points of B contains the
point . Then one will see that the open set W consisting of those
leaves which intersect B, has the desired property (cf. [6, p. 106, (A, II, 4),
(A, I1, 6)]). Now, let ¥ be a point of B, and let ¢ be a positive number.
Then, first, we take a real number r so that

T ST, 7y €XP (—ayt) [(L — 74B,) < e,

where a,, 7, 74, By« be as in Lemmas 4.1.2 and 4.1.3. Next, we take an
integer m so that

t<m, dis (a(—m), z=) < /3.
Put 2z = a(—m). Then we observe that

dis (y,2) < dis (y, a(—19)) + dis (a(—2), z*) + dis (=, a(—m)) < .
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As in the proof of Lemma 7.1.2, considering an admissible tangential
curve b: [0, m] — V defined by

b(t) = alt — m) ,

we conclude that the leaf M through the point y intersects the trans-
versal segment {p,(®)},<.. This proves that the closure of M contains z,
and proves Lemma 7.1.3.

Proof of Theorem III. By Lemma 7.1.2, the set V, consisting of
locally dense leaves is a dense subset of V, which is open by Lemmas
7.1.1 and 7.1.3. This proves our theorem.

§8. Proofs of Propositions 4.1.1. and 4.2.1.

Propositions 4.1.1 and 4.2.1 will be proved in 8.2 and 8.3 respec-
tively.

8.1. Preliminary lemmas. Here, we shall use the following notation.
Let 077!, 0* and 0**' denote the origins of R*"!, R™ and R"*!, respectively.
The sets 07! X R?, 0 X R are to be understood as the subsets of R"*.
Let (x -+ -, 2"*") be the standard coordinate system of R"*!. Denote by
x the point with coordinates (2!, .-.,2z"*?). Let U be a bounded, open
subset of R"*! containing 0"*!. Let f be a positive-valued function
defined on U, and put F = log f. For a C® function g defined on a sub-
set of R**!, we introduce the following notations:

9:9 = og/ox?, i=1,..,mn+1,
log@)|| = @938 —1, -+, m) (n-tuple) ,
129@)|| = (g5,@) i, =1,---,m)  (n X n-matrix) ,

3 . » 0 - 2 le”n—{_l
#0@ = (g, -2 detlog@; 6 L 1o+

(n + 1 %X n + 1-matrix) ,

where g;; = d°g /ox*ox’.

The index of a real symmetric matrix is defined to be the number of
negative eigenvalues. For numbers a,, - - -, a,,, we denote by diag [a,, ---,
a,] an m X m-diagonal matrix with the diagonal elements a,, ---,a,. Let
2, ¢ be integers such that 0 <21<n, 0 <u<n—1. For a positive
integer s and an open subset or, more generally, an (n + 1)-submanifold
W of R, we denote by I'*(W) the set of all C* diffeomorphisms
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®: W — @(W) c U which are written in the form
oty -+ o, ™) = (DY), - -+, D™(x), 2™, xeW,

with suitable real-valued functions @¢ defined on W. For a subset S of
R" and two real numbers a, b with a < b, we denote by S? the set

S ={@ -, a") e R (! -+, 2m e S,a < ™ < b}

We shall prove the following four lemmas, from which Proposition
4.1.1 will follow.

LEMMA 8.1.1. Suppose that f is of class C*, s > 6, and satisfies the
following conditions:

(i) [[af@O*)| = 0";

(ii) 8 f (™Y is nonsingular and has index A.
Then there exists a mneighborhood W of 0**!' and & diffeomorphism
Qe I *(W) with ®(0**) = 0™ such that the function Fo® =log fo® is
expressed as

Fod)(z) = gl@™) — (@) — -+ — @+ -+ + (@), zeW,

with a suitable function g depending only on x™*'.

LEMMA 8.1.2. Suppose that f is of class C*, s > 11, and has the
following properties:

(1) Jaf@=n| = 0";

(ii) ||e*f ™Y is singular and has index u;

(i) ||*f(0"*Y)| is nonsingular.
Then there exists a neighborhood W of 0! and a diffeomorphism
O e I (W) with @(0**!) = 0**' such that the function Fo® =log fo® is
expressed as

Fo)(x) = gl@™, 2™*) — (@) — --- — (@) + - + (@), xeW,

where g is o C*~8 function which depends only on x*, ™' and is “‘stmilar’”
to functions (x")*/3 & x"*'x", i.e., satisfies the same conditions (i), (ii) as
in Definition 4.1.1.

LEMMA 8.1.38. Suppose that f is of class C° s> 5, and F' = log f
18 expressed as

F@) =g@*) — @)Y — .- — @+ --- + @, zelU,
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with o suitable function g depending only on x"*'. Let A be an open
subset of R™ containing 0", and let U,, U, be open subsets of U. Suppose
that there are four real numbers a, b, ¢, d satisfying a < b < ¢ <d,
such that

AécU, AAcU, AiCU,.
Let
v,:U,-¥,(U,) C R, i=12,
be two diffeomorphisms of class C° which are expressed in the forms
vty -y art) = @@, - -, T3@), T @),  wxel,,

where Ui are real-valued functions on U,, and the functions Ur*' depend
only on x™**. Suppose that T,(U,N(0* X R) =¥,(U) N (0" X R), i =1,2.
Suppose that the functions Fo@,)™ 1 =1,2, are expressed as

Fo@)7(@) = g — @) — «-- =@ + -+ + @, 2e¥U),

with suitable functions g, depending only on x**i.
Then there exists an open subset B of A containing 0" and a dif-
feomorphism @ e I'*~*(B%) such that

oB) U, oB) CU,,
and

d)—l(xly ct ity xn+1) = (w‘i(x)y Ct ?[r{b(x)’ xn+1) ’ X e @(BZ) ’
o7&, - - -, 2 = (e, - - -, €W (2), 2T, zedBY ,

for suitable e/ = +1, and such that
(Fod)(x) = h(z**") — @) — -+ — @) + --- + (@), xeBg,

for a suitable function h depending only on xz™*.

