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STACKELBERG EQUILIBRIA IN A CONTINUOUS-TIME
VERTICAL CONTRACTING MODEL WITH UNCERTAIN

DEMAND AND DELAYED INFORMATION

BY BERNT ØKSENDAL, LEIF SANDAL AND JAN UBØE

Abstract

We consider explicit formulae for equilibrium prices in a continuous-time vertical
contracting model. A manufacturer sells goods to a retailer, and the objective of both
parties is to maximize expected profits. Demand is an Itô–Lévy process, and to increase
realism, information is delayed. We provide complete existence and uniqueness proofs
for a series of special cases, including geometric Brownian motion and the Ornstein–
Uhlenbeck process, both with time-variable coefficients. Moreover, explicit solution
formulae are given, so these results are operational. An interesting finding is that
information that is more precise may be a considerable disadvantage for the retailer.

Keywords: Vertical contracting; stochastic differential game; delayed information; Itô–
Lévy process
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1. Introduction

In a news-vendor problem a retailer orders goods from a manufacturer. Demand is a random
variable, and the retailer aims to find an order quantity that maximizes expected profit. In the
single-period problem only one such order is made; the multi-period problem is concerned
with a sequence of orders. In this paper we consider the news-vendor problem in continuous
time, where the discrete order quantity is replaced by an ordering rate, i.e. the number of items
ordered per unit of time. The single-period problem dates back to Edgeworth (1888). The basic
problem is very simple but appears to have a neverending number of variations. There is now
a very large literature on such problems; for further reading, we refer the reader to the survey
papers by Cachón (2003) and Qin et al. (2011).

In our paper, a retailer and a manufacturer write contracts for a specific delivery rate following
a decision process in which the manufacturer is the leader who initially decides the wholesale
price. Based on that wholesale price, the retailer decides on the delivery rate. We assume a
Stackelberg framework, and, hence, ignore cases where the retailer can negotiate the wholesale
price. The contract is written at time t − δ, and goods are received at time t . (It is essential
to assume that information is delayed, for if there is no delay, the demand rate is known, and
the retailer’s order rate is made equal to the demand rate.) Stackelberg games of this type have
been studied in Øksendal et al. (2013) from which we use Theorem 3.2.2 to provide explicit
formulae below for commonly used stochastic processes, namely, geometric Brownian motion
(extended to a geometric Lévy process) and the Ornstein–Uhlenbeck (OU) process.

Stackelberg games for single-period news-vendor problems have been studied extensively by
Lariviere and Porteus (2001), providing quite general conditions under which unique equilibria
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can be found. Multi-period news-vendor problems with delayed information have been dis-
cussed in several papers. Bensoussan et al. (2009) used a discrete-time approach and generalized
several information delay models. Computational issues were not explored in their paper,
and they only considered decision problems for inventory managers, disregarding any game
theoretical issues. Calzolari et al. (2011) discussed the filtering of stochastic systems with fixed
delay, indicating that problems with delay lead to nontrivial numerical difficulties even when
the driving process is Brownian motion. Kaplan (1970) is a classical paper in which stochastic
lead times in a multi-period problem are considered. Several authors have contributed to the
discussion of stochastic lead times; we mention Song and Zipkin (1996).

The geometric Lévy process is fundamental in many models in physics, biology, and finance,
because it is a natural extension to the case with random coefficients of an exponential growth
model, as follows. If the relative growth rate in an exponential model is assumed random and
represented by the sum of continuous noise (generated by Brownian motion) and jump noise
(generated by a pure jump Lévy process), we arrive at a geometric Lévy process. Such processes
represent natural generalizations to jumps of the classical geometric Brownian motion, which
were introduced in Samuelson (1965) and later applied in the famous Black–Scholes market
model by F. Black, M. Scholes and R. Merton. Regarding financial motivations and justifications
for using extensions of the geometric Brownian motion to jump models based on Lévy processes,
we refer the reader to Barndorff-Nielsen (1998), Eberlein (2009), and the references therein.

The OU process is a widely used model for any stochastic phenomenon exhibiting mean
reversion. It is the unique nontrivial stochastic process that is stationary, Markovian, and
Gaussian (see, e.g. Maller et al. (2009)). It is used in financial engineering as a model for the
term structure of interest rates (see, e.g.Vasicek (1977)), and via other variants or generalisations
as a model of financial time series with applications to option pricing, portfolio optimization,
and risk theory; see, e.g. Nicolato and Vernardos (2003), Barndorff-Nielsen and Shephard
(2001), Maller et al. (2009), and the references therein. The OU process can be thought of as a
continuous-time interpolation of an autoregressive process of order 1 (AR(1) process), i.e. the
series obtained by sampling OU processes at equally spaced times are autoregressive of the
same order.

