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1. Let F be a free group of rank > 2, let F/R s j[, and let 

F = F/[R,R]. Auslander and Lyndon showed that the center F* of F 
o ' J o o 

is a subgroup of R/[R,R] = R , and that it is non-trivial if and only 

if n is finite [1, corollary 1.3 and theorem 2]. In this paper it 

will be shown that there is a canonically defined (and not always trivial) 

quotient group of the center of F which depends only on IT. This re­

sult provides a dual to the well-known result of Baer [2] and Hopf [6] 

that H (TI,J) ~ R n F?/[R,F], where J is the ring of integers and 

F' = [F,F]. H (n,J) is a quotient group of Z = R fi F' while the 

group discussed here is a quotient group of D = R fl F* = F* . 

In order to state the main results we let II be a finite group 

and denote by P the subgroup of R whose elements are products of all 

conjugates of an element in R by distinct coset representatives of 

R in F . Thus, regarding R as a IT-module under the operation in­

duced by the inner automorphisms of F acting on R , P = {r e R | 

r = ) a r , r e R }. Clearly, P < F*. For an arbitrary group n we 
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THEOREM 1. 

D/P if n is finite 

D if IT is infinite. 

K s H1(n,J) if n is finite; 

K = <1> if n is infinite and rank F > 1. 

Thus, for finite n, K = Iï/rT . 

Next, let IT be finite and let T: F -> R be the transfer map 

of F to R [5, p. 201]. If TR is the image of the restriction of 

T to R, then 

THEOREM 2.1^ i) TF = D, 

ii) TR = P, 

iii) TF/TR = K. 

Finally, with Z as defined above, 

THEOREM 3. Z H D = <Y> . 

Thus no central element in F can be written as a non-trivial 
o 

product of commutators. 
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2. Proofs of theorems 1 and 2. In the course of these proofs 

we use the following notation: 

JIT is the integral group ring of IT; 

I the fundamental ideal of Jn, i.e., 

i - id<l - a, a e TI>; 

* the trace ideal, i.e., 4 = id<Za, a e TT>; 

T is a right transversal of R in F with 1 representing 

R. T is chosen to be a (two-sided) Schreier system 

[8, p. 93]. 

For any group G, G' = [G,G] and G* = center of G. 

LEMMA 1. TF/TR H TT/lTT , where IT is a finite group. 

Proof. We suppose IT finite and let F = <x.> . = X, where 

X is a free generating set of F of cardinality greater than 1, and 

let T be a right Schreier transversal of R in F, then 

Tx = n txtx" mod Rf = n (t,x) , x e X, 
teT teT 

where tx is the representative in T of tx, and (t,x) = txtx mod R', 

[see, e.g., 5, 14.2.4]. Since T is a homomorphism, Tx. generates 

TF. Since R is free abelian, so is TF. Moreover, since exactly 

|T| - 1 of the elements of (t,x), t e T, x e X, are the identity [8, 

theorem 2.10], Tx. ^ 1 for any i e I. Because {(t,x)|t e T, x e X, 

(t,x) ^ 1} is a free generating set for R [8, theorem 2.9], {Tx.}. T 

is a free-abelian generating set for TF. Hence the free-abelian rank 
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of TF is equal to the free rank of F and so TF s F/F'. The mapping 

Tx. -> x. mod F' determines such an isomorphism; call it e also. e 

sends R to RF'/F', and with the aid of the third isomorphism theorem 

we have finished the proof of the lemma. 

Next let y : F -> n be an epimorphism with Kernel R. In order 

to prove theorem 2, it is convenient to choose a particular representa­

tion for F , namely, the Magnus representation: If M is the free 

n-module with a free generating set {s |x e X} , then the set of matri­

ces of the form [J , L et e H, m e M, form a group E which is the 

splitting extension of the n-module M by the group n. The matrices 

n ,x generate a subgroup of E isomorphic to F 

[7]. The subgroup of E representing R belongs to M. With this re­

presentation of F in mind we have the following commutative diagram 

with exact rows and columns: 

1 1 1 
4- 4- 4-
R •> F -> n 
4' 4* 4-

i ^ M + E - * n - > i 

4-

1 

We shall abbreviate the matrices I n T )
 t0 (a>m)* 

Now M is a II-derivation module for F (in fact, for JF) deter­

mined by a II-derivation A of F to M, i.e., a map A : F -*- M such 

that A X = s , x e X, and A (f g) r yfAg + Af, f,g £ F [cf. 4 and 3, 

chapter 14, problems 11-13]. Given an element f e F, its Magnus repre-

sentative2-1 will be (Tf, Af) . 