LEMMA 8.1.4. Suppose that f is of class C°, s >3, and F = log f
1s expressed as

F(x) = g™, a®) — @) — o — (@) + -+ + @7, welU,

where g is a suitable function which depends only on z*, x**'-and 1s
“similar’’ to functions (x™)*/3 + x**'x®, i.e., satisfies the same conditions
(1), (i) as in Definition 4.1.1. Then for any point
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pe{relU N (0" X RY||oF(x)|| = 0"} — {0"*'},

there exists an open set W of U containing p and o diffeomorphism
@ e "4 W) such that

(i) o, .-, xrtl) = (xx, e, xn—l,@n(xn’ xr ), xntl), xe w,
for a suitable function O™ depending only on z", x**!;

(ii) the function Fo® is expressed as

(Fod)(@) = h(z™) — (@) — -+ — (@) + .-+ + (@), reW,

where h is a suitable function depending only on x**!, and j is p or
g+ 1.

To prove these lemmas, we need twelve lemmas, 8.1.5-8.1.16. The
following two lemmas are easily verified:

LEMMA 8.1.5. Let W be an open subset of R**!, and let p be a
point of W. Let ®eI'*(W), and put q = @(p). Suppose that f is of
class C? and has the following properties:

(1) lof@]| = 0";

i) |1 f(@| is nonsingular and has index 2.

Then F and f* = fo® have the same properties as f, i.e.,

(1) [PF@| = llaf*@)|| = 0";

3 *F@|, 1|0*f*(p)| are nonsingular and have index A.

LEMMA 8.1.6. Let W be an open subset of R™*' containing 07+,
Let @ be an element of (W) satisfying @(0*) = 07+, Suppose that f
18 of class C* and has the following properties:

(i) [[osf0 )| = 0",

(i1) ||°f(0"*Y)| is singular and has index u;

(iii) ||*f(0"*Y)|| is nonsingular.

Then F and f* = fo® have the same properties as f, i.e.,

(i) [oF (0| = [[af*0"*)| = 0;

(ii) ||*F O™, [[°f*(0"*)| are singular and have index p;

i) JPF 0", [|2f*(0**Y)|| are nonsingular.

LEMMA 8.1.7. Suppose that f satisfies the following conditions:
(i) f is of class C°, s > 2;
(i) Jjaf@O™* || = 0~;
(i) ||*f 0™ ¢s nonsingular and has index 2.
Then there exists an open subset W of U containing 0**' and a dif-
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feomorphism @ e I'*"Y(W) such that @O = 0**!, and such that the
function f* = fo@ satisfies the following conditions:

(i) {zeW]jof*@)| =01=WN@O XR;

(ii) for any x e W N (0" X R), |0°f*(x)| is nonsingular and has index

Proof. Let ¥: U — R*! be a C*~! map defined by
w(x) = (alf(x)y ) anf(x)a xn+1)

for x = (2!, .-, 2"*") e U. Since ¥(0**) = 07*!, and the Jacobian of ¥
at 0**! is nonzero, by the inverse function theorem there exists an open
subset W of U containing 07*! and a diffeomorphism @ ¢ [*"'(W) such
that @(0"*!) = 0"*!, and ¥ o @ is the identity map on W. Since (3,/)(P(x))
= x/, we see that f* = fo@ satisfies the desired condition (i). Further-
more, by Lemma 8.1.5 we see that |°f*(x)|| is nonsingular for any
xeW N (0® X R), and that ||3°/*(0"*")|| has index 2. Hence we conclude
that ||3*f*(z)| has index A for any ze W N (0* X R). Lemma 8.1.7 is
proved.

LEMMA 8.1.8. Suppose that f satisfies the following conditions:

(i) f is of class C°, s > 5;

(i) |3y = o7;

(i) ]8> f(0"*Y)| is singular and has index p;

(iv) |2 f(0*Y)|| is monsingular.
Then there exists an open subset W of U containing 0**' and a diffeo-
morphism @ e I'~{(W) such that @(0**) = 0**', and such that the func-
tion f* = fo®@ satisfies the following conditions:

(i) {reW|of*@x)=0,i=1,---,n -1} =W N @O X RY;

(ii) the set {xe W||of*@)|| = 0"} coincides with either

{©, ---,0,z", 2" e W|(x")? — a™*' = 0}
or
{0, ---,0,2", 2" e W|(x")? + 2"*' = 0} ;
(iii) for any xe W N (0*' X R?, the matrix
((@*f* Joxtox) () 34,7 =1, ---,m — 1)

is nonsingular and has index p.
(iv) @ f*/@x™))(®) + 0 for xe{rxe W||of*@) || = 0"} — {0"*}.
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Proof. From the properties (iii), (iv) of f, we see that the rank of
|62 £(0"*Y)] is » — 1. Hence there is @' e I'*(W’), where W’ is some open
set of R**! containing 07*!, such that &’(0**!) = 0**!, and the matrix
(G5 fod5’ [oxtox?)(0"*); 4, =1,..-,m — 1) is nonsingular. Therefore by
Lemma 8.1.6, from the first we may assume that

