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1. Let F be a free group of rank » 2, 1let F/R =y, and let
FO = F/[R,R]. Auslander and Lyndon showed that the center FS of FO
is a subgroup of R/[R,R] = Ro’ and that it is non-trivial if and only
if 1 1is finite [1, corollary 1.3 and theorem 2]. In this paper it
will be shown that there is a canonically defined (and not always trivial)
quotient group of the center of FO which depends only on 1. This re-
sult provides a dual to the well-known result of Baer [2] and Hopf [6]
that HZ(H,J) =R nF'/[R,F], where J 1is the ring of integers and
F' = [F,F]. HZ(H,J) is a quotient group of Z = RO n Fé while the
group discussed here is a quotient group of D = RO n F; = F; .

In order to state the main results we let 1 be a finite group
and denote by P the subgroup of R0 whose elements are products of all
conjugates of an element in RO by distinct coset representatives of
Ro in FO. Thus, regarding RO as a Il-module under the operation in-

duced by the inner automorphisms of Fo acting on Ro’ P={re Ro|

r = Z ar , r € R }. Clearly, P < F*. For an arbitrary group 7| we
aeyp © O o o
define
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D/P if 1 is finite

D if 1T 1is infinite.

THEOREM 1. K = Hl(H,J) if nm is finite;

K = <1> if 1 is infinite and rank F > 1.

Thus, for finite 1, K = n/m'
Next, let 1 be finite and let T: F - R0 be the transfer map
of F to Ry [5, p. 201]. If TR 1is the image of the restriction of

T to R, then

THEOREM 2. 1) i) TE =D,
ii) TR = P,

iii) TF/TR = K.
Finally, with Z as defined above,

THEOREM 3. ZND=<1>.
Thus no central element in F0 can be written as a non-trivial

product of commutators.
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) That TF = D has been proved independently by A. Karrass and D. Solitar,
by H. Neumann, and by M. Ojanguren [9, Satz 6.2] using different methods
from ours. The first two of these proofs have not been published.
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2. Proofs of theorems 1 and 2. In the course of these proofs

we use the following notation:

Jn is the integral group ring of T;

s the fundamental ideal of Jn, i.e.,
§ = id<1 - a, o e T;

4 the trace ideal, i.e., 4= 1id<Za, a e II>;

T is a right transversal of R in F with 1 representing
R. T 1is chosen to be a (two-sided) Schreier system
[8, p. 931.

For any group G, G' = [G,G] and G* = center of G.

LEMMA 1. TF/TR = n/n' , where T 1is a finite group.

Proof. We suppose 1 finite and let F = <xi> iel = X, where
X 1is a free generating set of F of cardinality greater than 1, and
let T be a right Schreier transversal of R in F, then

Tx = 1 txTX L mod R' = T (t,x) , xeX,
teT teT

where tx is the representative in T of tx, and (t,x) = txfi-l mod R',
[see, e.g., 5, 14.2.4]. Since T is a homomorphism, Txi generates
TF. Since RO is free abelian, so is TF. Moreover, since exactly
[T| - 1 of the elements of (t,x), t e T, x ¢ X, are the identity [8,
theorem 2.101], Tx; # 1 for any i e I. Because {(t,x) |t e T, x € X,
(t,x) # 1} is a free generating set for R [8, theorem 2.9], {Txi}iEI

is a free-abelian generating set for TF. Hence the free-abelian rank
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of TF is equal to the free rank of F and so TF =z F/F'. The mapping
Txi g X; mod F' determines such an isomorphism; call it & also. )
sends R to RF'/F', and with the aid of the third isomorphism theorem
we have finished the proof of the lemma.

Next let y: F-> 1 be an epimorphism with Kernel R. In order
to prove theorem 2, it is convenient to choose a particular representa-
tion for Fo, namely, the Magnus representation: If M 1is the free
n-module with a free generating set {sx|x ¢ X}, then the set of matri-
ces of the form (% T), o €T, meg M, forma group E which is the

splitting extension of the n-module M by the group 1. The matrices

¥X s

0 1X) generate a subgroup of E isomorphic to F0

of the form (
[7]. The subgroup of E representing RO belongs to M. With this re-
presentation of Fo in mind we have the following commutative diagram

with exact rows and columns:

1 1 1

¥ ¥ ¥
1R >F >1T~>1

L
1M - E ~IT~>1

We shall abbreviate the matrices (g T) to (a,m).