The paper is organized as follows. In Section 2 we formulate and discuss a general
continuous-time news-vendor problem. In Section 3 we consider the case where the demand rate
is given by geometric Brownian motion and provide explicit solutions for the unique equilibria
that occur in that case. The result in the constant coefficient case is quite startling as it leads to
an equilibrium where the manufacturer offers a constant price w and the retailer orders a fixed
fraction of the observed demand rate. In Section 4 we discuss non-Markov jump diffusions
and demonstrate that knowledge of the state of the system at time t is not sufficient to infer
the optimal order quantity. In Section 5 we provide explicit formulae for the unique equilibria
that occur when demand is given by an OU process with time variable coefficients. We also
compute numerical values to compare the dynamic approach with a static approach where both
parties (wrongly) believe that the demand rate has a static distribution. An interesting finding is
that information that is more precise can be a considerable disadvantage to the retailer. Finally,
in Section 6 we offer some concluding remarks. To make the paper easier to read, most details
of the proofs are deferred to Appendix A.

2. Continuous-time news-vendor problems

In this section we formulate a continuous-time news-vendor problem and use results in
Øksendal et al. (2013) to describe explicitly a set of equations that we need to solve to find
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Stackelberg equilibria. We assume that the demand rate for a good is given by an Itô–Lévy
process starting from D0 = d0 ∈ R and otherwise of the form

dDt = μ(t, Dt , ω) dt + σ(t, Dt , ω) dBt +
∫

R

γ (t, Dt− , ξ, ω) Ñ(dt, dξ), t ∈ (0, T ].
(2.1)

Here Bt denotes a Brownian motion and Ñ(dt, dξ) is a compensated Poisson term. The
coefficients μ, σ, and γ are assumed to satisfy standard conditions ensuring that (2.1) has a
unique solution (see Øksendal and Sulem (2007)).

At time t − δ a retailer and a manufacturer negotiate a contract for items to be delivered
at time t , where δ > 0 is the delay time. The idea is that production takes time, and that the
contract must be settled in advance. The manufacturer (leader) offers a wholesale price wt per
unit. On the basis of this wholesale price, the retailer (follower) chooses a delivery rate qt . We
assume that the retail price R is fixed. When the contract is written (at t − δ), the demand at
time t is unknown, so the contract must be based on information available at time t − δ.

To formalize this setup, let F t denote the σ -algebra generated by Bs and Ñ(s, dz), 0 ≤
s ≤ t . Intuitively, Ft contains all the information up to time t . For the ‘delayed’ information,
consider the σ -algebras Et := Ft−δ, t ∈ [δ, T ]. Both the retailer and the manufacturer are to
base their actions on this delayed information. Technically, this means that qt and wt should
be Et -measurable for every t ≥ 0, i.e. q and w should be E -predictable processes.

Assume that items can be salvaged at a unit price S ≥ 0, and that items cannot be stored,
i.e. they must be sold instantly or salvaged. Assuming that any sale occurs in the time period
δ ≤ t ≤ T , the retailer has an expected profit

J2(w, q) = E

[∫ T

δ

[(Rt − S) min{Dt, qt } − (wt − S)qt ] dt

]
. (2.2)

When the manufacturer has a constant production cost per unit M , his expected profit is

J1(w, q) = E

[∫ T

δ

(wt − M)qt dt

]
. (2.3)

The profit functions (2.2) and (2.3) set up a stochastic Stackelberg game of the type studied in
Øksendal et al. (2013).

2.1. Finding Stackelberg equilibria in the news-vendor model

It is well known that under conditions similar to our assumptions above, the discrete multi-
period news-vendor model can be solved by an optimization pointwise in t . In a single-period
news-vendor model with demand D, the retailer’s order qt must satisfy the equation

P{D ≥ q} = w − S

R − S
. (2.4)

If the demand process is Markov, it is reasonable to conjecture that the retailer at time t − δ

should order a quantity corresponding to the distribution of Dt conditional on Et . Even when
the process is non-Markovian, Theorem 3.2.2 of Øksendal et al. (2013), cited below, shows
that, under reasonable conditions, the retailer’s order that optimizes his expected profit is still
the same conditional expectation.