(v) (@*f )oxox?)(0"*Y) ;4,7 =1,.-.,m — 1) is nonsingular. Now, let
¥ be a C*~! map defined by

U(x) = @.f(®), « -+, 0n_y (@), 27, 2™*")

for x =(a',---,2**") e U. From (v) above and the inverse function
theorem it follows that ¥ has the inverse function ¢ defined in a neigh-
borhood W’ of 0"*! in R**'. Then ¢(0**) = 0**! and ¢ € I'*"(W’). Further-
more, ¢ is written in the form

o) = (¢, - - -, " (@), 2™, ™), we W,
with suitable functions ¢!. Put
h=fop, hy=0h/ox0w , hy,=0h/@L" .
Then we have:
Assertion 1. hy,(0"*Y) = 0, hppy(0**) £ 0, hpna(07) £ 0.

Proof. If 1 <i¢<n—1, then (3;/)¢(x)) = a* for x ¢ W’. From this
it follows that if 1 <i<n — 1,

aZfogo a (n—l % agok) ,
h,(x) = r) = — xk. on W’'.
(@) axiaxf( ) ax’ ,{; dxt

Hence we see that if 1 <4, j<n—1,

n—-1 aZ$0k ang ,
hi(x) = > a2 + Z2 on W,
@) k; oxtox’ + oxt

and that if 1 <i1<n—1,

n-1 az k
h(@) = > 2% 2% on W’.
k=1 oxox”

Thus we have

det“hzj(on*—l);?',.? = 1’ e, N — 1” +* 0 5
hy (0" =0, i=1,.---,m—1.
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Since det ||a*2(0"*!)|| = 0 by Lemma 8.1.5, we have
hnn(OnH) =0 ’

and hence
) deto%(a) | = det (@, Tenoren; t Lo )
(o25), det 1] = det (e, Shtaoren; L L)

Since det||a*2(0**Y)| #+ 0 by Lemma 8.1.5, we conclude that

By (0741) £ 0, (-a%—n>odet||azh(x)|| 20,

and hence
R (0" £ 0 .

Assertion 1 is proved.

Now, since the function ,#)(0, ---,0, 2", 2**!) of a7, x»*! is of class
C*~* and satisfies 9,2(0"*) = 0, h,,,,(0**") = 0, by the implicit function
theorem, there exists uniquely a C*? function «:(—¢,¢’) —» R with small
¢ >0, such that «(0) =0 and (3,k)0, ---,0, %, a(t)) = 0 for te(—¢,¢).
From Assertion 1 and the formula

dagy a0, -0, t, ()
dt hnn+1(0’ . .0’ t’ a(t)) ’
we see that
do e b (0)
a 50 = T 7 °

Applying Morse’s lemma to the function «, and taking ¢ >0 sufficiently
small, we obtain a C** diffeomorphism

0:(—e,e) > 0(—e,e) C (—¢€,¢)
such that ¢ = |a(d(?))| on (—e,¢). Now we define @ by
O(x) = oz, -+ -, 2", 0(x™), x™*)

for x = (a', ---,2"*") in a sufficiently small neighborhood W of 0**! in
W’. Then it is checked directly that @: W — &(W) is the required dif-
feomorphism. Lemma 8.1.8 is proved.

LEMMA 8.1.9. Suppose that F satisfies the following conditions:
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(i) F is of class C%, s > 4;

(i) {weUlljogF@)| =01 =U N (0" X R);

(iii) for every xe U N (0" X R), the matrixz ||0*F(x)|| is nonsingular
and has index A;

(iv) there are two real numbers b, ¢ with b < ¢ such that

”azF(x)H = dlag ["_2’ N _'2’ 2’ o ,2]
for x e (U, U U9 N (0 X R), where
ﬁb — {(xl’ .. "xn+l)e len+1 < b} ,
Uc — {(xl’ .. .,x’n'f-l) c len+1 > C} .
Then there exists an open subset W of U containing U N (0 X R) and
a diffeomorphism @ ¢ I'"2(W) such that
(i) O@)=w for xeW N (0* X R);
(ii) O@) ==z for xeW N U,;
(i) o, -+ -, 2" = (2, - - -, ez, ") for xe W N U°, where &’
are suitable integers satisfying |e’| =1;
(iv) the function F'* = F o ® satisfies

|0 F*(x)|| = diag [-2, ---, —2,2, -.-,2] for ke W N (0* X R) .

Proof. Since for each x¢ U N (0 X R), the n X n-matrix ||3’F(x)| is
symmetric and nonsingular, one obtain easily a C*~? map

r: U N O X R) — R"
such that
(i) 7@ =@,0,...,0) for xe U, N (0" X R),
(ii) f_“ @°F [ozxox))(X)ri(x)ri(x) = £2 for ze U N (0® X R),
$,7=1
where 7,(z) = (i), - - -, r2(x)),
(i) 7r(x) =(x£1,0,...,0) for ze U N (0* X R).
Next, considering for each ¢ U N (0* X R) the “orthogonal” subspace
to 7.(x) one obtain a C:~? map
7.: U NO" X R)— R”
guch that
(i) 7fx) =(0,1,0--.0) for zc U, N (0 X R),
(ii) an (O°F [9x“927)(2)ri(@)r{(x) = 0,
4,5=1
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Z") (0*F Joxtoxd)(@)ri(@)ri(x) = +2 for xeU N (0" X B,
i,7=1
where 7,(x) = (@), - - -, 72(®),
(iii) 7(@) = (0, £1,0--.0) for ze U* N (0" X R).
Repeating the process » times, we obtain the n “vector fields” 7, ---,7,
of class C*~% defined on UN(0*XR) such that for each k=1, -.-,n,

(1) > @F fowoe))(@)ri@)ri@) = +26,, on U N (0" X R),
where rkgécj)—; i@, - -+, r2(x)), and § is the Kronecker delta,

(ii) yx(®) =(0,---0,1,0.--.0) (1 is the k-th component)
for ze¢ U, N (0® X R),

(iii) 7x(®) = (0, ---0, +1,0..-0) (+1 is the k-th component)
for xe U° N (0* X R).

