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SEMISIMPLE CLASSES OF ALTERNATIVE RINGS
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1. Introduction

Recently A. D. Sands [7] solved a problem posed in [6], and characterised the
semisimple classes of associative rings as classes being regular, coinductive and closed
under extensions. It is the purpose of this note to prove the same assertion for
alternative rings. This result is perhaps not surprising, nevertheless its proof cannot be
considered an easy one, and it requires a technique of dealing with ideals of ideals. In
addition, semisimple classes of hereditary radicals and those of supernilpotent radicals
will be characterised as easy consequences of our theorem.

2. Preliminaries

A not necessarily associative ring A is called an alternative ring if

(xx)y = x(xy) and y(xx) = (yx)x

hold for every x, y e A. The associator (x, y, z) is defined as

(x, y, z) = (xy)z-x(yz)

and for alternative rings we have the equalties

(x, y, z) = (y, z, x) = (z, x, y) = -(x, z, y) = -(z, y, x) = -(y, x, z).

We shall make use of the following assertions.

Proposition 1. (cf. [1]: (7)). In an alternative ring A for any elements a,b,c,ueA
the equality

b(c, a, u) + c(b, a, u) = (c, ab, u) + (b, ac, u)

Propositions 2. (cf. [1]: (9')). / / C<B<A and aeA, then aC + C<B.

Proposition 3. If C<B<A, aeA and xeC, then [(ax)(aC) + C]<B.

For the proof we refer to [5], p. 177.
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Proposition 4. If C<B < A, aeA and xeC, then [(ax)(aC) + Cf £ C.

The proof can be found in [5], p. 176.

Proposition 5. If C<B<A, aeA and xeC then the mapping

defined by cj>(z) = (ax)(az) + C, is an epimorphism.

The proof of the assertion is given in [5], p. 176.

Proposition 6. If for every xeC the previously defined mapping <j> maps C onto 0,
then the mapping

tp: C^(aC + C)IC

defined by i(/(z) = az + C, is an epimorphism. Moreover (aC + C)IC is a zero-ring.

For the proof we refer to [5], p. 176.
Next, suppose that C<B<A, aeA,xeC and define the set F as

F = {ueC\(ax)(au)eQ.

Proposition 7. If ueF, and b eB, then (ax)(a, b, u)e C.

Proof. Using Proposition 1 we get

(ax)(a, b, u) = -{ax)(b, a, u) = b(ax, a, u)-(b, a(ax), u)-(ax, ab, u).

However,
b(ax, a, u) = b[((ax)a)u]-b[(ax)(au)]eB(BC) + BCsC

and the other terms (b, a(ax), u) and (ax, ab, u) are in (B, B, C) c C. Thus the assertion
is proved. •

Proposition 8. F<B.^

Proof. F is clearly an additive subgroup of B. Let ueF and b eB be arbitrary
elements. Then applying Proposition 7 we get

a, b, u)

Thus bueF. Further,

(ax)ta(ub)] = (ax)[(au)b]-(ax){a, u, b)

and by Proposition 7 the second term is in C. Checking the first term by applying
Proposition 1, we have

(ax)[(au)b] = [(ax)(au)]b - (ax, au, b)

= [(ax)(au)]b + (u, a{ax), b) -(ax)(u, a, b)- u(ax, a, b).
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Hence by Proposition 7 it follows that

(ax)[(au)b]e CB + (C B, B) + C + C(B, A, B)<= C.

Thus (ax)[a(ub)]e C. Hence ubeF, which completes the proof that F is an ideal in
B. •

3. Semisimple classes

A class C of (not necessarily associative) rings is called a universal class if C is closed
under homomorphisms and is hereditary, that is, B<AeC implies BeC. All classes
considered in this paper are supposed to be isomorphically closed.

As is well known, a class S in a universal class of rings is a semisimple class, if S
satisfies the following two conditions:

(A) S is a regular class, that is, if A e S then every non-zero ideal of A has a
non-zero homomorphic image in S;

(B) If every non-zero ideal of a ring A has a non-zero homomorphic image in S,
then A E S .

Our goal is to prove the following characterization of semisimple classes in a
universal class of alternative rings.

Theorem. A subclass S of alternative rings is a semisimple class if and only if S
satisfies the following three conditions:

(i) S is a regular class,
(ii) S is closed under extensions, that is BeS and A/B eS imply AeS,
(iii) S is coinductive, that is whenever a ring A contains a descending chain of ideals

B, such that fl B, = 0 and AIBt e S for each i, then AeS.

Proof. It is known that conditions (i), (ii) and (iii) are necessary (cf. for instance [3],
Theorems 12 and 13).

Let us suppose that a class S satisfies (i), (ii) and (iii). The theorem will be proved if
we exhibit the validity of condition (B). However, we first note that the class S satisfies
the following closure property with respect to ideals.

O^KAeS and A2 = O=>IeS. (1)

Indeed, in view of (i), / has a non-zero homomorphic image in S and by (iii) and Zorn's
Lemma, we may assume J is an ideal of I which is minimal with respect to the property
I/JeS. If 0 ^ / then J<A (because A2 = 0), hence by (i) J has an ideal K such that
O^J/K and J/KeS. Clearly, K is an ideal of I and as I// = Z/K///K, I/KeS because of
(ii). However, this contradicts the minimality of J. Therefore J = 0 and IeS,- which
proves (1).