Theorem 2.1. (Øksendal et al. (2013).) Suppose that the pair (ŵ, q̂) is a Stackelberg
equilibrium for the news-vendor problem defined by (2.2) and (2.3). Assume that Dt as given by
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(2.1) has a continuous distribution. For any given wt with S < M ≤ wt ≤ R, let qt = φ(wt )

denote the unique solution of

E[(R − S) 1[0,Dt ](qt ) − wt + S | Et ] = 0. (2.5)

If the function
wt �→ E[(wt − M)φ(wt ) | Et ] (2.6)

has a unique maximum at wt = ŵt then q̂t = φ(ŵt ).

Here 1[0,Dt ](q) denotes the indicator function for the interval [0, Dt ], i.e. a function that has
the value 1 if 0 ≤ q ≤ Dt and 0 otherwise. To see why (2.5) always has a unique solution, note
that wt is Et -measurable and, hence, (2.5) is equivalent to

E[1[0,Dt ](qt ) | Et ] = wt − S

R − S
. (2.7)

Existence and uniqueness of qt then follow from monotonicity of the conditional expectation.
Equation (2.7) is in fact the correct generalization of (2.4) to the continuous-time case. To avoid
degenerate cases, we need to know that Dt has a continuous distribution. In the next sections
we consider special cases where mostly we can write down explicit solutions to (2.5) and prove
that (2.6) has a unique maximum.

Note that (2.5) is an equation defined in terms of the conditional expectation. Conditional
statements of this type are in general difficult to compute: the challenge is then to state the
result in terms of unconditional expectations.

3. Explicit formulae for geometric Brownian motion

In this section we offer explicit formulae for the equilibria that occur when the demand rate
is given by a geometric Brownian motion. We first consider the case with constant coefficients,
and then extend the results to the case with time-dependent, deterministic coefficients. We also
discuss a non-Markovian case where demand is given by a geometric Lévy process.

3.1. Geometric Brownian motion with constant coefficients

In this section we assume that Dt is a geometric Brownian motion with constant coefficients,
i.e. that

dDt = aDt dt + σDt dBt , (3.1)

wherea andσ are constants. Equation (3.1) has the explicit solutionDt = D0 exp((a − 1
2σ 2)t+

σBt ), and it is easy to see that

Dt = Dt−δ exp
((

a − 1
2σ 2)δ + σ(Bt − Bt−δ)

)
. (3.2)

The explicit form of (3.2) makes it possible to write down a closed-form solution to (2.5) as in
the proposition below (see Appendix A for the proof).

Proposition 3.1. Let � : [M, R] �→ R denote the function

�(w) = exp

[(
a − 1

2
σ 2

)
δ +

√
δσ 2 G−1

(
1 − w − S

R − S

)]
, (3.3)

where G−1 denotes the inverse of the standard normal distribution, and define the function
	 : [M, R] �→ R by 	(w) = (w − M)�(w). The function 	 has a unique maximum with
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a strictly positive function value. At time t − δ the retailer should observe y = Dt−δ , and a
unique Stackelberg equilibrium occurs for

w∗
t = arg max{	}, q∗

t = y �(arg max{	}).
The equilibria resulting from this situation are quite surprising. We see that the wholesale

price is in fact constant. Consequently, the manufacturer need not observe demand at time t −δ

to settle the price. In fact, she can write a contract with set wholesale price for the whole sales
period. The retailer needs to observe demand, but his strategy is very simple: observe demand
D and order a fixed fraction of D.

As is clear from the proof, these properties originate from the multiplicative scaling of
geometric Brownian motion, i.e. if the initial condition is scaled by a multiplicative factor,
any sample path is scaled by the same factor. Critical fractiles are scaled accordingly, and
as a consequence the optimal wholesale price will not change. It is the same type of effect
driving the classical Merton (1969) portfolio problem in finance: if the risky asset is a constant
coefficient geometric Brownian motion, the optimal policy is to keep a fixed fraction in the
risky asset.

3.2. Geometric Brownian motion with variable coefficients

Assume now that Dt is a geometric Brownian motion with variable deterministic coefficients,
i.e. that

dDt = a(t)Dt dt + σ(t)Dt dBt ,

where a(t) and σ(t) are given deterministic functions. Then the following holds (see
Appendix A for the proof).

