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ON LATTICE-ORDERED RINGS IN WHICH
THE SQUARE OF EVERY ELEMENT IS POSITIVE
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Abstract

It is shown that a unital lattice-ordered ring in which the square of every element is positive is
embeddable in a product of totally ordered rings provided it is archimedean, semiperfect, or
jr-regular. Also, some canonical examples of unital /-domains with squares positive that are not
totally ordered are discussed.

1. Introduction

Diem (1968) has shown that a lattice-ordered ring (/-ring) which satisfies the
identity x + x=0 and has no nilpotent /-ideals is an /-ring. In this paper it is
shown that a unital /-ring in which the square of every element is positive is an
/-ring provided it is either archimedean, semiperfect, or an algebraic /-algebra
over a partially-ordered field.

Diem proved the theorem mentioned above by showing that an /-prime
/-ring that satisfies x*x~ = 0 is a (totally ordered) domain. Birkhoff and Pierce
(1958, Theorem 15) have shown that an /-ring with a positive unit satisfies this
identity if and only if 1 is a weak order unit (r.e., IAJC = 0 implies JC = 0). Since
the identity x+x~ = 0 implies that all squares are positive [Birkhoff and Pierce
(1958), p. 59, Lemma 2], the question of whether or not there exists a unital
/-prime /-ring with squares positive that is not totally ordered, i.e., in which 1 is
not a weak order unit, arises naturally from Diem's result. We exhibit some
canonical examples of unital /-domains with squares positive that are not totally
ordered.

The reader is referred to Birkhoff and Pierce (1958) and Johnson (1960) for
the general theory of /-rings. If M is a partially-ordered abelian group
(po -group), then M* = { i £ M : x g O } will denote its positive cone; and if M is
an l-group (i.e., M is also a lattice), the positive part, the negative part, and the
absolute value of i £ M are x+ = xv0, x~ = (- jc)v0, and \x\ = xv — x =
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[2] Lattice-ordered rings 363

x+ + x~, respectively. By a convex l-subgroup of the /-group M we mean a
subgroup N which is convex (i.e., OS a S b with b £ N implies a G N) and a
sub-lattice of M. By a po-ring we mean a direct partially-ordered ring, and by an
/-ring we mean a po-ring which is also a lattice. An l-ideal of an /-ring is a
convex /-subgroup that is also an ideal. The direct sum of a family {Ma | a G A}
of po-groups is the group direct sum 2®MO supplied with the positive cone
S0M* Z and Q will denote the totally ordered rings of integers and rational
numbers, respectively. A ring will be called unital if it has an identity element.

The class of /-rings in which all squares are positive is the variety
determined by the identity (x2)~ = 0. It has already been mentioned that this
variety contains that determined by the identity x+x~ = 0, which in turn contains
the variety of /-rings [BirkhofT and Pierce (1958), pp. 55-57]: An f-ring is an
/-ring that is a subring and a sublattice of a product of totally ordered rings, or,
equivalently, which satisfies the identity (x+a+"AX~)v(a+x + Ax~) = 0. We will
often use the following characterization of a unital /-ring [Birkhoff and Pierce
(1958), Corollary 1, p. 59]: A unital l-ring is an f-ring if and only if it satisfies the
identities x*y+ = (xy +)+ = (x+y)+.

Portions of this paper formed part of the author's dissertation written at the
University of Illinois under the direction of Elliot Weinberg, and portions
developed while the author held a University of Toledo Summer Faculty
Fellowship.

2. A canonical construction

Let F be a po-ring and let M be an /-group. M is called a left l-module over
F if M is a left F-module and F*M* C M*. If F is unital we also require that
1 - JC = x for each x G M. If M is a left /-module over F and if ax Ay =0
whenever x Ay = 0 in M and a G F+, M is called an f-module. Over a totally
ordered division ring every /-module is an /-module. This is a consequence of

LEMMA 1. Let M be an l-module over the po-division ring F. Then M is an
f-module over F if and only if a~'M+ C M+ for each nonzero a G F+.

