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1. INTRODUCTION

The study of the effect of natural selection on multiallelic loci presents problems
of considerable complexity. Even when we confine our attention to a large random
mating population, to one locus and to constant fertilities and viabilities from
generation to generation we may find the problem intractable.

Studies of such systems must rely for the present on one of two approaches:
(i) the development of results of a general nature (such as that of Cormack (1964),
which is essentially equivalent to the solution given by Littlewood (1957) to a
mechanical problem) which can be demonstrated using topological concepts, or
(ii) the use of special features of the system under consideration, such as the
increasing nature of the mean viability for the autosomal locus (Mandel, 1959).

In this paper we shall utilize the second approach. A general matrix notation for
autosomal and sex-linked loci will be developed. This representation will enable
us to recognize the similarities between each system, or special cases of the system,
and the autosomal system treated by Mandel (1959a), Mulholland & Smith (1959)
and Kingman (1961). We shall then be able to utilize the special features of the
autosomal system, and the results thus derived, to make statements about the
sex-linked locus, and various more general problems connected with the autosomal
locus (e.g. differential viabilities for the two sexes).

2. THE AUTOSOMAL LOCUS

Notation

(i) The gametic arrays for the males and females will be represented by diagonal
matrices. Thus in the case of a diallelic locus with alleles A and a and gametic
array R.A. + S.a we shall simply write

/R O

lo
These matrices will not in general be written in expanded form, but will be denoted
by E and G for the females and males respectively.

(ii) The genotypic arrays will in general also be represented in the above manner,
being denoted by P and Q for the females and males respectively.
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168 C. CANNINGS

(iii) U will denote a matrix for which U^ = 1 for all i and j , I the unit matrix
and 1 the unit vector.

3. FERTILITIES, VIABILITIES AND ASSORTATIVE MATING

Suppose we consider the population just before pairs are formed. As above the
genotypic arrays are diagonal matrices P and Q. We may represent the array of
pairs formed under a random mating system at PUQ, where the (i, j) element is
PiQj, the proportion of matings between a female of the ith genotype and a male
of the jth. If mating now takes place, and the fertility of a pair formed by a female
of the ith genotype, and a male of the jth is Fi{ (where k, j are an ordered pair),
then we simply weight each mating by its fertility so that the array

X = PFQ

represents the effective proportion of each mating (F being the matrix of Fi}

elements). It should be pointed out that this system includes a type of assortative
mating. The frequency of a particular mating has been given above as P i Qj, and
the effective frequency due to fertility Ftj as FyPtQj. We could, however, have
considered the frequency of the mating as F^P^Q^, due to assortative mating, and
treated the fertility as unity (or indeed any intermediate position). This has been
pointed out by Cannings (1968a) for a system with two alleles. Although somewhat
artificial this representation may allow meaningful investigation of complete assor-
tative mating.

It is now necessary to decide what genotype frequencies will result from the
mating array X. An example will best illustrate one way in which this might be
done.

Suppose we have alleles Ax and A2, and hence three genotypes AxAlt AXA2 and
A2A2. The array X is now

The Xxx element contributes AXA^S alone, X12 and X21 contribute \AXA^S, and
X22 contributes ^A^A^S. If we pre- and post-multiply X by

we obtain

4^22 0
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Multiallelic genetic systems 169

and so the sum of the elements of this matrix is the relative proportion of A1A1

genotypes. Thus we may write our recurrence formulae (a dashed symbol per-
taining to the subsequent generation), as

where A is such that 1TP'1 = 1

and

As will be easily seen, the diagonal elements of the matrix

(I 0 0̂

o | o
[o o o^

simply correspond to the proportion of A± gametes produced by AXAV A^A^, that
is 1, \, 0, and pre- and post-multiplication by such matrices specifies both segrega-
tion and the union of gametes. We could thus introduce non-random segregation of
gametes by adjusting these matrices. For example, pre- and post-multiplication by

1
0
0

0
\

0

°\0
0

and
n-
0

\o

0

1
0

0
0

0

would correspond to the situation in which the female heterozygote produced ^A1

and %A2, while the male produced \A^ and \AV The relevance of this to the union
of gametes will be seen later in connexion with the sex-linked locus. The generaliza-
tion of this method to multiallelic systems is straightforward and needs no ela-
boration here.

