
ENVELOPING ALGEBRAS OF SEMI-SIMPLE 
LIE ALGEBRAS 

N. JACOBSON 

I N a recent paper we studied systems of equations of the form 

(1) [[xi,Xj],Xk] =hiXj - ôkjXi, i,j,k = l,2,...,n. 

(2) *(*i) = 0 

where as usual [a,b] = ab — ba and <t>(\) is a polynomial.1 Equations of this 
type have arisen in quantum mechanics. In our paper we gave a method of 
determining the matrix solutions of such equations. The starting point of our 
discussion was the observation that if the elements Xi satisfy (1) then the 
elements x», [xj,Xk] satisfy the multiplication table of a certain basis of the 
Lie algebra ©n+i of skew symmetric (w + 1) X (n + 1) matrices. We proved 
that if (2) is imposed as an added condition, then the algebra generated by 
the x's has a finite basis, and we obtained the structure of the most general 
associative algebra that is generated in this way. 

In this paper we shall generalize a portion of these results to arbitrary 
simple and semi-simple Lie algebras. Our main results are stated in §1. In 
§2 we reduce the considerations to the case of an algebraically closed base 
field. In §3 we give a summary of known definitions and structural results 
and in §4 we prove some basic lemmas that are needed to complete the proof. 
The algebraically closed case is then treated in §5. In §6 we give some 
applications of our results to representation theory. One of these is a general­
ization of a result due to Harish-Chandra that we have been privileged to see 
prior to publication.2 

lr Let 8 be a Lie algebra over a field $. Thus 8 is a vector space over $ 
in which there is defined a bilinear composition [a,b] satisfying the identities 

(3) M ] = 0 , [[aJb\A + KM,a] + [[c,a],b] = 0. 

As is well known any associative algebra 21 determines a Lie algebra 21* rela­
tive to the composition [afb] = ab — ba. We define an imbedding of a Lie 
algebra 2 in an associative algebra 21 to be a homomorphism a —*• as of 8 into 
21j. This means that 

(4) (a + b)s = as + bs, (aa)s - aas 

[a,6]5 = [as,bs] = asbs - bsas. 
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The subalgebra of 31 generated by the elements as is called the enveloping 
algebra of the imbedding 5. 

We shall say that the imbedding S is a cover of the imbedding T(S ^ T) if 
there exists a homomorphism of the enveloping associative algebra Ss of S 
onto the enveloping associative algebra @r of T. This means that T = SG 
where G is a homomorphism of @s onto (§r- Evidently G is unique. If S ^ T 
and 2" ̂  5, then we say that 5 and T are equivalent. This is the case if and 
only if T = 5G where G is an isomorphism of the enveloping algebras. 

There exists a universal imbedding U that is a cover of every imbedding. 
We can obtain such an imbedding as follows. Let Xi,#2, . . . be a basis for 8 
over $ and let [xi,Xj\ = ^jyakXk be the multiplication table. Let g be the 
free associative algebra generated by the x%, 33 the two-sided ideal generated 
by the elements y»-y = XiXj — XjXi — J^yijkXk and let U == 5/33. If Xi is the 
coset Xi + S3, [xi,Xj\ = Scfij — £y£; = Yjyijk%k> Hence the mapping a = 
J^aiXi —> ]£at-£t = â is an imbedding of 2. The enveloping algebra of this 
imbedding is U. It is easy to see that this imbedding is universal. Also it is 
known that the distinct monomials #ifcl#2

fc2, . . . , xr
kr form a basis for U.3 In 

particular the Xi are linearly independent so that the universal imbedding is 
1 — 1. It is therefore convenient to identify 8 with its image 8 in this imbedding 
and to write a for â, 8 for 8- The universal imbedding thus becomes the iden­
tity mapping. We call U the universal (associative) algebra of the Lie algebra 8. 

If S is any imbedding of 8 the mapping a —> as can be extended in one and 
only one way to a homomorphism of U onto the enveloping algebra @s- We 
denote this extension by 5 also. It is clear that if $ 5 is the kernel of S, then 
S is also equivalent to the natural imbedding in U/$s . Also it is easy to see 
that S ^ T if and only if $ 5 C $T . 

In this paper we assume throughout that 8 has a finite basis but we consider 
imbeddings of 8 in associative algebras that need not be finite dimensional. 
Our main results show, however, that under certain simple conditions we can 
conclude that the enveloping algebras have finite bases. To state the results 
we need to introduce several definitions. 