PROOF. If M is an /-module over F, then scalar multiplication by 0 ̂  a G F+

is an automorphism of the /-group M. Since the inverse of this automorphism is
scalar multiplication by a \ a ~'Af +CM+.

Conversely, suppose a~lM+ C M+ for all 0 < a G F: If x Ay = 0 in M and
0 < a G F, then 0 S a (x A y) s ax A ay implies

§ a~'(ax Aay)S a~l(ax)Aa~'(ay) = x Ay =0 .

Thus ax A ay = 0. Since F is directed there exists | 3 £ F * with /3 g 1, a. Then the
inequalities 0 ^ ax Ay S /3x A/3y =0 show that M is an /-module.
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If a and b are two elements of the /-module M, then a is called infinitely
smaller than b with respect to F, written a <§ b, if a | a | S | b | for each a E.F
(since F is directed, this is equivalent to a | a | S | b | for each a G F+). If a < b
and b/0, then a | a | < | f t | for each a £ F. For if |ft| = | a o | a , then
2a0 \a\fzao\a\ implies \ b | = a01 a | = 0; so b = 0. M is called archimedean over
F if a = 0 whenever a <b. Note that if F is unital and Af is F-archimedean (or
a < b with respect to F), then M is Z-archimedean (a < b with respect to Z).
When no confusion is likely we will suppress the phrase "over F."

Let F be a commutative unital po-ring. By an l-algebra overF we mean an
algebra R over F which is also an /-module over F. If R is an /-algebra and an
/-ring it will be called an /-algebra. If the unital /-algebra R has squares positive,
then each nilpotent element of R is, in absolute value, § 1 [Diem (1968),
Theorem 3.3]. Since, for a E F, aa is nilpotent whenever a is, we have a2 <§ a
for each nilpotent element a of R. The elements disjoint from 1 behave in just
the opposite way.

LEMMA 2. / / the unital l-algebra R has squares positive, then I A O = 0

implies a < a1.

PROOF. For each a G F + , 0 S ( a - af = a2 - 2aa + a2 yields 2aa § a
2 + a2.

Hence

2aa — 2aa A (a2 + a2) S= 2aa A a2 + 2aa A a2 — 2aa A a2.

Thus aa S a2.

In Birkhoff and Pierce (1958), Corollary 3, p. 61 it is shown that a unital
archimedean /-ring is an /-ring provided 1 is a weak order unit. This result,
together with Lemma 2, gives

COROLLARY 1. An archimedean l-algebra with an identity element is an
f-algebra if and only if it has squares positive.

The following example [see Example 2.3 of Diem (1968)] shows that
Corollary 1 is false for an /-ring without an identity element. In fact, this example
can serve as a counterexample to many of the results of this paper if the identity
element is dropped. Let R = Qa © Qb as an /-group with multiplication defined
by a2 = ab = ba = b2 = a.

An l-domain is an /-ring R in which the semigroup R + has no zero divisors.
Note that a unital /-domain R with squares positive must be a domain. For if
C(l) is the convex /-subgroup of R generated by 1, then by Diem's theorem
C(l) contains all the nilpotent elements of R. But C(l), being an /-ring and an
/-domain, is a domain.
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We present next some canonical examples of unital /-domains with squares
positive in which 1 is not a weak order unit. First we need some lemmas.

LEMMA 3. Let Mbe an f-module over the unitalpo-ring F. If Xi <8 x2 <§ x3 <̂
• • • inM, then for each' n E Z+ andfor allau • • •, an E F, aiXi + • • • aHxn <§ xn+1.

PROOF. We prove this for n = 2. An easy induction argument will then
complete the proof. Since F is directed a, = /3i - /32 with /3y £ F*. So | a,x, | ^
(fr + /32) | x, | = y, | X; | with yt £ F*. Thus, for any /3 E F+ there exist yu y2 £ F+

with

j8 | a,x, + a2x21 S 0y, | x, | + /3y21 x21 S | x21 + Py21 x21 = (1 + j8-y2) | x21S|x31.