The addition of differential viabilities to this representation is straightforward.
If we regard the genotype matrix P as being at birth then in order to obtain that
at maturity we simply take VP, where V is a diagonal matrix of viabilities. Thus
we have

X* = VPFQY, (1)

where Y is the matrix of viabilities for the males. Separation of the genotype
frequencies can be carried out as above.
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170 C. CANNINGS

This representation has two possible uses. It may be of value in computer studies
of models involving fertilities when subroutines for matrix multiplication are
available, and it may also allow special cases to be treated, one such case will be
considered below.

If F = U in (1) then we have a system in which selection is exerted through the
viabilities alone. Similarly, when F = JUH, for J and H diagonal, we have

X* = (VPJ) U(HQX) (2)

and this is essentially the same as (1) with F = U, and viability matrices VJ and
HX. Thus we see that this special case (that of multiplicative fertilities) gives rise
to a system of equations equivalent to that of viabilities alone, where these via-
bilities differ for the two sexes. This result was given by Bodmer (1965).

(i) Viabilities

We shall now ignore fertility differences, except in as much as some of the models
below have been shown already to be equivalent to special cases of fertility
differences.

As before our gametic arrays are taken as the diagonal matrices E and G. These
are taken to be the arrays at maturity; that is, after viability differences have had
their effect. The viabilities will be represented as matrices A and B for the females
and males respectively. Thus the genotype consisting of the ith and jth alleles will
have viabilities Ai:j and Bi:j in the females and males respectively (we shall assume
Ait = AH and Btj = BH).

In the subsequent generation at maturity

KE'l = \(EAG + GAE) 1 (3)

and MG'l = \{EBG + GBE) 1, (4)

where K and M are such that 1TE'1 = 1 and \TG'l = 1. These equations must be
equivalent to (2).

We may derive these two relationships in an analogous manner to that used with
fertility differences. Random pairing of genotypes followed by selection in the form
of fertilities led to an array PFQ. Similarly random pairing of gametes followed by
selection in the form of viabihties leads to an array EAG. For two alleles the array

becomes

11 1 1 12\ 1 2
/ 77T /~1 i 771 /~1 \ A Tjl /~1

1 2 \ X 2 >-^J2 1 / ^ 2 2 ^ 2 2

Collection together of all terms corresponding to one allele involves addition of all
the elements in the corresponding row. This is done by post-multiplying by 1 to
give (3). Equation (4) is similarly derived.

We shall denote equilibrium by use of A above the appropriate symbol. For equi-
librium we simply require that E = E' = E and G = G' = G so (3) and (4) become

JKEI = \{EAG+GAE) l\
and Ml = \{EBG + GBE) l j ' ( 5 )
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Multiallelic genetic systems 171

It is unclear how a solution of these equations might be obtained, and indeed
there will in many cases be no unique solution (Owen, 1953). Some insight may
be gained by considering special cases.

We first consider the problem of stability.
Consider KE'l = ^(EAG + GAE) 1. Suppose that the frequencies E and G are

Jll + 8 and Q + A respectively, where 8 and A are diagonal matrices, \TS\ = 0 and
1TA1 = 0. We shall neglect terms of the second, and higher, orders in 8 and A
<i.e. S2, A2 and SA). Then

(EAG + GAE) = (E + S)A(G + A) + (G + A
= (EAG + GAE) + (SAG + G

+ higher-order terms.