Let 8 be a semi-simple Lie algebra over a field of characteristic 0.4 As is 
well known, 8 = 8i© 82© . . . © 88 where the 8* are simple and uniquely 
determined. If a is any element of 8, a = a\ + a2 + . . . + a8, ai in 8*. We 
call ai the ith component of a. We call a subset r = {a,b, . . . } total if for 
any i = 1, 2, . . . , s there is a c in the set whose ith component Ci 9* 0. It is 
easy to see that T is total if and only if the ideal generated by V is 8 itself. 

We can now state the main results of this note as the following two theorems. 

THEOREM 1. Let Si be a semi-simple Lie algebra with a finite basis over a 
field of characteristic 0 and let V be a total subset of 8. Let S be an imbedding 

3The results in the universal algebra quoted here are due independently to Birkhoff [1] and 
to Witt [91. 

definitions of semi-simplicity and simplicity are given in the next section. 
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of 8 such that for each c € I\ cs is algebraic. Then the enveloping algebra of 
S has a finite basis. 

THEOREM 2. Let 8 and V be as in Theorem 1 and let {S\ be the collection of 
imbeddings of 8 such that for every c in r, cs is algebraic of degree ^ a fixed t. 
Then their exists an imbedding T such that the enveloping algebra of T is finite 
dimensional and such that T ^ 5 for every S € {5}. 

2. We shall now show that it suffices to prove these theorems for algebraic­
ally closed base fields. Assume that $ is arbitrary and let Q be its algebraic 
closure. Then it is well known that if 8 is a semi-simple so is 8o. It is neces­
sary for our purposes to obtain the decomposition of 8n into simple algebras 
from that of 8. 

For this purpose we consider first the structure of SDta for any simple non-
associative algebra SDÎ. Let P be the multiplication centralizer (extended 
centre of $).6 Then we know that P is a field containing $ and that 2)? can be 
regarded as an algebra over P. Let #i,X2, • • • , xm be a basis for SDÎ over P and 
accordingly write 3D? = P*i + P*2 + . . . +?xm. We assume now that P is 
separable over $. (This will certainly be the case if $ has characteristic 0.) 
We form Pn. Then it is well known that Pa=î2(1) 0 Î2(2) 0 . . . © Q(r) where the 
il(l) are one dimensional algebras over Î2 isomorphic to Î2 and r is the dimension­
ality (P:$).6 If p 6 P we have p = p(1) + p(2) + . . . + p ( r \ p(t) € 0 « \ and the 
correspondences p—* p^ are isomorphisms of P into 12(t). Now PQ acts as a 
set of endomorphisms in 2)?n and 

9Ko = Pntfi + P0X2 + . . . + Po*m. 

Since the elements of Po commute with the right and the left multiplications, 
2tt(i) = Q(t)9ftfi is an ideal in SKQ. We have the decomposition 2ft0 = 2ft(l> 
© 2tt(2) © . . . © m{r). Also 2fl(i> = Û(i)*i + &{)x2 + ... +&{*xm and it is 
easily seen that 2)î(t)== (9M over P)o.7 Since 9ÏÎ is central simple over P, (9H 
over P)o is simple. Hence, 9Wo is a direct sum of r isomorphic simple algebras 
over S2. 

Now let a Ç Wl and write a = 2>;*y, a, in P. T h e n a = a ( l ) + a ( 2 ) + . . . +a ( r ) 

where aU) = 2>; U ) *; € SDt(i). Thus it is clear that if a * 0, then each a(i) =t=0. 
We return now to the consideration of Lie algebras. Let 8 be semi-simple 

over a field of characteristic 0 and let T = {a,6,. . . } be a total subset of 8. 
It is clear from the above remarks that 8o is semi-simple and that T is total 
for 8o. NOW let S be an imbedding of 8 in an associative algebra 8. Then 5 
can be extended in one and only one way to an imbedding of 8o in Sto and the 
enveloping algebra of this extension is @«, (g the enveloping algebra of S. If 
the elements as,bs, . . . are algebraic in 21 they are algebraic of the same degree 
in 2ln. Hence, if Theorem 1 holds for algebraically closed fields, then we can 

*[4] p. 546. 
«[6] p. 97. 
*Cf. [6] p. 115. 
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conclude that the dimensionality ((5n:Q) is finite. Since ((£:$) = (Sn:0) this 
proves the result for 8. 