Proposition 3.2. For t ∈ [δ, T ], let �t : [M, R] �→ R denote the function

�t(w) = exp

[
â(t) + σ̂ (t) G−1

(
1 − w − S

R − S

)]
,

where

â(t) =
∫ t

t−δ

[
a(s) − 1

2
σ 2(s)

]
ds, σ̂ (s) =

√∫ t

t−δ

σ 2(s) ds,

and define the function 	t : [M, R] �→ R by 	t(w) = (w − M)�t(w). The function 	t has
a unique maximum with a strictly positive function value. At time t − δ the retailer should
observe y = Dt−δ , and a unique Stackelberg equilibrium occurs when

w∗
t = arg max{	t }, q∗

t = y �t(arg max{	t }).
Comparison with the case of constant coefficients shows that the wholesale price w is

no longer constant. Nevertheless, we see that the equilibria are defined in terms of two
deterministic functions arg max{	t } and �t(arg max{	t }). As in the constant coefficient case,
the manufacturer need not observe demand, but can settle wholesale prices upfront for the
whole sales period.

4. Geometric Lévy processes

In this section we compute explicit Stackelberg equilibria in cases where the demand is given
by a non-Markovian process. Consider first the case where demand is given by

dDt = (α1 + α2Bt)Dt dt + σDt dBt , (4.1)
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where α1, α2, and σ are constants. Solving (4.1) leads to

Dt = Dt−δ exp

[
−1

2
σ 2δ + σ(Bt − Bt−δ) +

∫ t

t−δ

(α1 + α2Bs) ds

]
.

An additional difficulty arises here because the term
∫ t

t−δ
α2Bs ds is not independent of Et ,

reflecting the non-Markovian nature of the process. To compute the conditional expectation,
we need to rewrite the expression. Integration by parts gives

Dt = Dt−δ eδ(α1+α2Bt−δ) exp

[
−1

2
σ 2δ +

∫ t

t−δ

(α2(t − s) + σ) dBs

]
.

This separates the expression into a product where the first factor is Et -measurable, while
the second factor is log-normal and independent of Et . Using the same separation technique
as before, it is then straightforward to find an explicit solution to (2.5), and existence and
uniqueness of the corresponding Stackelberg problem follow as in the proof of Proposition 3.1.
This technique is in fact applicable to quite general processes. A geometric Lévy process is a
solution of a stochastic differential equation of the form

dD(t) = D(t−)

(
a(t, ω) dt + σ(t, ω) dBt +

∫
R

γ (t, z, ω)Ñ(dt, dz)

)
. (4.2)

If we assume that D(0) = D0 > 0 and γ (t, z) > −1, the solution satisfies Dt ≥ 0 for all t .
The explicit solution of (4.2) is

Dt = D0 exp

[∫ t

0

(
a(s, ω) − 1

2
σ 2(s, ω) +

∫
R0

[log[1 + γ (s, z, ω)] − γ (s, z, ω)] ν(dz)

)
ds

+
∫ t

0
σ(s, ω) dBs +

∫ t

0

∫
R0

log[1 + γ (s, z, ω)] Ñ(ds, dz)

]
. (4.3)

Now make the additional assumption that

a(s, ω) = α1(s) + α2(s)Bs(ω), σ (s, ω) = σ(s), γ (s, z, ω) = γ (s, z), (4.4)

where σ and γ are given deterministic functions, while the growth rate a(s, ω) depends on ω

as well as t , and α1 and α2 are given deterministic functions. For each fixed t , consider the
random variable Xt defined by

Xt = exp

[∫ t

t−δ

(∫ t

s

α2(u) du + σ(s)

)
dBs

+
∫ t

t−δ

(
−1

2
σ 2(s) +

∫
R0

[log[1 + γ (s, z)] − γ (s, z)] ν(dz)

)
ds

+
∫ t

t−δ

∫
R0

log[1 + γ (s, z)] Ñ(ds, dz)

]
. (4.5)

We can then state the following proposition (see Appendix A for the proof).