It follows that K, which we shall write as K + SK, is equal to

K + SK = \\T(EAG + GAE) 1,
= \\T(EAG + GAE)\ + \\T (SAG + GAS)

+ \\T(AAE + EAA) 1+higher-order terms,

the first term of the right-hand side corresponding to K, the rest to SK. Thus if we
write E' = E + 8' we have

(K + SK) (E + S')l = \(EAG + GAE) 1
and so

(KS')l = \(8AG + GAS) l-\E {lT(SAG + GA8)l} 1
+ %(AAE + EAA) 1 — \E{1T(AAE+ GAA) 1} 1. (6)

There will be another equation in which M is substituted for K, A for 8', E for
$, G for E and B for A.

The second half of the right-hand side of (6) is identical to the first half if E = G
except for A replacing 8. Rearrangement of (6) into an expression of the form

8' = (G C)h (7)

is then possible, where 8', 8 and A are vectors containing the same elements as the
diagonals of the corresponding matrices, and C is a matrix defined so as to make
(6) and (7) equivalent. There will be a further equation for A' of the same form so
that

C\ / 8 \
D) W'

where D is defined in terms of A' in a similar way to C in terms of 8'.
This special form will be of considerable importance in the consideration of

special cases.
C and D will be referred to as generation matrices, and differ only by a factor of

\ from the generation matrices obtained in the corresponding autosomal cases when
A is the viability matrix for both sexes, and when B is the viability matrix for
both sexes. That this is so can be seen quite simply from equation (6). The con-
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172 C. CANNINGS

sideration of the case of equal viabilities in the sexes reduces equations (3) and (4)
to the form

KE' = KG' = EAEl,

a case discussed in some detail below. If in (6) we put Q = E, 8 = A, we have

Kd'l = EAS+SAE-E(1T(EAS+8AE) 1)1,

which can clearly be written as
8' = 2C8,

where G is identical to that defined above.
The stability of the system may now be determined in the usual way, by evalua-

ting the latent roots of the generation matrix, in conjunction with the conditions
1TE1 = 1TG1 = 1, although in practice this may be intractable. However, we have
shown that when ^ = Q the generation matrix takes a special form closely related
to the simpler case of equal viabilities in the two sexes. This will allow us to utilize
the results on the stability of the latter system to study the stability of special
cases of the former.

(ii) Special cases
(i) A = B reduces the system to identical viabilities for the two sexes. We

obtain:
KE'l = ^(EAG + GAE) 1 = MG'l

and hence after one generation the gametic arrays in the two sexes are identical.
Equation (5) then reduces to

KE'l = EAE1,
and so for equilibrium

KE\ = EAEl. (8)

The solution of this can be obtained using Cramers' rule (Mirsky (1955), p. 134;
Birkhoff & MacLane (1959), p. 306). Thus

where
A =

Tallis (1966) has obtained this result independently and by a somewhat different
method. The equation is of course equivalent to that of Mandel (1959, equation 6).

The conditions for stability and convergence of the gene frequencies have been
obtained by Mandel (1959), Mulholland & Smith (1959) and Kingman (1961). These
conditions correspond to the conditions for K to be maximized at equilibrium, that
is for

K = 1T(EAE) 1

to be maximized, and are equivalent to the condition that the latent roots of the
generation matrix lie in (— 1, +1).
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(ii) B = U is equivalent to selection acting amongst the females only. From
equation (4) we obtain

MG'l = \{EUG + GUE)\ (9)

and so M = 1. Further expansion of (9) shows that G\ — \(Gi + Ei) and so

G' = UG+E). (10)

Equilibrium occurs when G' = G = G which implies, from (10), that E = G.
Thus

KE\ = EAEl

which is equivalent to equation (8). Thus

El =

and K* is maximized at equilibrium, where K = 1TEAE1.
In a situation where E = G we have argued that the generation matrix can be

written as

\D D)'

where C and D are one-half of the generation matrices obtained for equal selection
in the two sexes.