Now we define @: U — R™**' by
D@, -+, 2" = @ (0%, ™) + - 4 @07, 2, @)

and put W = @-'(U). Then it is easily verified that the diffeomorphism
@: W — &(W) has the required properties.
The following two lemmas are proved similarly.

LEMMA 8.1.10. Suppose that F satisfies the following conditions:
(i) F is of class C, 8 > 4;
(ii) {zeUloF (@) =0,1=1,---,n —1}=U N (0! X RY);
(iii) for every xe U N (0*! X RY, the matrix
(@°F |ox0x?) (@) 54, § =1, --+,n — 1)
18 nonsingular and has index p.
Then there exists an open subset W of U containing 0**' and a
diffeomorphism @ e I'*"*(W) such that
(i) O(x) =2x for xe W N (0! X R,
(ii) () = (@), - - -, D" (@), 2", 2"*") for xe W,
where @ are suitable real-valued functions,
(iii) the function F o® satisfies

((azFo@/axiaxf)(x) H ’l:,] = 1, Y (e 1) = diag [_2, ct _2’2, . '2]

for xe W N (0*' X RY.
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LEMMA 8.1.11. Suppose that F satisfies the same conditions (@),
(ii), (iii) as in Lemma 8.1.9 and

(v) there are two real numbers b,c with b < ¢ such that

|0°F (%) || = diag [—2, - - -, —2,2, - -+, 2, ()] for x e U, N (0* X R),
|0°F(x)| = diag [—2, - -+, —2,2, ---2] for x e U° N (0® X R),

where U,, U° denote the same set as in Lemma 8.1.9, and « is a suitable
real-valued function.

Then there exists an open set W of U containing U N (0" X B) and a
diffeomorphism @ e I'*"*(W) such that

(i) 9@ ==z for xe W N (0® X R),

(ii) o, -, 2" = (2, - - -, 2", OM(a”, 27, 27+ for x e U,
where O™ is a suitable real-valued function of x*,x™*!,

(i) @) =z for xeU° N W,

(iv) the function F* = Fo® satisfies

|0 F*(x)|| = diag [-2, --+, —2,2,..+,2] for ze W N (0" X R) .
The following two lemmas are well known ([5, p. 14, Lemma 2.3]).
LEMMA 8.1.12. Suppose that F satisfies the following conditions:
(i) F 1is of class C*, 8 > 2;

(ii) {zeUl||ogF@)|| =04 =U N (0* X R).
If U is convex in R™*', then

F(, -, 2" — FO, .-.,0,2") = a;;(@xia! zeU,

4,j=1
where a;; are suitable functions of class C*7* on U and satisfy
iy = gy, 20440, - -+, 0, 27*") = (0°F [92%927)(0, - - -, 0, 2"*Y) .

LEMMA 8.1.13. Suppose that F satisfies the following conditions:
(i) F 1is of class C°, s > 2;
(ii) {xeU|o;F(x)=0,i=1,---,m—1}=U N (0*' X R.

If U is convex in R™*, then

n-1
F(xl’ ety wnﬂ) - F(O’ ctty 09 xn, an) = Z aij(x)xtxj ) zelU ’
1j=1

where a;; are suitable functions of class C*~* on U and satisfy

a“ = aﬂ, 2aij(0, ey 0, x", x"“) - (azF/axiax")(O, crey O, x", x"“) .
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The following two lemmas are proved by the same methods as in
the proof (iii) of Theorem 4.1 of Morse and Cairns [5, p. 25].

LEMMA 8.1.14. Suppose that there exist real-valued functions a,j,
i,j=1,---,n, which are defined on U and satisfy the following
conditions :

(i) a;; are of class C*,8 > 1;

() ay=a,67=1,---,n;

(ii) F('y ---,2**) — FQO, ---,0,2™") = > a(@)rzf,x e U;

Gv) (a;;(®);4,7=1,---,m) =diag[-1,-..,—-1,1,---,1] (the number
of “—1” is2) for xcU N (0® X R);

(v) there are two real numbers b,c with b < ¢ such that

(a/zj(x);?/’]: 1; 9n) :diag[_l’ "',_1,19 ,1] fOT re Ub U ﬁc’

where U, U¢ are the sets defined in Lemma 8.1.9.
Then there exists an open subset W of U containing U N (0® X R) and
o diffeomorphism @ ¢ I'(W) such that

(i) @) =2 for xeW N (0 X R),

(ii) &) == for xe W N (U, U 0o,

(iii) Fo®(x) —Fo®0, .---,0,2") = —(x})? — +++ — (@D* 4+ -+ 4+ (x™)?
for xeW.