Proposition 4.1. Assume that demand Dt is a geometric Lévy process given by (4.2), where
the coefficients satisfy (4.4). Let Ft denote the cumulative distribution of Xt given by (4.5),
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and, for each fixed t , let F−1
t denote the inverse function of Ft . For each t ∈ [δ, T ], define the

functions

�t(w) = F−1
t

(
1 − w − S

R − S

)
, 	t (w) = (w − M)�t(w). (4.6)

At time t − δ the retailer should observe both the demand rate y = Dt−δ and z = Bt−δ , and a
Stackelberg equilibrium occurs when

w∗
t = arg max{	t }, q∗

t = y exp

[∫ t

t−δ

(1 + z)α1(s)ds

]
�t(arg max{	t }). (4.7)

Note that the value of z can be found from the growth rate α1(t − δ) + α2(t − δ)Bt−δ . If α1
and α2 are constants then the factor exp[∫ t

t−δ
(1 + z)α1(s) ds] is the correction to be expected if

the growth rate is to remain constant at the level observed at time t − δ. Note that the structure
of the solution is quite similar to the case covered in Proposition 3.2. The manufacturer has
a pricing strategy defined in terms of a deterministic function. The retailer should observe
the demand rate, adjust it by the observed growth rate, and multiply the adjusted number by a
deterministic fraction.

5. The OU process

In this section we discuss equilibrium prices for the OU process. We extend the results
from Proposition 4.1.1 of Øksendal et al. (2013) to the case with time-variable coefficients, and
also report the results of a numerical experiment where we compare the performances of static
versus dynamic pricing strategies.

5.1. Explicit formulae for the OU process

In this section we offer explicit formulae for the equilibria that occur when the demand rate
is given by an OU process, extending our earlier work from the constant coefficient case to the
case

dDt = a(t)(μ(t) − Dt) dt + σ(t) dBt ,

where a(t), μ(t), and σ(t) are given deterministic functions. The increased flexibility is
important in applications since it allows for scenarios where the mean reversion level μ can
have a time-variable trend. The basic result can be summarized as follows (see Appendix A for
the proof).

Proposition 5.1. For each t ∈ [δ, T ] and y ∈ R, let �t,y : [M, R] �→ R denote the function

�t,y(w) = y e−At−δ,t + μ̂(t) + σ̂ (t)G−1
(

1 − w − S

R − S

)
, (5.1)

where, for s < t , Ast = ∫ t

s
a(u) du and

μ̂(t) =
∫ t

t−δ

a(s)μ(s)e−Ast ds, σ̂ (t) =
√∫ t

t−δ

σ 2(s)e−2Ast ds, (5.2)

and define the function 	t,y : [M, R] �→ R by 	t,y(w) = (w − M)�t,y(w). If �t,y(M) > 0,
the function 	t,y has a unique maximum where it is strictly positive. At time t − δ the parties
should observe y = Dt−δ , and a unique Stackelberg equilibrium occurs at

w∗
t =

{
arg max{	t,y} if �t,y(M) > 0,

M otherwise,
q∗
t =

{
�t,y(arg max{	t,y}) if �t,y(M) > 0,

0 otherwise.
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Remarks. (a) The condition �t,y(M) > 0 has an obvious interpretation. The manufacturer
cannot offer a wholesale price w lower than the production cost M . If �t,y(M) ≤ 0, it means
that the retailer is unable to make a positive expected profit even at the lowest wholesale price
the manufacturer can offer. When that occurs, the retailer’s best strategy is to order q = 0 units.
When the retailer orders q = 0 units, the choice of w is arbitrary. However, the choice w = M

is the only strategy that is increasing and continuous in y.

(b) Note that the structure of the equilibria is quite different from the case with geometric
Brownian motion. Contrary to that case, the manufacturer now needs to observe the market to
compute wholesale prices.

5.2. Numerical examples for the OU process

In this section we compare the performance of the dynamic approach with a scenario where
the retailer believes that demand has a constant distribution D. A constant coefficient OU
process

Dt = D0 e−at + μ(1 − e−at ) + σe−at

∫ t

0
eas dBs

is ergodic in the sense that observations along any sample path approach the normal distribution
N(μ, σ 2/(2a)). Assuming that the retailer believes the demand rate has a static distribution D

and that he has observed that demand rate for long enough prior to ordering, he will conclude
that D is N(μ, σ 2/(2a)). If the manufacturer knows that the retailer will order according to a
static N(μ, σ 2/(2a)) distribution, a fixed value for w can be computed so as to optimize the
expected profit.

To examine dynamic and static approaches, we sampled paths of the OU process using the
parameters μ = 100, σ = 12, a = 0.05, and D0 = 100. We then computed the accumulated
profits ∫ T

δ

[(R − S) min{Dt, qt } − (wt − S)qt ] dt,

∫ T

δ

(wt − M)qt dt

for three different values of δ using the values R = 10, M = 2, S = 1, and T = 100 + δ, in
conjunction with the following four different strategies:

(i) static approach as defined above;

(ii) dynamic approach as defined by Proposition 5.1;

(iii) static cooperative approach using wt = M;

(iv) dynamic cooperative approach using wt = M .