Now let {S} be the collection of imbeddings of 8 such that cs is algebraic 
of degree ^ / for every c in T. Let U be the universal associative algebra of 8 
and let S 5 be the kernel of the homomorphism of U onto the enveloping algebra 
fë5. We form the intersection 35 of the ideals $s> S in {S} and we let T be the 
natural imbedding determined by U/35. It is clear that T ^ 5 for every S. 
Hence, it suffices to show that U/35 is finite dimensional. We require now the 
following. 

LEMMA. Let 9t be a vector space over a division ring A and let P be a 
division ring extension of A. Then if {©a} is a collection of subspaces of 9î, 
(n© a )p = n @ a P holds in $ P . 

Proof. Assume first that our collection consists of two subspaces ©i,©2. 
Let (uiygj) be a basis for ©1 such that (gj) is a basis for 35 = ©1 H ©2 and let 
(i>k,gj) be a basis for ©2. The set (#»,tfjfc,gj) is linearly independent over A and 
hence also over P (in 9ÎP). It is obvious that ©iP C\ ©2P = 35P. Thus the 
result holds for two spaces. By induction it holds for a finite number. Hence, 
by the descending chain condition it holds also for any number of sub-
spaces in a finite dimensional space. Now consider the general case. Clearly 

m 
r\ ©aP 2 35P, 2) = Pi ©a. Let y == E Pfii* G n @ap where (ehe2j . . .) 

1 J 

is a basis for 9t over A. Let § = [e^e^ . . . , e»m] be the space spanned by 
the eij and set U« = £ H © a . Then / £ ( § P H ©ap) = Uap. Hence 
y G (H Uap). Since the Ua are subspaces of the finite dimensional space 
§ , H UOP = ( H Ua)p. Hence y 6 (HUa)p C (H© a)p = ©p. This proves 
that n © a P C $)p. Hence H ©ap = ©p. 

In the above notation we now have 35a = f\ $sa where Œ is the algebraic 
closure of the base field #. On the other hand, Ua is the universal algebra of 
8a and (U/2))a = Ua/3)a = Un/H $s f i. Moreover, each Ua/Ssa determines 
an imbedding S of 8a in which the elements c5, c in T, are algebraic of degree 
^ t. If Theorem 2 holds in the algebraically closed case, then there exists a 
T such that T ^ 5 for every 5 and @f is finite dimensional. It follows that 
U a / P $SQ is finite dimensional. Hence U/35 is finite dimensional. This will 
prove Theorem 2 in the general case. 

3. We recall at this point some of the standard definitions and results of 
the theory of Lie algebras of characteristic 0.8 If a 6 8 the mapping A: 
x —» [xfa] is called the adjoint mapping determined by a. This mapping is a 
linear transformation in the vector space 8 and the correspondence a —» A is 
an imbedding of 8 in the associative algebra of linear transformations. This 
imbedding is called the adjoint representation. The elements of 8 can be classi­
fied according to the nature of their adjoint mappings. Thus a is said to be 
nilpotent, if A is nilpotent. Also a is called regular if A has the minimum 

8See [8] for the results of this section. 
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number of 0 characteristic roots for the adjoint mappings of 8. If a is regular 
the subspace 8o belonging to the characteristic root 0 of A is a nilpotent sub-
algebra of 8. An algebra is said to be nilpotent if there exists an integer N 
such that the Lie product of any N of its elements is 0. A nilpotent subalgebra 
£ is called a Cartan subalgebra if § is a maximal in the sense that the only 
elements z such that zAm = 0 for every a € § and a suitable integer m are 
the elements of § . It is known that the nilpotent algebra 8o determined as 
above by a regular element is a Cartan subalgebra. 

A somewhat weaker condition than nilpotency is solvability. This states 
that the derived series 8 2 8' = [8,8] 2 8" = [8',8']. . . leads to 0. An alge­
bra is semi-simple if it has no solvable ideals, simple if it has no proper ideals. 
It is a fundamental theorem that any semi-simple Lie algebra is a direct sum 
of simple Lie algebras. 