LEMMA 8.1.15. Suppose that there exist real-valued functions a,
) =1,---,m — 1, which are defined on U and satisfy the following
conditions :

(i) ay are of class C',s>1;

(ii) ey =a;,%5=1,---,n —1;

(iiiy F(2', .-, 2" — FQ, ---,0,2", 2"*") = > 27L ay@aia!,xe U;

iv) (a4, 7=1,---,n—1) = diag [—-1,..., =1, 1,.-., 1] (the
number of “—1” is ) for xe U N (0! X R?).
Then there exists an open subset W of U containing U N (0*~' X R?) and
a diffeomorphism @ e I'*(W) such that

(i) O(@) =z for xeW N (0*! X RY;

(ii) o(x) = (D'(x), - -, 0" (), 2™, x"*Y) for xe W,
where @t are suitable real-valued functions;

(iii) Fo®(x) — Fo®0, ---, 0, 27, 2™") = —(2)? — -+« — (¥ + ...
+ (@) for xe W.

LEMMA 8.1.16. Let A be an open subset of R™ containing 0", and
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let a, b, c,d be four real numbers satisfying a < b < c < d. Suppose
that A2 C U. Let U, U, be two open subsets of U such that A C U,
Al c U, Let two diffeomorphisms @,eI*(U),i=1,2,8 > 2, be given
and satisfy

D,(x) = for xeU; N (0" X R) .

Then there exists an open subset B of A containing 0™ and a diffeo-
morphism @ e ['*(B%) such that

(i) O(x) =« for xeB: N (0* X B),

(ii) O(x) = &,(x) for xe B,

(iii) O(x) = (e'Pi(x), - - -, e"P2(x), **Y) for x e BY,
where D,(x) = (Dix), -+, d2(x), x"*Y), and e’ are suitable integers satisfying
lei| = 1.

Proof. Using the uniqueness theorem of tubular neighborhood
(Lang [2, p. 77]), we find easily an open set B’ of A and a diffeomorphism
@' e I} ((B")?%) satisfying the conditions (i)-(iii) above. Smoothing this @,
we obtain the desired diffeomorphism @ ¢ I*(B%) with an open subset B
of A containing 0. Lemma 8.1.16 is proved.

Proof of Lemma 8.1.1. For the proof, we denote by I'*'(W’',U’),
where s’ is a positive integer, and W’, U’ are subsets of R"*!, the set of
all C¥ diffeomorphisms @: W’ — @(W’) C U’ which are written in the
form

oty - - -, 2" = (D), - - -, D™(x), 2™)

with suitable real-valued functions @°¢ defined on W’.

Now, for the function f: U — R, by Lemma 8.1.7, there exists an
open subset W, of U containing 0**! and a diffeomorphism @, € I"*"(W,, U)
with @,(0"*") = 0**!, such that the function f, = fo.®, satisfies

(i) {zeWlofi@)|| =00 =W, NO"XR;

(ii) for any xe W, N (0® X R), the matrix ||3°f,(x)|| is nonsingular,

with index 2.
By Lemma 8.1.5, we see that the function F, = log f, satisfies the same
conditions (i), (ii) as f;. Applying Lemma 8.1.9 to the C°*~! function
F,: W, — R (it being understood that the sets (W)),, (W, are empty), we
obtain an open subset W, of W, containing 0*! and a diffeomorphism
D, e ['*%(W,, W,) such that @,(x) = = for xe W, N (0® X R), and such that
the function F, = F, 0 ®, satisfies
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| F(x)|| = diag [—2, - .-, —2,2, ..., 2] for xeW, N (0® X R) .

Using Lemma 8.1.5 again, and applying Lemma 8.1.12 to the C*-3 func-
tion F,: W,— R, we see that for a suitable open subset W, of W,
containing 07*!, the function F, is written as

Fy@) — Fy0,---,0,2") = 3 a,@zw!, xeW,,
j=1

7=

where a,;; are suitable functions of class C*~° satisfying

Ay = Qg (a’ij(x);?:yj= 1, ""n) = diag[—]-’ Tty _1,1y"'31]
for xeW, N (0" X BR) .

Hence, the function F,: W, — R satisfies the assumption of Lemma 8.1.14,
with the C*~° functions a,; (it being understood that the sets (W,),, (W,
are empty). Thus there exists an open set W, of W, containing 0**! and
a diffeomorphism @, e I'*"%(W,, W,) such that

(i) 9x) =z for xeW,N (0 X R);

(ii) F,00,(x) — F,29,0,---,0,2""") = — (@) —+ .- — (@) +--- 4 (2")?
for xe W,
Consequently we observe that the diffeomorphism @ = @,00,09,¢
I'*-%(W,, U) satisfies the following properties:

( i ) Q)(On+l) — 0n+1;

(ii) log fo®(x) = F,0®,0, ---,0,2"") — (1) — ... 4+ (x*)? for xe W,.
This proves Lemma 8.1.1.

Proof of Lemma 8.1.2. Similarly to the proof of Lemma 8.1.1, using
Lemmas 8.1.6, 8, 10, 13 and 15, one proves Lemma 8.1.2.

Proof of Lemma 8.1.3. We use the same notation I"*'(W’,U’) as in
the proof of Lemma 8.1.1. For the diffeomorphisms ¥,,7=1,2, we
consider diffeomorphisms @, defined by

@i(xls Yy xn+1) = (w‘ql,(x), R} w.?(x)) xn+1) ’ re Ut .