In this case B = U, i.e. B^ = 1 and since no changes will occur in gamete
frequencies when no selection is acting in either sex D = \I. Thus we have a
generation matrix

(C O\ . . l/C C\

where C is now exactly equivalent to the generation matrix for equal selection in
the two sexes.

We can now apply Theorem 1 of the Appendix. The non-zero latent roots of

(C G\j are \ =

where jn is a latent root of C for i = 1, ..., n. Thus the non-zero latent roots of

are fa = \{l+N) (i = 1, 2, ..., »).

If /it e (— 1, +1) then £Â  e (0, +1) and conversely. Stability in the corresponding
autosomal case implies that all / t ie( —1, +1) and this in term implies that
JÂ  6 (0, +1) and hence £A e (— 1, +1). Thus the conditions on the viability matrix
A which Mandel (1959a), Mulholland & Smith (1959) and Kingman (1961) have
derived as necessary and sufficient for stability are sufficient in this case. However,
%Xt e (— 1, +1) implies only that fi{ e (— 3, +1) and so the conditions on A for
stability in the associated case are not necessary for stability (at least not as
demonstrated by the above treatment).

https://doi.org/10.1017/S0016672300002032 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672300002032


174 C. CANNINGS

If, however, we can demonstrate that A4 is necessarily positive then the necessary
and sufficient conditions for stability must be identical. This situation arises in the
case of two alleles, when indeed the conditions are also sufficient for convergence.
This result has been proved by the author (Cannings, 1969) using a generalization
of a monotonicity argument previously applied to the sex-linked locus (Cannings,
1967).

(iii) A and B diagonal. Heterozygote elimination in both sexes

Thus ai} = bi:j = 0 if i 4= j and we write au as at, bu = b^ Since A and B are
diagonal matrices we may write

KE' = AEG and MO' = BEG.

Putting L = KM and H = EG (L being a constant and H a diagonal matrix) we
have on multiplying the two forms together.

LH' = (AB) W, (11)

which is essentially a matrix equivalent of a geometric progression. Using a sub-
script to denote the generation under consideration we have

LnHn+1 = (ABr-iHT for n > 1.

Note that equation (11) is precisely the form we should obtain with heterozygote
elimination in one sex only (the diagonal elements being simply atbt). Now

n+in+2 n+1n+l = AHn+1,

and so

^ ^ E1Gir for N > 1 (12)

with a similar expression for Gn+2.
For equilibrium we have

ME = AM and NG = BGE

and hence (denoting the ith and jth elements of $ and G by Ef, etc.

H = h and ^ = 2̂
Ef h n 3*Ef * ai

provided Eiy E~p Git G^ are non-zero. Suppose that for Re SR (a set of integer)
fi*R and QR are non-zero and for R $ SR E\ = GB = 0. Thus for R e SR

ER=^JL_ a n d GR = ^ t s . . (13)

R*SB
R aR

To investigate to which equilibrium the system will converge (i.e. to specify the
set SR) is a simple matter if we rearrange (11) as

LnHn+1 = (ABH1f^H1 for n > 1.
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It is now clear that j& will have non-zero elements on the diagonal corresponding
to the dominant latent roots oiABH^ and zeros elsewhere. Thus SR is specified by
the set of integers R such that

aRbBH*IR= max (a^-H^),
AUi

where HfR and H*t denote the i?th and ith values from the initial gametic
arrays.

(3) * (2) (1)

Fig. 1. Heterozygote elimination in both sexes. Three generations for initial values
such that x , AjBiHj > A2B2H2 > A3B3H3; • , A ^ H ! = A2B2H2 > A3B3H3; + ,

A3B3H3.

Moreover, for i, j e SR(Hf/H*) is a constant from generation to generation and
H increases monotonically. The ratio HyH^ may also be constant for I,

The equilibrium to which the system converges may not be stable. A slight
perturbation to H will cause a change in ABH which may produce a new set of
maximum latent roots. The only stable equilibria are those for which only one
allele exists (not necessarily the one with the highest value a^).