Let M be a module over the commutative integral domain F. An element
x £ M is called torsion (or F-torsion) if ax = 0 for some nonzero a G F. The set
T = T(M) of torsion elements of M is a submodule of M, called the torsion
submodule, and Af/T is torsion-free in the sense that T(M/T) = 0. If, in
addition, F is totally ordered and M is an /-module over F, then T is a convex
/-submodule of M. (More generally, if F is merely partially ordered and
T] = {x £ M : ax = 0 for some 0 < a £ F}, then T, is a convex /-submodule of M
and T,(M/T,) = 0.) Let Q be the totally ordered field of quotients of the totally
ordered integral domain F and let M be a torsion-free /-module over F; then
the module of quotients of M with respect to S = F\{0},

can be made in a unique way into an /-module over Q that contains M. The Q-
/-module Ms is constructed, of course, exactly as in the case F = Z and can be
identified with the tensor product M ®FQ. We summarize this discussion in

LEMMA 4. Let M be an f-module over the commutative totally ordered
domain F, and let Q be the totally ordered quotient field of F. Then the torsion
submodule of M is a convex I-submodule of M. If M is torsion-free, then the
module of quotients of M with respect to S = F\{0} is an f-module over Q
containing M.

The partially-ordered module FM is called semi-closed (or F-semi-closed) if
ax E M* implies x £ M*, where 0 ^ a £ F* and x £ M. If M is a torsion-free
/-module over F, then M is semi-closed. For if ax £ M with 0 ^ a £ F+ then
0 = (ax)" = ax"; so x~ = 0 and x £ M+. This will be used in the next theorem.

Let S be a totally ordered domain and let T = S[x] be the polynomial ring
over S in the indeterminate x. Let
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Po = P0(S) = ( j ^ x ' : «o SO and if n > 1, an >o)
I i=o J

and let

j ^ a i x ' : n > l and <*„>
0

U {a0 + «iX : a0 § 0 and a, g 0}.

Note that P 0 CP, .

THEOREM 1. (a) Po and P, are partial orders for the ring T = S[x].
Moreover, (T, Po) and T, P,) are l-domains with squares positive in a which the
identity element (if it exists) is not a weak order unit.

(b) Let R be a unital l-algebra with squares positive over the commutative
totally ordered domain F. Suppose that a is.a positive element of R that is disjoint
from 1 and that a is not F-torsion. Then

(i) (F[a] , F[a]+) is isomorphic to (T, P) where T = F[x] and P is a partial
order contained in Pi.

(ii) If If (F[a], F[a]+) is F-semi-closed (this is true, in particular, if R is a
torsion-free F-module), then P contains Po.

PROOF. That (T, P(>) and (T, P,) have the stated properties is a straight-
forward calculation which we will omit. To prove (b) we first assume that R is a
torsion-free F-module. Let Q be the totally ordered field of quotients of F, and
let Ri be the module of quotients of R, as in Lemma 4. Then R, is an /-algebra
over Q with squares positive which contains R. By Lemma 2, a <§ a2 <S a3 <? • • •
with respect to Q. Thus, for 0 ^ a n , a,a + • • • + ana" G O[a] + if and only if
an > 0. For if an > 0, then by Lemma 3 a" > — an\an ianl + • • • + a,a), so

ctia + • • • + ana" > 0 . And if an < 0 , then -(a^ai + \- ana
n)>0. But then a

is transcendental over Q; for if p (x) G Q [x ] is any nonzero polynomial, then we
have just seen that either ap(a)>0 or ap(a)<0.

Let P,(a) = {/(a): f(x)G P^O)}. We claim that P0(a)QQ[a]+C P,(a). To
s e e t h e first i n c l u s i o n , t a k e p(a)= ao+ ••• + ana" G Q[a] w i t h o 9 g 0 a n d
an > 0 . Then a g O g ~(axa + ••• + ana

n), so p (a) E. Q [a ]*. To see the second

inclusion, suppose that p(a) = ao+ axa + • • • + ana" G O[a]+ with an^ 0. Since
ap(a)G O[a]+, «„ >0by the previous paragraph. If n > 1, then p(a)G P\(a). If
n = 1, then o 0 <0 implies — a o Aa I a=0. This contradicts atia> — a0, and
hence a,, s 0. It is now easy to see that (b) is true if R is torsion-free.