Let Ul,i = 1,2, be open subsets of U, containing U; N (0 X R) such that
?,(U) c U. Then @,cI'"(U,,U). Let ¢ be a sufficiently small positive
number, and let A’ be an open subset of A containing 0" such that
AN _, c U, (AN c U;. Applying Lemma 8.1.16 to &,, we obtain an
open subset C of A’ containing 0" and a diffeomorphism 6 e I'*(C¢*%) such
that
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(i) O&) ==z for xeCi* N (0" X R),
(ii) o) = i@, - - -, ¥ (), 2" for xeC_,,

(i) 6@ = (e¥i@), - - -, e"¥(x), z"*) for xe Ci*, el = 1.
Using the relations

00 )(2) = (&', - - -, 2", TpH (2™t , xze0(C_),
00 ) (2) = (e'2t, « - -, e, TP (xm ) , x e B0(C¢) ,

we observe that for x e @(C?_,),

FoO'(x) = F o) ol 007" (x)
= F @)@, -, Tr+i(ant)
= @) — (@) — ... + (@),

where §, is a suitable function depending only on «**!, and that for
x € O(C%),

FoO™ (@) = (Fol) " o¥,007)(x)
= (Fo @), - - -, emam, Tp+i(xmt))
= gy(@"*) — @) — .-+ + (@),

where §, is a suitable function depending only on x™*!.
Applying Lemma 8.1.9 to the C°* function Fo.67!': ®(Int Ci*) —» R, we
obtain a convex, open subset D of C containing 0" and a diffeomorphism
Ae '~ D3, 0(C%+:)), where a, 8 are suitable numbers satisfying a — e <
a<a,d<d<d+e such that ’

(i) A(@) =z for xe D’ N (0® X R),

(ii) A@) =« for x e D?,

(iii) A(x) = (é'zt, - - -, ez, ™) for x e D},
where ¢! are suitable integers satisfying [é'| =1,

(iv) the function F* = FoB® o A satisfies

|0*F*(x)|| = diag [-2, --+, —2,2, ..+, 2] for xeDi N (0" X R) .

From Lemma 8.1.12, it follows that the C*~? function F* = Fo®'o 4 is
written as

F*(xly v "xn“) - F*(O, R 09 xn-H) = i aij(x)xtmj ’ X € C:’z ’

7=1

where a,; are suitable functions of class C** and have the following
properties:
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(1) @y =a;;

(i) (ay0,---,0,2**Y;4,5=1,..-,n) = diag[-1,---, —1,1,---,1];

(i) (e;@);4,7i=1,---,n) = diag[-1,--+,-1,1,---,1] for xe D}
UDg.
By Lemma 8.1.14, we find an open subset B of D containing 0" and a
diffeomorphism £ e I'*"%(B<, D) such that

(i) E@) ==« for xe B¢ N (0® X R),

(ii) &) =« for xe B U B¢,

(i) F*oZ(x) — F*-5(0,---,0,2™") = — (@) — -+ — @) 4 - - + (2"
for x ¢ B.
Now, we put & =0 'odo&. Then @®cl**Bi U). It is obvious that
9B C C> C U,,0(B% c C¢ C U,, and that

Fod(x) = F*o5(x) = F*- 50, ---,0,2"*") — (@) — - -+ + (@")*
for x e B .
From the relations
AoB@)=2 on B, AoB@x) = (+z,.--,+z"2""") on B¢,
and the properties
0@) = @), - - -, ¥ (), ") for x € 0(BY) ,
0(x) = (£¥x), - -+, =Tp(), ")  for ze O(BY
of ®, we know that
o (at, -+ oy 2 = (T, - - -, V), 2™, xedBY) ,
¢—l(xly Tty xn+l) = (iw%(xL ) iw?(x)y xn+1) ’ HAS @(Bg) .

Consequently, the diffeomorphism @ satisfies the required properties.
Lemma 8.1.3 is proved.

Proof of Lemma 8.1.4. It is easily verified.

8.2. Proof of Proposition 4.1.1. The proof will be preceded by some
definitions and three lemmas. We shall say that an %-chart
W, f;ay .-,z of type (1),2=0,.--,n, is regular if there is an
F-chart U, f,&,---,&"*) of type (1) such that Cl1U c U, and «'=
&', ..., 2" = 2" on U, and such that U is mapped by ¢ = (&', -+, 2"
onto an open set of the form B X (a,b), of R**!, where B is an open
subset of R*, and a,b are real numbers. We shall say that an Z-chart
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W, f;a', -, 2" of type (+,0), x=0,---,m — 1, is regular if there is
an Z-chart (U, fi &, ., 8 of type (x, 1) which has the same properties
as above and in addition, satisfies the following condition: U is mapped
by ¢ onto an open set of the form C X (—2¢,2¢) X (—¢, ¢®) of R**!, where
C is an open subset of R, and ¢ is a positive real number. Recall
that an & -chart (U, f; 2!, ---,2**") is said to be of class C*A<s<r+1)
if (', ...,z is of class C* (and f is of class C:-'), and recall that o
is assumed to be of class C7,r > 21.

LEMMA 8.2.1. Assume that o satisfies Condition (T). Then:

(i) For any point p of 3,0 < 2 < n, there exists an F-chart at
D, of class C™° and of type (1) and with regularity.

(ii) For any point p of X, there exists an F-chart at p, of class
C* and of type (x,p) for some p=0,1,.--,m — 1.