Adding the expected profits in (2.2) and (2.3), it is easily seen that, when wt = M (in which
case the manufacturer has zero profit), the optimal policy for the retailer also maximizes the
expected profit for the supply chain. The order quantity in the dynamic cooperative case is
then found from (2.7) with wt = M , leading to q∗

t = �t,y(M), where �t,y is given by (5.1).
The static cooperative case is equivalent to a single-period news-vendor problem, leading to a
constant order rate.

We assume that sales take place in the time intervals [δ, 100 + δ]. The length of the sales
period is then 100 regardless of the value of δ. This makes it easier to compare performances
using different values of δ. The results averaged over 1000 sample paths are reported in Table 1.
It can be seen from this table that the dynamic approach favours the manufacturer, with it being
more favourable the shorter the delay. At δ = 30, the effect of the dynamic approach is close to
being wiped out. The same conclusions apply to the supply chain, i.e. a dynamic approach offers
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Table 1: Average profits (1000 realizations) under various strategies.

Strategy Manufacturer Retailer Supply chain

Delay δ = 1

Static approach 42 830 12 729 55 559
Dynamic approach 61 356 4073 65 429
Static cooperation — — 73 251
Dynamic cooperation — — 77 766

Delay δ = 7

Static approach 42 830 12 457 55 286
Dynamic approach 48 592 9438 58 030
Static cooperation — — 73 029
Dynamic cooperation — — 74 838

Delay δ = 30

Static approach 42 830 12 074 54 903
Dynamic approach 43 225 11 882 55 106
Static cooperation — — 72 648
Dynamic cooperation — — 72 794

improved profits and the improvement is larger when the delay is shorter. Note, however, that
the retailer has a distinct disadvantage under the dynamic approach, and that this disadvantage
is larger the shorter the delay.

In a cooperative setting, a dynamic approach can reward both the retailer and the manu-
facturer. Profits can be shared, which leads to an improved position for both parties. In a
noncooperative equilibrium, more precise information can be to the disadvantage of the retailer.
This is due to the Stackelberg structure of the game. With more precise information, the leader
has more control and can take a larger share of the profits. In the limit δ → 0, the leader is in
full control. The retailer will then order the observed demand rate regardless of the price. The
manufacturer offers a price marginally close to R taking all profit in the limit. See also Taylor
and Xiao (2010) for an interesting discussion of the single-period case.

6. Concluding remarks

We have provided explicit formulae for equilibrium prices in a continuous-time news-vendor
model. Complete existence and uniqueness results have been stated for widely used processes
like geometric Brownian motion and the OU process, both with time-variable coefficients. We
have also outlined how to obtain explicit expressions when demand is given by a geometric Lévy
process with time-variable, deterministic coefficients, including cases with random coefficients.
To our knowledge, path properties of this kind have not previously been discussed in the
literature.

Of particular interest is the structure of the equilibria for a geometric Brownian motion
with constant coefficients. In this case the manufacturer offers a fixed wholesale price, while
the retailer orders a fixed fraction of the observed demand. This result is clearly a parallel to
Merton’s classical result on optimal investment in a risky and a secure asset, where the optimal
policy is to keep a fixed fraction in the risky asset.

From an applied point of view, we believe that the numerical results in Section 5.2 are of
general interest. We demonstrate that the retailer suffers a distinct disadvantage from having
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more information, and that this disadvantage is bigger the more precise the information. Such
issues may have important political implications, in particular in electricity markets, and we
believe that our model offers new insights into the mechanisms governing equilibria in such
markets.

Appendix A

In this appendix we provide proofs for all unproved statements given in Sections 3, 4, and 5.
We start with a nontrivial estimate for the standard normal distribution G in the function

hm(z) := z(1 − G(z)) − G′(z) − mz, z ∈ R, (A.1)

where 0 ≤ m ≤ 1.

Lemma A.1. The function hm(z) is negative for all finite z ∈ R.

This property, given in Lemma 4.1.2 of Øksendal et al. (2013), is crucial to our proof of the
uniqueness of the maxima in our results. It can be proved by showing that 0 > h0(z) > h0(0)

for z > 0 because, for such z, h1(−z) = h0(z) > hm(z), and h1(z) < hm(z) for z < 0.
For z > 0,

√
2π [1 − G(z)] = ∫ ∞

z
e−x2/2 dx <

∫ ∞
z

(x/z)e−x2/2 dx = √
2πG′(z)/z, whence

h0(z) < 0 as required.