Now M 1is a Il-derivation module for F (in fact, for JF) deter-
mined by a I-derivation & of F to M, i.e., amap A: F~> M such
that Ax = S X EX, and A(fg) = YfAg + Af, f,g € F [cf. 4 and 3,
chapter 14, problems 11-13]. Given an element f ¢ F, its Magnus repre-

sentative?) will be (¥, Af).

2) The element Af is a homomorphic image of the Fox derivative of Af,
and the coefficient of Se in f 1is a homomorphic image of the partlal
of f with respect to x. (see 4.
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LEMMA 2. AtxEX L = -AEX + vt s, tot, teT, xeX

Thus the Magnus representation of R0 is generated by

{(1, -atx + vyt s+ At)| x e X, t e T},

LEMMA 3. TF 1is represented in M by elements of the form (1,m)

where m e 4M, i.e., m belongs to the submodule of M whose coeffi-

cients lie in 4.
Proof. Using lemma 2,

s otxEx D= I (aTx+vwts +4t) = ] os
teT teT aell
We have proved more, namely,

COROLLARY L3. M 1lies in Ro'

LEMMA 4. Let 1 >A->B->C~>1 be a splitting extension of an

abelian group A by a group C. If b e B is written canonically as

b = (c,a), then the center of B consists just of those elements

b* = (c*,a*) such that c* ¢ C*, the center of C, and c*-a = a for

all ae A and cea* = a* for all c e C, A being regarded as a left

C-module whose action is determined by the extension.

The proof is straightforward and will therefore be omitted.

LEMMA 5. The annihilator in Jn of § is 4.

Proof. Plainly 4 < annihilator of {. On the other hand

(azn kaa)(l -y) =0, k eJ, implies that ka = kaY—l, for all o e T.

Denoting the center of E by E*, we have
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LEMMA 6. E* = sM.

Proof. Elements of E can be represented canonically in the

form (y,m), y € I, m ¢ M with multiplication

(yom)(y'sm') = (yy',m + ym').

Since M is free, by lemma 4 E* ¢ M and consists of those elements
m* = Z us. o, u e Ji, x € X, such that ym* = m* for all vy e II. Thus

- 3 *
we demand that YU = U By lemma 5, u e 4. Since l a s, € B,
aell
the proof is complete.

Combining corollary L3 and lemma 6, we have
COROLLARY L6. E* ¢ RO.

But E* consists precisely of those elements of RO left fixed
by the action of 1. Hence E* = D [1, corollary 1.4]. By lemma 3
TF = D.

The proof of theorem 2 will be complete if we can show that
TR = P. However this follows easily from [5, p. 206, lemma 14.4.1] or
we may compute directly, using the Magnus representation, that

Atrf?_l = -ATT + VtAT + At. Hence A T trEF L = ) aAr. But P is re-
teT aell

presented in M by {(1, Z adr), r ¢ R}. Thus theorem 2 is proved.

If 1m1 1is finite iig the rank of F > 2, theorem 1 follows from
theorem 2 and lemma 1. If the rank of F is 1 and 7 1is finite, then
the result is obvious; however, theorem 2 now holds only with the weaker
conclusion that TF/TR = K. If 17 1is infinite, then K = D = <1> [1,

theorem 2] if the rank of F is greater than 1. This completes the

proof of theorem 1.
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3. Proof of theorem 3.

LEMMA 7. AF' ¢ §M, i.e., AF' 1is contained in the submodule of

M whose coefficients lie in §.

Proof. First we notice that if f,g ¢ F', then
Afg = vfag + Af € 4M.

Thus it is sufficient to show that [f,g]l e §M, f,g ¢ F. But

direct computation shows that
ATE,g] = (1 - w(Egf 1))af + (vf -v[£,g])bg.

LEMMA 8. § N 4 = <o>.

To prove theorem 3 we first observe that Z = R0 n F(‘) < AF!
and then that the map Sy ™ 1 determines a T-homomorphism M - JI,
where JII is regarded as a left I-module. Under this homomorphism
tM > § and 4sM > 5. Since Z g M (lemma 7) and D = gM (lemma 6
and remark ff. lemma 6), by lemma 8 it follows that M N sM = <o>,

and hence that Z N D = <1>.
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