Proof. (i) For peld,, there is an F-chart (U, f; !, ---,2"") at p,
of class C” such that z'(p) = --- = 2"*'(p) = 0. Let ¢: U — o(U) C R™*!
be a C" diffeomorphism defined by the local coordinate system (z*, - - -, 2»*Y).
Applying Lemma 8.1.1 to a function fo¢p™ defined on ¢(U), we obtain
an open subset W of ¢(U) containing the origin 0*! of R**' and a C""°
diffeomorphism @: W — @(W) C ¢(U) such that @(07*!) = 0"+, @*(da™*') =
dz»** on W, and such that

log fop™o®(x) = g(a™*) — (') — - -+ 4 ("), xeW,

for a suitable function ¢ depending only on z"*!. Then taking a suitable
open subset of ¢ '(@(W)), we observe that the restriction to it of the
diffeomorphism @ 'o¢: o (@(W)) — W C R™*! defines an & -chart at p, of
class C~% and of type (1), and with regularity. This proves the part (i).
Using Lemma 8.1.2, one proves (ii) similarly. Lemma 8.2.1 is proved.

LEMMA 8.2.2. Let 2 be an integer on the range 0,1, ---,n. Suppose
that three F-charts (U, f;x', .-, 2", (U, fi; 2, ---, 2%, 1 =1,2, of
class C™™% and of type (), are regular and have the following properties :

vrnu,nNn2+06, U,Nn3¢U, ClU,NCIU,=0, i=1,2.

Then there exists an F-chart (W,h;y', ---,y**Y) of class C™V and of
type () and with regularity, such that U N X C W, and
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(?/1,'“,2/"):(901,"',%?) OanUI,
(yly ° ',yn) = (elxéy b ',enxf) on W ﬂ Ug
for suitable e* = +1.
Proof. Let (ff,f; Iy, T, (ffi,fi; Tl ..., %% be the “extensions”

of the regular F-charts (U, f;a', .-, 2", (U, fi; 2, -+, 22", 1=1,2,
respectively. Let

¢:l7—>¢([7)’ %:ﬁi—’%(ﬁi)

be the C7* diffeomorphisms defined by the local coordinate systems
@, - .-, 2", (&, - -, 22%Y, respectively. Now, to apply Lemma 8.1.3, we
consider two diffeomorphisms of class C7%

U, = @op: (P(f] n ﬁl) —+¢1([7 n ﬁl) "
U, = o000 NT) -0 NTY.

It is clear that ¥ N T) N (0" X R) = @,00)T N T) N (0" X B),
where 0" denotes the origin of R”*, and the product 0" X R is to be
understood as the subspace of R**'. Moreover, it is obvious that ¥, are
written in the form

Vix) = @@, -, U@, U@y, =@, -,a")eel NT),

where ¥J are real-valued functions, and ¥7*' depend only on z"*'. Hence
we have

(w-i_l)*dxnﬂ — zi(xn‘”l)dx"“ on go,,(f] n ﬁz) ’

where 2, are suitable functions depending only on 2"*'. From the
relations

(Froprhdar*t = (For )@ H*dam)  on oU N T,

we see that the functions log F;o¢;* — log fogp;t: o U N U, — R depend
only on z**!, Hence the functions log fop o ¥;! are written as

log fop oWk x) = g™ — @) — -+ + (@2, wee NTY,

with suitable functions g; depending only on x”*!. On the other hand,
by definition, the set ¢(U) is written in the form

o) = A X (a,d) C R*,
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where A is an open subset of R™ containing the origin 07, and a,d are
real numbers. It is clear that o(U N X) = 0" X (a,d). It is easily verified
that the point 0" X a of R**' is contained in either (7 N U, N 3) or
U NU, N2, say 0" x ace(@ N U, NZ3). Then 0 X d is contained in
go(U N U, N %), and there are two real numbers b, ¢ satisfying a < b <
¢ < d, such that

oUNUN2=0X(a,bd), pUNU,N2Z)=0"X(cd) .
Then we can find a bounded, open subset A of R™ such that
reAcCClACA,
and
ClA X (@, D) c U NU,), ClA X (¢, (U NU,.
For this A, there is a positive number ¢ such that
AXla—eblCcolnU), Axled+edcelnU,).

Now, applying Lemma 8.1.3 to the C"~® function fop™': ga(ﬁ') — R and
the C7~* diffeomorphisms ¥';: go(f] nNU)— goi(f/' N U,), we obtain an open
subset B of A containing 0* and a C7V diffeomorphism
@: B¢t — @(B+:) C R

(with the notation of 8.1) such that

O*(dx™*') = da™*! on Bite |

O (x) = Ti@), - - -, ¥7(@), 2"*) for ze B _,,

O~ x) = (T3, - - -, e ¥3(x),a"*)  for xeBi*, ¢! = =1,
and such that

log fop to®@(x) = hy(@™*") — (@) — --- + (")’  on Bt .

It is easily verified that the restriction of the diffeomorphism
O logp: o (Bit:) — O7Y(B%*¢) to a suitable open subset W of U, gives us
the required &#-chart. Lemma 8.2.2 is proved.

Using Lemma 8.1.4, one proves easily the following lemma.

LEMMA 8.2.8. Let p be an integer on the range 0,1,...,m — 1.
Suppose that an F-chart (U, f;x, ---,2**") of class C™° and of type
(x, 1) and with regularity, is given. For any point p of U N (¥ — 23,
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there exists an F-chart-at-p (W,h; 9, ---,y**) which is of class C™*
and of type () or type (¢ + 1), and is regular, such that

@, er ) =@, -y, 2t =0w"yt)  om UNW
for a suitable function O.