Example: 3 alleles

Suppose we use a slight modification of the Streng diagram, plotting Hlt H2 and
Hs as the homogeneous co-ordinates. Then we obtain a picture such as Fig. 1.

(iv) No additive dominance in fitness

We consider now the situation in which the viability of a genotype is composed
of a contribution from each of the gametes constituting that genotype. The contri-
butions will be added, and this situation is referred to as that of no additive
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176 C. CANNINGS

dominance. Thus Aif = Bit = At + Aj, where Ait i = 1, 2, ..., K (K being the
number of alleles). The behaviour of this system is to some extent covered by the
results of Mandel (1959a), Mulholland & Smith (1959) and Kingman (1961).

We have
VE'l = EAE\

= E(A1T + IAT)E1,
where AT = (Alt A21, ..., Ak).

Thus
VE'l = EA

since \TE\ = 1 and denning A = 1TAEI, the mean value of At. Also we have

V = \TEAEl i

= 2A
and so

This implies that an allele, for which the corresponding At exceeds the mean of
the Ai'S, will have an increased frequency in the next generation. Thus only one
allele (corresponding to the largest At) can exist at equilibrium. Convergence of the
gene frequencies will be monotonic for the gametes corresponding to the largest
and to the smallest At'S, but need not be so for other alleles.

(v) The sex-linked loctis
(a) Notation

For convenience we shall consider the female to be the homogametic sex.
(i) As for the autosomal locus we shall represent both gametic arrays and geno-

typic arrays by diagonal matrices. The symbols P and Q will be used for genotypic
arrays, and E and G will be used for gametic arrays.

(ii) As before, the viability matrices for the females and males will be denoted
by A and B. In this case since the males are the heterogametic sex the viability
matrix B will be diagonal.

(b) Fertilities and viabilities

In the case of a sex-linked locus there are differing numbers of genotypes for
the males and females. Thus the genotypic arrays P and Q will not have the same
number of rows, and so F, the matrix of fertilities (defined in a similar way to that
for the autosomal locus) will not be a square matrix. This fact does not affect the
form of the effective mating array, which is given by

X = PFQ.
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In order to find the frequency of a specific genotype in the next generation we
adopt a similar procedure to that for the autosomal locus. For a diallelic locus we
find the three genotypic frequencies by evaluating

/I 0 0\

= 1T- 0 £ 0 PFQ 1 0

\
(14)

^0 0 0/ \0 I)

where P[ corresponds to the frequency of the first genotype (homozygote). As
before, non-random segregation in the females can be introduced by suitable adjust -
ment of the matrix

fl 0 0\
0 £ 0

0 0/

Two similar expressions give the frequencies of the other two genotypes.
The new genotype array for the males is obtained from expressions of the form

f/1 ° °\ 1
XQ'1 = F 0 J 01PFQ \l. (15)

l \0 0 0/ J
As we indicated earlier, the process of pre- and post-multiplication by these matrices
corresponds to both segregation and random union of gametes. The male geno-
types are formed in this situation simply from the female gametes, and so the
segregation of the male gametes is irrelevant. We therefore must pre-multiply by
an appropriate matrix, but no post-multiplication is necessary.

The addition of viabilities to the system is performed in a similar manner to the
autosomal case. We then have

X* = (VP) F(QY),

where V and Y are diagonal matrices of viabilities. If we put F = JUH (J and H
being diagonal) we obtain

X* = (VPJ) U(HQX).

Thus multiplicative fertilities are seen to be equivalent to viability differences (the
sexes, of necessity, having different viabilities).