Proof of Proposition 3.1. We readily see from (3.2) that qt ≤ Dt is equivalent to the
inequality

ln

(
qt

Dt−δ

)
−

(
a − 1

2
σ 2

)
δ ≤ σ(Bt − Bt−δ).

The left-hand side here is Et -measurable, while the right-hand side is normally distributed and
independent of Et . It is then straightforward to prove that

E[1[0,Dt ](qt ) | Et ] = 1 − G

(
ln(qt/Dt−δ) − (a − σ 2/2)δ√

σ 2δ

)
.

Hence, it follows from (2.7) that

qt = Dt−δ exp

[(
a − 1

2
σ 2

)
δ +

√
δσ 2 G−1

(
1 − w − S

R − S

)]
=: Dt−δ �(w),

where � as here is also given by (3.3). With this order quantity qt , the expected profit for the
manufacturer is

E[Dt−δ(wt − M)�(wt)] =: E[Dt−δ	(wt )],
where 	 as here is also given below (3.3). In general, wt can be a random variable. If
w∗ = arg max{	} then, by definition and the nonnegativity of 	,

E[Dt−δ	(wt )] ≤ E[Dt−δ] 	(w∗),

with equality if wt = w∗. Therefore, w∗ is optimal.
It remains to prove that arg max{	} is unique. Putting b = √

δσ 2 > 0, it follows that 	 is
proportional to a function of the form

w �→ (w − M) exp

[
b G−1

(
1 − w − S

R − S

)]
. (A.2)
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The mapping w �→ z defined by w = R − (R − S)G(z) is one–one and monotone, with
−∞ < z < G−1(1 − m) and m := (M − S)/(R − S) for which 0 < m < 1. Substitution in
the right-hand side of (A.2) shows that 	 is proportional to

(R − S)(1 − m − G(z))ebz =: (R − S)fm(z).

Here R > S, and the nonnegative function fm is twice differentiable on its range Z :=
(−∞, G−1(1 − m)). Since fm(z) → 0 at both ends of Z, and f ′

m(G−1(1 − m)−) < 0, fm has
a strictly positive maximum on Z, at z0 say, with f ′

m(z0) = 0. Note that

f ′
m(z) = −G′(z)ebz + (1 − m − G(z))bebz < (b − z)(1 − m − G(z))ebz, (A.3)

the inequality coming from Lemma A.1 below, while using the fact that G′′(z) = −z G′(z)
simplifies the expression for f ′′

m to

f ′′
m(z) = (z − b)G′(z)ebz. (A.4)

Now let z1 satisfy f ′
m(z1) = 0. Then, by (A.3) and the positivity of 1 − m − G(z) on Z,

we must have b > z1, and then, by (A.4), z1 must be a local maximum. If f ′
m(z′

1) = 0 for
some z′

1 �= z1 then between these two zeros of f ′
m, both local maxima, there must be a local

minimum, at z2 say, and differentiability then implies that f ′
m(z2) = 0, which in turn implies

that z2 is a local maximum so we have a contradiction. Thus, z1 = z0 is the unique local (and
global) maximum of f ′

m on Z.
It follows from Theorem 2.1 that w∗ is the only candidate for a Stackelberg equilibrium.

To see that this candidate is indeed a Stackelberg equilibrium, we argue as follows. Since
w∗ equals arg max{	}, any wt other than arg max{	Dt−δ } must lead to strictly lower expected
profit at time t . As demand does not depend on wt , no lower expected profit at any time
can be compensated by any higher expected profit later on. Hence, if the statement wt =
arg max{	Dt−δ } almost surely λ × P (λ denotes the Lebesgue measure on [0, T ]) is false, any
such strategy must lead to strictly lower expected profit. The same argument applies for the
retailer, and, hence, a unique Stackelberg equilibrium always exists in this case.

Proof of Proposition 3.2. In the case of variable coefficients,

Dt = Dt−δ exp

[∫ t

t−δ

[
μ(s) − 1

2
σ 2(s)

]
ds +

∫ t

t−δ

σ (s) dBs

]
. (A.5)

Put

μ̂(t) =
∫ t

t−δ

[
μ(s) − 1

2σ 2(s)
]

ds, σ̂ 2(s) =
∫ t

t−δ

σ 2(s) ds.