Proof of Proposition 4.1.1. Applying Lemmas 8.2.1-8.2.3, and using
a partition of unity, one constructs easily an o-preferred Riemannian
structure on V. Our proposition is proved.

8.3. Proof of Proposition 4.2.1. Suppose that an w-preferred Riemannian
structure g is given. In the case X = 0, our proposition is trivial.
Therefore we assume 3 = 0. For a point p of 2 and two positive numbers
¢,d, we define an open subset U#(e,5) of V containing p as follows. By
assumption, there exists an F-chart (U, f;«!, ...,z at p satisfying
one of the following conditions:

(i) it is of type (1) for some 2, and
a(@/0x?,d/ox?) = d;; for 1< 4,7 < n;
(ii) it is of type (x, ) for some p, and
g(@/0x%, 8 /ox?) = 6;; , ¢@/0xt dfox™) =0 for 1 <i,j<n~—1.

In the case where the condition (i) is satisfied, we define Uj(e, ) to be
the set of those points z of U satisfying the following inequalities:

|—@(2)? — -+ — @@+ - + @@ <e,
(i)* ((x'(2)? + -+ + @@ @) + -+ + @" @) <e,
Ixn+1(z) - x"“(p)l <5,

Next, in the case where the condition (ii) is satisfied, to define Uj(e,d),
we consider a continuous function G: U — R having the following
properties:

(@) G(x) >0 for zeU,

b)) Gx)=0for xcUN 2%,

(0 Y(@G®=0o0onU,

(d for any xe U N 3, the restriction G of G to the subset f~'(f(x))
N S(x), where S(x) is the connected component containing z, of the
intersection of U and the leaf through xz, is of class C' except at points
of ¥, and the set of critical values of G has measure zero in R,
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() for any xeU N Y and the map G as above, there exists a
positive number ¢ such that the set G '([0,¢]) is compact.
By elementary, geometric arguments, one can verify that such a
function G exists. Now, in the case where (ii) is satisfied, we define
U#(,d) to be the set of those points 2 of U satisfying the following
inequalities:

|—@@) — -+ — @)+ -+ + @ (2))
(i)* + g(x™(2), 2"*'(2)) — g(x™(p), z"*'(2)| < e,
G() <e, |z (2) — 2" (p)| <4,

where ¢ is the same function as in the definition of an #-chart of “type
(*, )" (Definition 4.1.1).

For each point p of X, one can prove that for small ¢ if § is
sufficiently small, the set U}(e,d) above has the properties corresponding
to the conditions (ii)-(ix) of Definition 4.2.1. Consequently, since X is
compact, we find a finite number of points p,, --.,p, of ¥ and positive
numbers ¢;,0;, %=1, .--,m, such that the union

T* = ('J U (i, 6)

has the required properties. Proposition 4.2.1 is proved.

APPENDIX

The generality of Condition (T).

Our purpose is to prove:

PROPOSITION A. For the given foliated structure o on V, there
exists a completely integrable one-form & of class C™ which satisfies (T)
and is arbitrarily close to o in the C7 topology and is expressed as

@& = Qo
with o suitable positive-valued function & defined on V.

One can easily prove this proposition by the usual argument as in
the proof of Milnor [4, p. 14, Theorem 2.7] if one verifies the following
lemma.
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LEMMA A.1. Let U be an open set in R™' with coordinates func-
tions (x', ---, 2™, Let K be a compact subset of U, and f: U — R a C*
function, 3 < s < co. Then there exist C° functions g: U — R which are
arbitrarily close to f in the coarse C* topology, such that the restriction
to K of g satisfies the following condition:

If for some point p of K,

91(10): =Qn(p)=0, and det(gzj(p);zyj:-l’,n):o’
(T") then
det (90,0, (2] det(gut@); bl=1,--,ms % b LT s
oxt/» ]_)]_,...,n

Here g,,9;; denote 9g/oxt, 8*g [oxox?, respectively.
Proof. Consider a map &: RY — R**! defined by
h'(?/o9 yl’ tt yn, ?/", ?/12, Tty ynn) = (’!/‘, ) ?/", det (?/”)) .

Let 07*! denote the origin of R"*!. Then the set P = h~}(0"") is a
stratified set in the following way. For an integer k,0 < k < n, we put

Py ={%y, -,y ¥ 9% Y eRY Y = - = y" =0,
rank (y¥) <n — k} .

Then it is easily verified that

(i) P=P,DODP,D..-DP,;

(ii) for k=1,...,n — 1, the subset P, — P;,, is a regular sub-
manifold of R¥ with codimension n 4 k?;

(iii) P, coincides with the submanifold R X 07! of RY. Further-
more, we see easily that P, coincides with the subset of RY where h is
not transversal to 07!, and hence that the restriction to RY — P, of &,
is transversal to 0%,

On the other hand, for a C*® function g: U — R, we define a function
JY9): U — RY by the formula

JH (@) = (g(x), 9,(2), - - -, (), 91,(X), 91(X), - - -, Gna()) xeU.

By Thom’s jet transversality lemma ([7], [3]), we know that the map f
can be approximated, in the coarse C® topology, as closely as desired,
by a “good” map ¢ in the following sense: the restriction to K of JX(g)
is transversal to P. Since for k > 2, the codimension of P, — P,,, in
RY is greater than dim U = n + 1, such ‘“good” maps do not intersect
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P,. Consequently, for the “good” map ¢, the composition hoJ*g) is
transversal to the origin of R"*'. This fact implies that g satisfies the
condition (TY). Lemma A.1 is proved.
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