We may now improve the result (1) to the following:

O^KAeS and I2 = 0=>IeS. (2)

To see this, choose J as before. If J<A then the preceding argument shows IeS.
Therefore we assume aJ£J for some aeA (the case Ja£J can be handled by the
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same sort of argument). Because of Proposition 2, we have 0^—-—<I/J. As / 2 = 0
J

and I/JeS, —-—e S on account of (1). Now consider the map tp: J —» —-— denned by
J J

ijj(j) = J + aj, j e /. Since I2 = 0, i// is an epimorphism and ker \p is an ideal of I. Then as
J/ker t/r

J/J = — , i/ker ibeS because of (ii). This contradicts the minimality of J since
//ker i//^ / . Therefore 0 = J and IeS.

Now we shall verify that S satisfies the condition (B). For this end let A be a ring
such that every non-zero ideal of A has a non-zero homomorphic image in S, but A is
not contained in S. This hypothesis on A will lead to a contradiction.

Because of condition (i), A has a non-zero homomorphic image in S and by (iii) and
Zorn's Lemma we may assume that B is an ideal of A minimal with respect to the
property A/BeS. By hypothesis B / 0 ; hence (i) implies that B has a non-zero
homomorphic image B/C in S and again in view of (iii) and Zorn's Lemma, we may
suppose that C is minimal with respect to the property B/CeS.

We are going to prove that C<A. Assume that this is not the case. Then there exists
an element aeA such that aC£ C or Ca^ C. We shall deal only with the case aC£ C,
for the other case can be handled analogously.

For any fixed x e C w e note that

(ax)(aC)/C]<B/C

and

(ax)(aC)ICf = 0

because of Propositions 3 and 4. Hence it follows from our previous observation (2)
that [C + {ax)(aC)IC~\e.S. In view of Proposition 5, the map

<fe:C-*[C + (ox)(aC)/C]

defined <i>x(z) = C + (ax)(az) is an epimorphism and C/ker <j>x eS. However, ker <£x is an

ideal of B because of Proposition 8. As B/C=— it follows from (ii) that
C/ker <f)x

B/ker 4>x eS. However since C was minimal with respect to the property B/CeS, this
implies C = ker 4>x, that is, <f>x = 0.

In proceeding to show that C<3A we consider the mapping

defined by <Mz) = C + az. Proposition 6 is applicable, showing that 4i maps C
homomorphically onto C + aC/C and that C + aC/C is a zeroTring. Since by Proposition
2 C + aCIC is an ideal of BIC, it follows from (2) that C + aC/CeS; hence C/ker ipeS.

We claim now that ker i// <B. Noting that ker i\i = {t e C | at e C}, take t e ker \\i and
bsB. Then a(tb) = (at)b-(a, t,b) = (at)b-(b,a,t) = (at)b-(ba)t + b(at)eCB+BC +
BC £ C. This means tb e ker «/» and (a, t, b) e C. Thus a(bt) = (ab)t-(a, b, t) =
(ab)t + (a, t, b) e BC + C^C holds, showing bt e ker if/. Hence ker ifi<B is established.
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B/ker if/
Altogether we have 0 ̂  C/ker t/f e S as well as B/CeS. Since B/C = -—~—- we

conclude from (ii) that B/ker tfteS which contradicts the choice of C. Therefore aC £ C
for every aeA.

By analogous considerations one gets CA <= A. Hence C is an ideal of A.
Now we have

and B/CeS, so condition (ii) implies A/CeS, contradicting the minimality of B. This
contradiction proves that the hypothesis A<£S is impossible. Thus S satisfies also
condition (B) and so S is a semisimple class. •

Remark 1. The scheme of our proof was somewhat simpler than that of Sands'
proof, inasmuch as we showed directly that the class considered satisfied condition (B).
Doing so, we could save the investigation of further mappings.

Corollary 1. A class S of alternative rings is a semisimple class if and only if S is
regular, closed under extensions and subdirect sums. •

The next assertion sharpens van Leeuwen's Theorem. Let us recall that an ideal L of
a ring A is large, if LflJ^O for every ideal 7^0 of A.

Corollary 2. A class S of alternative rings is the semisimple class of a hereditary
radical if and only if S is regular, closed under subdirect sums and satisfies condition

IfL is a large ideal of A and LeS, then also AeS (A).

Proof. In view of [4], any class that is subdirectly closed and satisfies (A) is closed
under extensions. Hence by the Theorem it is a semisimple class. Then by [1] the class
is also hereditary, and so van Leeuwen's Theorem (see [6]) is applicable. D

We also give a new characterisation of semisimple classes of supernilpotent radicals.
For an alternative ring A let us define

A(0) = A and AM = (A(n-

for n = 1, 2 , . . . A ring A is solvable, if AM = 0 for some n > 1. A radical class is said to
be hypersolvable, if it contains all solvable rings. Hereditary and hypersolvable radicals
are referred to as supersolvable radicals. A class C of rings is said to be weakly
homomorphically closed, if B<AeC and B2 = 0 imply A/BeC.

Corollary 3. A proper subclass S of the variety of all alternative or associative rings is
a semisimple class of a supersolvable radical if and only if S is regular, subdirectly closed,
weakly homomorphically closed, and satisfies condition (A).

Proof. The assertion is an immediate consequence of Corollary 2 and [2], Corollary
4. •
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Remark. Neither in Corollary 2 nor in Corollary 3 can the condition that S is
subdirectly closed be replaced by demanding that S is coinductive. Let us consider the
class C consisting of 0 and a single simple ring with unity. C is obviously a regular class
which is coinductive, weakly homomorphically closed, and satisfies condition (A),
though C fails to be subdirectly closed. On the other hand the upper radical of C is, of
course, a supersolvable radical.
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