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ON THE DISTRIBUTION OF ZEROS OF
A STRONGLY ANNULAR FUNCTION

AKIO OSADA

A function f(z), regular in the unit disk D, is called annular ([1],
p. 340) if there is a sequence of closed Jordan curves J, C D satisfying

(A) J, is contained in the interior of J,,, for every m,

(A, given ¢ > 0, there exists a positive number n(¢) such that, for
each n > n(e),J, lies in the region 1 — ¢ < |2/ <1 and

(4 limmin{[f@)|;zeJ,} = + co.

Nn—o0

One says that f(z) is strongly annular if the J, can be taken as circles

concentric with the unit circle C. As for examples of annular functions,
see ([4], p. 18).

Given a function f(z) in D, denote by Z(f) the set of zeros of f(z)
and Z'(f) the set of limit points of Z(f). If f(2) is annular, Z(f) is
an infinite set of points of D ([1], p. 340) and clearly Z’(f) c C. In [1],
Bagemihl and Erdos raised the following question: If f(z) is annular,
is Z'(f) = C? This question seems to be reasonable because many early
examples of annular functions had this property. In [3], however, an
example of an annular function ¢(z) was constructed with Z’(g) = {1}.
It is not known, regretfully, whether or not this example is strongly
annular. Thus the problem of Bagemihl and Erdés remains open in
the case where “annular” is replaced by “strongly annular” ([5], p. 141).
In this note we shall give an example of a strongly annular function
S with Z'(f) = {1}, modifying the technique for constructing the
example of Barth and Schneider [3].

1. We shall first make some definitions. Given a,b and ¢ such
that 0<a<b<1 and 0<60<~x/2, we consider the annular sector
D(a,b;0) ={zeD;a<|z|<b and —0 < argz < 6}. Moreover, for c,¥,
and 6, with 0 <c¢<1 and —=/2<0,<6,<=z/2, let a(c;f,0,) denote
the circular arc {zeD;|2|=c and 6, < argz < 6,}. Now we are to state
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LEMMA. Let a; (1 =1,2,3) and 6; (j = 1,2) satisfy

1D 0<ag, <, <a; <1 and a; > aa, and

2 0<6,<6,<zx/2and tan6,/2 < (a; — a,)/(@; + a,).
Then for any ¢ > 0 and any K > 0, there exists a rational function p(2),
with its only pole in the open line segment (a,, a,), satisfying

3) [p®@)| = K on a(a,; — 6,,0,),

(4) Repk) =0 on olay; b6, 60) U da,; —6,, —0,) and

) |p(@| <e on 2, — Dlaj,as; 6,)
where 2, is the z-sphere and a; = ai/a;.

Proof. First we note that a, < af < a,. By the function { = i(a, — 2)
/(a, + 2), we map the disk |z2| < a, onto the upper half plane of the ¢-
plane. Here simply put o(a,; —6, 6,) = g, a(a,; 82, 6) U a(a,; —6,, —6,)
=a, (@;,, —a,)/(@;,, +a;) =0b; and tang,/2 =c¢; (j =1,2). Then the
circular arc ¢ (or the union of two circular arcs «) is mapped onto the
closed segment [—c,, ¢,] (or the union of two closed segments [—¢;, —c¢,]
U [e,; ¢,]) respectively. Thus we have only to construct a rational
function

@) = k€ + e~

where k(>0), an integer m(>0) and p (0 < p < b,) are chosen such that

3 9@ = K on [—e¢,el,

(4 Reql®) =0 on [—e¢, —e,] U ley, el and

BY g <eon 2. —F
where 0, is the (-sphere and E is the image of D(aj,a;;6,) by ¢
= i(a, — 2)/(a, + ). In order to see the existence of &, m and p satisfy-
ing (8)Y, (4Y and (5), using ¢, < b, and geometrical properties of FE, it
is sufficient to show the existence of an integer m (>0) and p (0 < p < b,)
such that

6 (B, — Vo + 1™+ )™= K/e where R, =}(1/c, +¢) and
r = 31/e;, — ¢) and

(M =nf/dm = tan™! p/c,.
By means of elementary calculations we can conclude that such m and
o surely exist.

2. By virtue of the method used in [3] and our lemma, we shall
construct a strongly annular function f(2) with Z'(f) = {1}.
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THEOREM. Let I';={z;2=2,1),0<t <1} (j =1,2) be two Jordan
arcs such that

® 20 =1 0<y <1 and 2(0) =iy, (-1 <y, <0),

9 20)=1(¢=1,2) and

10) except for z,0) and z,1) (=1,2), we have I'; C {Rez > 0}
N{Imz>0ND and I', CT{Rez >0} N {Imz <0} N D. Further take
any two sequences of real numbers {a,} and {K,} such that

A1) a2 > aps@ny; for all n =1 and 0<a, 1 1 and

(12) K, =1 for each n =1 and limK, = + oo.