(c) Viabilities

We now concentrate on studying the effect of viability differences alone in the
absence of fertility differences (other than multiplicative ones). As with the auto-
somal locus, this will enable us to work in terms of gametic arrays. We can write
the expression for the gene frequencies in one generation in terms of those in the
previous in the following form

KE'l = \{EAG + GAE] 1 (16)
and

MG'l = BEl, (17)
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where K and M are such that 1TE'\ = \T0'\ = 1. The l's are included in (17)
only to retain a similar form to previous expressions. In fact, since G', B and E
are diagonal, we may write

MO' = BE,

and substituting for MG' into the formula for K'E" (the next generation) derived
from (16) gives

(K'M) E"\ = i (E'ABE + EBAE1) 1. (18)

For equilibrium we put E = E' = E" = E, and so

MKEl = \E{AB + BA) El. (19)

This equation together with

M = BE

is equivalent to equation (4) of Sprott (1957). We can immediately write down an
expression for Hi in terms of A and B as we did for equation (8).

We have that
(AB + BA)~n

n- (20)

This result has been previously published by the author (Cannings, 1968) and
is also contained in Mandel (19596) in summation form.

We can evaluate the equilibrium by recognizing that they are simply those
obtained in the autosomal case, with viability matrix \{AB + BA) in both sexes.
Tallis (1966) has discussed this problem in some detail.

As an example we take a situation related to one discussed by Tallis (1966) and
due to Wright (Li, 1955). Suppose we have

(i)

and

(l-Sj. 2/3 1 \ /I 0 0\

2/3 (l-S 2) 12 2/3 1, B = JO 2

1 I 1-S,/ \0 0 iy
In both cases

the viability matrix discussed by Tallis (1966). We have seven possible equilibria
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for the females and two sets of equilibria for the males corresponding to case (i)
and (ii). These are given below

(d) Equilibrium gene frequencies
Male and female Male

(i) A (")
(1) S1 = 1 Gx = 1
(2) ^ 2 = 1 G2 = 1
(3) i23 = 1 ©, = 1

and *• = s^> °* = s^hsfi and

(5) ^ 2 = ==

W W ' for < =

(e) Stability

Since equation (16) is identical to equation (3), the part of the generation matrix
corresponding to (16) will be that given by equation (6). Thus

(KS') 1 = ^(SAG + OAS) \-\E{\T{8AQ + GA8) 1} 1

) 1 (21)

when we neglect higher terms. Also

MA' = B8-1T(B8) \G. (22)

As before, if G = E we have an expression of the form

8' = (C C)

where 8' and A are vectors corresponding to the diagonal matrices used immedi-
ately above. The matrix G is identical to that in (7), and as there, differs only by a
factor of \ from that obtained for an autosomal locus with equal viabilities in the
two sexes.

Equations (21) and (22) are essentially the same as those given by Sprott (1957).
He derived a necessary and sufficient condition for stability and also a simpler
necessary condition. However, although the latter is dependent only on relative
viabilities, the former depends also on the equilibrium position. His necessary
condition corresponds to the condition that 1T{E(AB + BA)E} 1 should be maxi-
mized at equilibrium, as has been pointed out by Li (1967).

We now turn our attention to various special cases.
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(vi) Selection in the heterogametic sex only: A = U

The only allele which survives is that whose 'viability' is greatest, i.e. correspon-
ding to Bt = max {BA, where N is the number of alleles.

j = l,N

If one examines the matrix (AB + BA) for A = U one obtains

/
2Bt

2B2

\BX + BN . 2BN /

which is the matrix obtained when there is no additive dominance in the autosomal
case. However, the behaviour of the system is somewhat different in this situation.

We have on rearranging (16) and (17)

W =

BEG' =
1T{BE) 1'

Thus the frequency of ith allele in the females is simply the mean of the male and
female frequencies in the previous generation. Also it is clear that for the allele
which will ultimately be established in the population (i.e. corresponding to max
(Bi's)) G'i > Et for every generation and so

El =

implies that E'l > ^(E'l+Ei) for all generations.
It follows immediately that at least after the first generation both Et and Gt will

increase monotonically. Similar reasoning will demonstrate that Ej and G^, cor-
responding to the minimum of the BK'&, will decrease monotonically after the first
generation. The behaviour of other frequencies may be oscillatory for a number of
generations before going to zero. In any particular case it is a simple matter to
follow this behaviour, though it is difficult to see how any general statements can
be made—for example, about how many oscillations occur.