It is known that any Cartan subalgebra § of a semi-simple Lie algebra 
is commutative. If the base field <£ is algebraically closed, we can use any 
Cartan algebra >̂ to obtain a certain canonical basis for 8. This consists of 
a basis (hifa, . . . , hi) for § and elements eaj e~a, e$, e-p, . . . such that the 
subscripts a, /3, . . . are linear functions on the vector space $ . These functions 
are called the roots of $& and their significance is given in the first line of the 
following multiplication table: 

[ea,h] = a(h)e, 

(5) [e_a,e0] = ^a € £ , 

r , _ (0 if a + jS is not a root, 
[e«M - <^N^ e ^ -^ 0 if a + ^ i s a r o o t > 

It is known that there are I linear independent roots and that the ha generate 
the whole of $ . It is known that the ea can bé normalized so that if a,0 are 
any two roots such that a + P is also a root, then Aa+/s — ha + hp. If a and P 
are any two roots, the roots of the form a+vfi, v an integer, form an unbroken 
a-string 

P - ka, P - (k - l)a, . . . , p, . . . , 0 + ife'a. 

The value a(ha) * 0 and 20(A.)/a(ft«) = k - k'. Thus P(ha) = 0 if and only 
if P is the centre term of its a-string. 

We shall say that the root p is connected to a if there exists a sequence of roots 
a, P,. . . , p such that for any two consecutive terms P, 7, y(hp) 4= 0. If P is not 
the centre term of its a-string, then as we have seen, p is connected with a. 
The same conclusion holds also if P is the centre term provided that the a-
string, containing p, contains more than one term. For if these conditions 
hold either P + a or P — a is a root. In the former case (P + a) (ha) = a(Aa) + 0 
and P(ha+p) = P(ha + hp) = P(ha) + P{hp) = P(hp) 4= 0. Hence the sequence a, 
a + p, P shows that P is connected with a. A similar argument can be used 
if P — a is a root. Thus we see that if a is not connected with a, then the a-
string containing a contains this term only. Then [eaej = K,e_a] = [e<r>ha] = 0. 

https://doi.org/10.4153/CJM-1950-023-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1950-023-5


262 N. JACOBSON 

It follows easily that if a is any root the space spanned by eaj ha, epi hp for all 
the p that are connected to a is an ideal. Hence, if 8 is simple any root p is 
connected with any other root a. 

It is clear from the multiplication table (5) that any element h 6 © is 
semi-regular in the sense that its adjoint mapping H has simple elementary 
divisors. We shall now prove the converse that any semi-regular element h 
can be imbedded in a Cartan subalgebra. First let 8o be the subalgebra cor­
responding to the characteristic root zero of H. Since 0 is a simple root, 8o 
is just the set of elements z such that [z,h\ = 0. Let h' be an element of £o 
that is regular in 80 and let § be the Cartan subalgebra of 8o determined by 
this element. Thus, § is the totality of elements z Ç S0 such that z(H')m = 0 
for some m. Here, h! —> H' in the adjoint representation. Now it is clear that 
§ is the intersection of the space belonging to the characteristic root 0 of H 
with the space belonging to the characteristic root 0 of H'. Since § contains 
h and h' it follows from the definition that ^ is a Cartan subalgebra of 8. 
This implies that & is commutative. 

4. The proof of the main theorems for algebraically closed base fields depends 
on some lemmas which we shall now derive. 

LEMMA 1. Let 21 be an associative algebra over a field of characteristic 0 
and let e and h be elements of 21 such that [e,h] = eh — he = e. Then if h 
is algebraic of degree m, e is nilpotent of degree ^ m. 

Proof. From [e,h] = ewe obtain eft = (h + l)e. Hence for any polynomial 
*(X) 

(6) e<t>(h) = <t>(h + l)e. 

Hence, also 
(7) ek<t>(h) = <t>(h + k)ek. 

Now let </>(\) be the minimum polynomial of h (of degree m). Then by (7) 
<t>(h+k)ek = 0. We multiply this equation for k < m on the right by em~k 

and obtain <t>(h + k)em = 0, k = 1,2, . . . , m. Also <t>(h)em = 0. Since $ is of 
characteristic 0, these relations imply that em = 0. 

LEMMA 2. If e and h are elements of an associative algebra of characteristic 
0 such that [[e,fe],e] = 0 and e is algebraic of degree m, then [eyh] is nilpotent 
of index ^ 2m - 1. 

This is essentially Lemma 2 of [3]. The proof given there needs to be 
corrected by the replacement of 2h — 1 by 2h — 1 and 2k — 1 by 2h — 1. 