N~ 00

Then there exists a function f(z), regular in D, satisfying

13) |f(®]| = K, on the circle |z| = a, for every n =1 and

(14) Z(f/)CR
where R denotes the bounded region determined by I',, I', and the line
segment z=x+ ;v =0,y <y <y}

Proof. Set (an, — @,)/(@n,1 + @) = b, and then clearly 1 >0, 0.
Now by virtue of (8), (9) and (10), we can choose 4, (n = 0,1,2,-.-) so
small that the region R includes two line segments {z = 7¢!’; 0 < r < @,,,},
{g=1re¥ ;0 < r < a,,,} and the circular arc o(d,,,; —0.,0,). Needless
to say, we may assume that 6, satisfies

0< 00y <0, <L and tan%‘—<bn+1.

Now consider, as before, the annular sector D, = D(a,_,, ¢y,,; 0,_,) Where
o, =da/a,,, for each n =1. Moreover simply set o(a,; —6x.,0,)
= Gny 0(On 3 Ony On_) U 0(@n; —0n_y, —0,) = @y and {|2| = @n} — 05 = 7». Then
making a slight modification of a standard technique of Bagemihl and
Seidel ([2], [3], p. 181) based on Mergelyan’s approximation theorem, we
can construct a function g(z), regular in D, such that
(15) 9() # 0 in D and |g(»)| = 2K, on y, for every n = 1.

Next we choose {¢;,} such that ¢, >0 and > ;.,e, =¢<i. Then by
Lemma, there is a rational function p,(z), with its only pole in the open
line segment (a,, a,), such that

(16) |p:(2)| = 2/s’ on o, where s, = min {l/ZKl,min| g(z)[},

zZ€oy
17 Rep,(z) =0 on «, and
(18) ]p1(z)| <gon f,—D,.
Our desire is, now, to approximate p,(z) by a regular function in D — D,
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minus a certain narrow region including the segment [a,,1), pointed at
z = 1. Since p,(z) has, fortunately, its only pole in the open segment
(a,,a,), we can sweep out, as is seen in ([6], [3], p. 182), the poles to
the boundary point z =1, and consequently obtain a function #,(2),
regular in D, satisfying

a6y |m(®|=1/s on gy,

A7’ Reh(z) = —e on a; and

18y ()| £ 2 0n D — D, — Us_; D(@gy 0115 O0rs1) — Upez0(@s 3 —0 10,
Or41)-
Now we shall inductively construct rational functions p,(z) and regular
functions h,(z) as follows. Let ¢, = > imax{|hi(2)]|;2€0, U g, Ua,
U -++ Uwg,}. Then using Lemma again, we get a rational function p,(2),
with its only pole in the open segment (a,,a,,,), such that

19) [p.(®)| = 2/s% + 2t, on ¢, where s, = min {1/2Kn, nelin [ g(z)l},

(200 Rep,(2) =0 on «, and ’

2D |pu(2)] £ e o0 2, — Dy
Then as in the first step, we can find a function h,(2), regular in D,
such that

a9y |h(®| = 1/8% + t, on o,

(20 Reh,(2) = —e, on «a, and

@1y (@) £ 26 o0 D — Dy — Uione1 D@y i1 0%01) — Upensio(ay;
_0k+1: 0k+1)-
By virtue of (21) the series >, ; h,(2) uniformly converges on any com-
pact subset of D and hence we obtain a function Z(z) =1 + >3, h.(2),
regular in D. Now consider the function

J(@) = g@h(2) .

Then using almost the same technique as is seen in ([3], p. 182-183),
we can find that

If@)| > si — 28, on ¢, and |f(?)| = %|9(@)] on p, .

n

Consequently, from (15) and the definition of s, stated in (19), we get
that

|f@| = K, on |z2|=a,.

As for the distribution of zeros of f(z), remember that ¢g(z) #0 in D
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and note that |z, D, € R. Further, by virtue of (21)’, we have
IW@)| >3 inD—\JD,.
n=1

Thus we see that f(z) does not vanish outside of E.

Remark. According to a theorem of Bonar and Carrol ([5], p. 143),
there exist no strongly annular functions, all zeros of which lie on the
radius [0,1). Our theorem, however, shows that zeros of strongly an-
nular functions can be distributed arbitrarily near the radius [0, 1).
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