(vii) Selection in the homogametic sex only, B = /

Equation (18) becomes
VE 1 = \{E'AE + EAE') 1,

(17) gives G' = E, where V is introduced instead of (K'M) for convenience. The
equilibrium is thus the same as that for the autosomal locus with viability matrix
A in both sexes. It is of interest to investigate the stability of this equilibrium.
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We have seen that a simplification of the generation matrix is possible when
E = &. Also, since B = I, equation (22) takes the form,

A = 8,
M being equal to unity.

The generation matrix is now

( ? ? ) •
where 0 is as before half the generation matrix obtained in the corresponding
autosomal case. The necessary and sufficient conditions for stability are thus that
the latent roots lie in (— 1, +1) (except for those which equal 1 as a result of the
total gene frequencies being 1). We have the determinantal equation

- •>

and the expansion of this form has been treated in Theorem 2 of the Appendix.
The latent roots of C are fij2 where /if derives from the corresponding autosomal
case. The latent roots from (23) are given by the roots of the quadratic equation
in A,-

2X*-\itii-jij = 0 for j = 1, 2 m, (24)
the number of alleles. Thus

which is real for fy > 0 and complex for /t;- < 0.
For /ij e [0, 1) we nave that Â  e [ -£ , 1]. If [i} e [—1, 0) put /if = — fit then

since fif e (0,1], |A3| e (0, V(6)/4)- T h u s \pj\ e [0, + 1] implies that |A,| e [0, 1] and
the necessary and sufficient conditions for stability at the autosomal locus, are
sufficient, but not necessary, for stability in this case. Once again the conditions
are necessary for the diallelic case since then it is necessary that Â  should lie in
[0, 1].

SUMMARY

A matrix notation is developed to facilitate study of natural selection in large
populations. The processes of mating (taking into account differences between
genotypes in fertility in both sexes), segregation, and differential viabilities are
each expressed in matrix notation. Assortative mating and non-random segregation
can also be described by the method. The separate processes can then be combined
to give simple equations relating the genie and genotypic frequencies in one genera-
tion to those in the previous generation. This will facilitate computer treatment
of natural selection processes.

The method can also be used to study equilibria and the conditions of their
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stability by examining the latents roots of the matrix. Several special cases of
selection at an autosomal locus are examined. The method can be extended to
sex-linked loci and two special cases are discussed.
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APPENDIX
Theorem 1

If G is an n x n matrix with latent roots /ii;i=l,2,...,n, then the latent roots
of the 2n x 2n matrix

are
\ = l+fa (i = 1, 2, ...,n) and A3- = 0 (j = » + l , ..., 2n).

Proof. Suppose A and B are n dimensional vectors such that

(i.e.

(B)
is a latent vector, and A a latent root).
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Then GA + GB = AA and A+ B = AB. Adding we obtain

(G + I) (A+B) = A(A + B),

and so A is also a latent root of (G + I). Thus A satisfies the characteristic equation

= 0.

The latent roots of G are thus (1 — AJ or /i% and so Af = l+/iti = 1,..., n. There are
also n zero roots since the matrix consists of n pairs of identical columns.

Theorem 2

If G is an n x n matrix with latent roots /*^*= 1,2, ...,n then the 2n x 2n matrix

IG G\
\I OJ

has characteristic roots Ai,i = l,...,2n where Ag^ and A2y,̂ ' = |1 , 2, ..., n are the
roots of the quadratic equation

A2— X/ij— Hj = 0.

Proof. Suppose A and B are n dimensional vectors such that

Then GK + G& = AA and A = AB. Therefore

0(1 +A) A = A2A

and so /i = A2/( 1 + A) is a latent root of G.
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