LEMMA 3. Let hy e, f be elements of an associative algebra over a field of 
characteristic 0 such that 

(8) [e,h] = 2e, \f,h] = - 2/, [ej\ = h 
and suppose that e is nilpotent of index m. Then h is algebraic and its mini­
mum polynomial is a factor of 

2 m - l 

(9) M(X) = n (X + m - j ) . 
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Proof. We use the argument that gives (7) to prove that 

(10) ek<t>{h) = <t>(h + 2k)e\ <t>(h)fk = f<t>{h + 2fc). 

Also, 

(11) [enJ] = n(h + n - l)en~l 

and by induction on r we can prove for r ^ n 
[r/2] r-2k 

(12) [' e»J\, / ] , . . . , / ] = L cnrkf n (* + n - j)e»-'+* 

where 

c-* = (l)C*I2*)r!-
Assume now that em = 0. Then, we can prove that 

2 r - l 

(13) I I (h + m - j)em~r = 0. 

For this is true for r = 0. If we assume it true for 0, 1, 2 , . . . , r — 1 and we 
2 r - l 

multiply (12) for w = m on the left by I I (A + m — j) we obtain (13). 
r+1 

For r = m this gives the lemma. 

5. Now let 8 be semi-simple over an algebraically closed field of character­
istic 0 and let V = {a,&, . . .} be a total subset of 8. Let S be an imbedding 
of 8 in 21 such that every cs, c in T, is algebraic of degree ^ t. To prove the 
first theorem it suffices to show that 8 has a basis yiyy2,. . ., yn such that every 
yiS is algebraic. For if \ytyj] = £7*;*?* then 

y<5y/ = ? / V + JjYiikykS. 
It follows that the monomials (^i5)™1^5)™2. . . (yn5)™*, w,- < T the maximum 
degree of the yf generate the space S. Hence (S:$) ^ Tn. 

We suppose first that 8 is simple and T = {a}. We note first that we can 
suppose that a is a nilpotent element of 8. For if the adjoint mapping A is 
not nilpotent, then there is an e 4= 0 and a p ^ O such that [e,a] = eA = pe. 
If we replace a by a' = p~xat then [e,a'] = e. Hence by Lemma 1, es and the 
adjoint transformation E corresponding to e are nilpotent. Also degree es ^ L 
Thus, we can assume that T = {e\ where E is nilpotent. 

We apply next a result due to Morosov that asserts that if e is a non-zero 
nilpotent element of a semi-simple Lie algebra over an algebraically closed 
field of characteristic 0, then e can be imbedded in a three-dimensional simple 
subalgebra.9 In fact, we can find elements/, h such that 

(14) [e,h] - 2e, [fM = - 2/, [e,f] = h. 
The first of these equations shows that [[e,ft],e] = 0. Since es is algebraic, 
[e,h]s is nilpotent. Hence 2es and es are nilpotent of index ^ /. 

We observe next that the adjoint transformation H of h and the element hs 

9[7]. A simple and complete proof of this result will be given by the present author in 
Trans. Amer. Math. Soc. 
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are roots of polynomials of the form (9). Hence the minimum polynomials of 
these elements have distinct roots in 12. It follows that H has simple elemen­
tary divisors and that h is semi-regular. 

We now imbed h in a Cartan subalgebra £> and we choose a canonical basis 
(fti,/*2, . . . , fez,6o,e_a, . . . ) for 8. Since there are I linearly independent roots 
and h dç. 0 we can find an a such that a(h) 4= 0. Then [eaih] = a(h)ea and 
[e-a,h] = — a(h)e-a. By Lemma 1, ea

s and e_a
5 are nilpotent of index 

^ 2/ — 1. The elements ett,e_a and ha span a three-dimensional simple Lie 
algebra with multiplication table 

[ea,ha] = a(ha)ea, [e-a,ha] = — a(fta)e_a, 
[e_a,ea] = ha. 