2) 
The element Af is a homomorphic image of the Fox derivative of Af, 

and the coefficient of s in f is a homomorphic image of the partial 
of f with respect to x (see [4] ). 
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LEMMA 2. AtxTx = -Atx + yt s + At, t e T, x c X. 
x 

Thus the Magnus representation of R is generated by 

{(1, -Atx + yt s + At)| x e X, t £ T}. 

LEMMA 3. TF is represented in M by elements of the form (l,m) 

where m e AM, i.e. , m belongs to the submodule of M whose coeffi­

cients lie in 4. 

Proof. Using lemma 2, 

A n txtx" = I (-Atx + yt S + At) = I as . 
teT teT X aen 

We have proved more, namely, 

COROLLARY L3. 4M lies in R . o 

LEMMA 4. Let 1 - > A - > B - > C ^ 1 be a splitting extension of an 

abelian group A by a group C. I£_ b e B is written canonically as 

b = (c,a), then the center of B consists just of those elements 

b* = (c*,a*) such that c* e C*, the center of C, and c*«a = a for 

all a e A and c*a* = a* for all c e C, A being regarded as a left 

C-module whose action is determined by the extension. 

The proof is straightforward and will therefore be omitted. 

LEMMA 5. The annihilator in Jn o£ ^ is 4. 

Proof. Plainly 4 < annihilator of ^. On the other hand 

(V k a)(l - y) = o, k e J, implies that k = k -1, for all a e IT. 
L„ a a a av 

Denoting the center of E by E*, we have 
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LEMMA 6. E* = 4M. 

Proof. Elements of E can be represented canonically in the 

form (Y>nO> y e IT, m e M with multiplication 

(Y,m)(Y',m') = (YY'>m + ym'). 

Since M is free, by lemma 4 E* <; M and consists of those elements 

m* = £ u s , u e Jïï, x z X, such that Ym* = m* f° r all Y £ n. Thus 

we demand that vu = u . By lemma 5, u e 4. Since Y a s e E*, r x x x L x 
aeTI 

the proof is complete. 

Combining corollary L3 and lemma 6, we have 

COROLLARY L6. E* <: R . 
o 

But E* consists precisely of those elements of R left fixed 

by the action of n. Hence E* = D [1, corollary 1.4]. By lemma 3 

TF = D. 

The proof of theorem 2 will be complete if we can show that 

TR = P. However this follows easily from [5, p. 206, lemma 14.4.1] or 

we may compute directly, using the Magnus representation, that 

Atrtr = -Atr + ytAr + At. Hence A n trtr = \ aAr. But P is re-
teT aeïï 

presented in M by {(1, £ aAr), r e R}. Thus theorem 2 is proved. 
aell 

If n is finite and the rank of F ^ 2, theorem 1 follows from 

theorem 2 and lemma 1. If the rank of F is 1 and n is finite, then 

the result is obvious; however, theorem 2 now holds only with the weaker 

conclusion that TF/TR - K. If n is infinite, then K = D = <rl> [1, 

theorem 2] if the rank of F is greater than 1. This completes the 

proof of theorem 1. 
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3. Proof of theorem 3. 

LEMMA 7. AF ' ̂  fjM, i.e. , AF' is contained in the submodule of 

M whose coefficients lie in $. 

Proof. First we notice that if f,g e FT, then 

Afg = yfAg + Af e j{M. 

Thus it is sufficient to show that [f,g] e ^M, f,g e F. But 

direct computation shows that 

A[f,g] = (1 - ¥(fgf"1))Af + (Yf -Y[£,g])Ag. 

LEMMA 8. £ fl 4 = <o>. 

To prove theorem 3 we first observe that Z = R fl Ff ^ AF' 1 o o 

and then that the map s -* 1 determines a n-homomorphism M -* Jn, 

where Jn is regarded as a left n-module. Under this homomorphism 

f$M -* |{ and 4M -> 4. Since Z ̂  M̂ (lemma 7) and D = 4M (lemma 6 

and remark ff. lemma 6), by lemma 8 it follows that |(M fl 4M = <o>, 

and hence that Z fl D = <ri>. 
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