Because the exponent in (A.5) is normally distributed and independent of Et ,

E[1[0,Dt ](qt ) | Et ] = 1 − G

(
ln(qt/Dt−δ) − μ̂(t)

σ̂ (t)

)
.

It follows from (2.7) that

qt = Dt−δ exp

[
μ̂(t) + σ̂ (t) G−1

(
1 − w − S

R − S

)]
.
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With this order quantity, the expected profit for the manufacturer is

E

[
Dt−δ (wt − M) exp

[
μ̂(t) + σ̂ (t) G−1

(
1 − w − S

R − S

)]]
.

The calculations in the proof of Proposition 3.1 can now be repeated line by line for each fixed t ,
proving the general case in Proposition 3.2.

Proof of Proposition 4.1. From (4.3) and (4.4), it follows that

Dt = Dt−δ exp

[∫ t

t−δ

(
α1(s) + α2(s)Bs(ω) − 1

2
σ 2(s)

+
∫

R0

[log[1 + γ (s, z)] − γ (s, z)] ν(dz)

)
ds

+
∫ t

t−δ

σ (s) dBs +
∫ t

t−δ

∫
R0

log[1 + γ (s, z)] Ñ(ds, dz)

]
.

In this expression the term exp[∫ t

t−δ
[α1(s) + α2(s)Bs(ω)] ds] is usually not independent of Et .

Changing the order of integration we see that

exp

[∫ t

t−δ

[α1(s) + α2(s)Bs(ω)] ds

]
= exp

[∫ t

t−δ

[α1(s) + α2(s)Bt−δ] ds +
∫ t

t−δ

∫ t

s

α2(u) du dBs

]
,

from which it follows that

Dt = Dt−δ exp

[∫ t

t−δ

[α1(s) + α2(s)Bt−δ] ds

]
Xt,

where Xt is given by (4.5). Here the first two terms are Et -measurable, while the term Xt is
independent of Et . It is then straightforward to see that (4.6) and (4.7) follow from (2.7).

Proof of Proposition 5.1. The statement qt ≤ Dt is equivalent to the inequality

qt −
(

Dt−δe−At−δ,t +
∫ t

t−δ

a(s)μ(s)e−Ast ds

)
≤

∫ t

t−δ

σ (s)e−Ast dBs.

Using the Itô isometry, we see that the right-hand side has expected value 0 and variance
[σ̂ (t)]2 := ∫ t

t−δ
σ 2(s)e−2Ast ds (cf. (5.2)). It is then straightforward to see that

E[1[0,Dt ](qt ) | Et ] = 1 − G

(
qt

σ̂ (t)
− ŷ

)
,

where

ŷ = Dt−δe−At−δ,t + ∫ t

t−δ
a(s)μ(s)e−Ast ds

σ̂ (t)
,

and (5.1) follows trivially from (2.7).
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It remains to prove that the function 	t,y has a unique maximum if �t,y(M) > 0. Observe
that 	t,y is proportional to

(w − M)

[
ŷ + G−1

(
1 − w − S

R − S

)]
.

Make the same substitutions as below (A.2), namely, w = R − (R − S)G(z) and m = (M −
S)/(R − S) so m ∈ (0, 1). With these changes we see that 	t,y is proportional to

(1 − m − G(z))(ŷ + z) =: fm(z).

The condition �t,y(M) > 0 is equivalent to ŷ + G−1(1 − m) > 0, and the condition w ≥ M

is equivalent to z ≤ G−1(1 − m). For fixed m and ŷ ∈ R, consider the function fm(z) on the
interval Z := {z : − ŷ ≤ z ≤ G−1(1 − m)}. If ŷ + G−1(1 − m) > 0, Z is nondegenerate and
nonempty, and

f ′
m(z) = −G′(z)(ŷ + z) + (1 − m − G(z)).

Since f ′
m(−ŷ) > 0 and fm(−ŷ) = fm(G−1(1 − m)) = 0, the function fm must have at least

one strictly positive maximum on Z.
We can now mimic the argument around (A.3) and (A.4) in the proof of Proposition 3.1 to

prove that the maximum of fm is unique. It follows from Theorem 2.1 that this is the only
candidate for a Stackelberg equilibrium. Similarly, the argument used at the end of the proof
of Proposition 3.1 shows that a unique Stackelberg equilibrium exists in this case also.
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