If we set e'a == 2a(ha)~
1ea, e'-a = e_a,A'a = 2a(ha)~~lha, then we obtain 

[e'aih'a] = 2e'tt, [c /- . ,* ,J = - 2e'_a, 

Hence, by Lemma 3, ft'f satisfies an equation of the form (9). 
Now let p be any root. Since 8 is simple, we can find a sequence of roots 

a, 0, . . . , p beginning with a and ending with p such that consecutive terms, 
0, 7, have the property y(hp) 4= 0. Now [e^ha] = P(ha)e0 + 0 and [c-^,Aa] = 
— P(ha)e-p 4= 0. Since A5 is algebraic, epS and e_£5 are nilpotent. If, as 
before, we introduce e'p = 2$(hp)~lep, e'_0 = e_0, ft'p = 2P(hfi)~~1hp, /*# = 
[ e^ ,^ ] then we see that e ' ^ e ' - ^ 5 are nilpotent and that h'pS satisfies an 
equation of the form (9). Continuing in this way we obtain e'p, e'_p, h!p such 
that e'p

s, e'_p
5 are nilpotent and h'p

s satisfies an equation of the form (9). 
We obtain in this way a basis consisting of certain of the h'a and all of the 
e'a, e'_a and we have 

(e'as)u = 0, (e'-a
sY = 0 

(15) 2u- l 

II (h'a
s + u - *) = 0. 

It is now clear that the enveloping algebra 6 5 has a finite basis. Hence, 
Theorem 1 is proved in the present case. 

Now let U be the universal algebra of 8 and let ® be the two-sided ideal 
generated by the elements 

2 « - l 

(e'a
5)", (e'_0

5)w, n (h'a
s + u - *). 

; = i 

Since (15) holds, it is clear that the natural imbedding in U / $ is a cover of S. 
Also we can choose a w for which (15) holds that depends only on / and on the 
basis (/&'a,e'a, • • •) for 8. Hence, the imbedding determined by U / $ is a cover 
of every imbedding 5 that has the property that as is algebraic of degree ^ t. 
Hence, we have also established Theorem 2 in the special case. 

Finally let 8 be semi-simple, 8 = 8i © 82 © . . . © 8 « where the 8; are simple. 
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For each i we choose a c such that Ci 4= 0. If Ci is nilpotent in 8» by Morosov's 
theorem, there is an element hi in 8» such that [d,hi] = C{. Hence, [c,hj\ = Ci 
and [[c,A»],c] = [ci,c] = 0. Hence, by Lemma 2, c»5 is nilpotent of index 
^ 2' —1. If Ci is not nilpotent in 8;, there exists an element e» in ?» such that 
[eûCi] = [et-,c] = pei 4= 0. It follows that e / is nilpotent of index ^ /. As in 
the above discussion, we can use the element Ci or d to prove that 8»- has a 
basis of the form Qi'a,e'a, . . .) satisfying (15). The set theoretic sum of the 
bases obtained in this way for the 8» is a basis for 8. This basis can be used 
as in the simple case to complete the proofs of Theorems 1 and 2. 

6. By a representation of a Lie algebra we mean as usual an imbedding in 
the associative algebra of linear transformations of some finite dimensional 
vector space. Irreducibility is defined as usual. We consider now the set of 
irreducible representations 5 such that the minimum polynomial of cs is of 
degree ^ / for every c in T. Then 5 determines a representation of the finite 
dimensional algebra ® r given in Theorem 2. If we recall that a finite dimen­
sional associative algebra has only a finite number of inequivalent irreducible 
representations we obtain the following 

THEOREM 3. Let 8 and T be as in Theorem 1. Then there exists only a 
finite number of inequivalent irreducible representations of 8 such that the 
degree of the minimum polynomial of every cs, c in T, does not exceed a fixed 
integer t. 

Since the minimum polynomial of a linear transformation has degree ^ the 
dimensionality of the space we have the 

COROLLARY (Harish-Chandra). If 8 is a semi-simple Lie algebra of charac­
teristic 0, 8 has only a finite number of inequivalent irreducible representa­
tions of a given degree.10 

We consider next a more special application, namely, we study a system of 
equations of the form (1) to which is added the equation #(x) = 0 where 

n 
x = X &xi 4= 0 and <j>(\) is a polynomial. We seek linear transformations 

l 

(or matrices) Xi that satisfy such a system. It is known that the correspon­
dence Xi —» Xi defines a representation of the Lie algebra ©n+i of (n + 1) X 
(n + 1) skew symmetric matrices.11 If X = J^ÇiXi then <t>(X) = 0. Hence, 
by Theorem 3 there exist only a finite number of inequivalent irreducible sets 
of linear transformations that satisfy our system. This generalizes our 
earlier result noted in the introduction. 

10[2]. I t should be noted that Harish-Chandra has proved that there are only a finite num­
ber of inequivalent representations of given degree. This result follows readily from the present 
corollary and the theorem that any representation is completely reducible. 

«[5] p. 156. 
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