For the general case let A be the torsion submodule of R. Then A is an
/-ideal of R (Lemma 4), R = R/A is torsion-free, and 1 A a = 0 (a is the image
of a in R). So (b) is true for (F[a], F[a]+). By the first paragraph of the proof a
is transcendental over F, and hence so is a. Furthermore, if p(a)G F[a]+, then
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p(d)EF[d]+GP,(d). Hence if (F[a], F[a]+) is isomorphic to (T, F), then
PGP,. This establishes (i).

Since F + l C J ? + , to prove (ii) it suffices to show that an>0 implies
ft = a,a + • • • + ana

n E F[a]+. But ft G F[d]+, so there exists / E A with b +
t g 0. If 0 < a G F with af = 0, then aft = a (ft + f) g 0. Since (F[a ], F[a ]+) is
semi-closed, ft G F[a] + .

REMARK. The construction which appears in Theorem 1 may be generalized.
An /-algebra FR is called supertessimal if for each x E R x < x2 with respect to
F. The class of supertessimal /-algebras is a variety each member of which has no
nonzero nilpotent elements. If F is an /-ring and R is a supertessimal /-algebra
with squares positive over F, let S be the /-algebra obtained by freely adjoining
F to R. Thus, as an /-module over F, S - F 0 R; and multiplication is given by
(a, x) (/3, y) = («/8, ay + fix + xy). Then pS is a unital /-algebra with squares
positive in which 1 is not a weak order unit.

Note that S could contain nonzero nilpotent elements. To be explicit, let G
be a totally ordered field and let G[t] be the ring of polynomials over G in the
indeterminate t, ordered lexicographically so that the constant term dominates.
Because of the homomorphism Fn = G[t]/(t")—» G any /-algebra over G can be
made into an /-algebra over Fn. If Fn is used above with n ^ 2, then an S will be
produced with nontrivial nilpotent elements.

In general, the set of nilpotent elements of S will be an /-ideal (as is the
case for an /-ring that satisfies the identity x+ x~ = 0 [Diem (1968)]). For if a G F
is nilpotent and x E R, then ax = 0 since R has no nilpotent elements. So if

(a,x)ES is nilpotent with 0 = (a, *)" = (an, X ( £ ] a""*** j = (a", x"), then

x = 0 and a" = 0. Thus the set A of nilpotent elements of S is precisely the set
of nilpotent elements of F, and hence A is a convex /-subgroup of 5 (F is an
/-ring). Also, if (a,0) is nilpotent and (j8, x)E S, then (a, 0)(/3, x) = (a/3,0); so A
is an ideal, whence an /-ideal.

3. Semiperfect /-rings

Let R be a unital ring with Jacobson radical N. R is called semiperfect if
fl/N is left artinian and idempotents may be lifted modulo N, and R is called
local if R/N is a division ring. In a semiperfect ring a finite set of orthogonal
idempotents may be lifted modulo N [Lambek (1966), p. 73]. The next lemma is
known for /-rings.

LEMMA 5. If R is a unital I-ring with squares positive, then every idempotent
element is central. Consequently, a right (left) ideal generated by an idempotent is
an I-ideal.
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PROOF. Let S = C(l) be the convex /-subgroup generated by 1. If e is an
idempotent, then so is 1 - e; hence e E.S. Since S is an /-ring the idempotents of
S are central elements of S [Henriksen and Isabell (1962), 2.1]. Thus all the
idempotents of R commute and so they are all central [Divinsky (1965), p. 25].

Let A = Re be an ideal of R where e = e2, and let / = 1 - e. Suppose
| * | S | r e | = | r | e for some r £ K . Then | xf | S | r \ ef - 0. Hence xf = 0 and
x = xe + xf = xe. Thus A is an /-ideal.

THEOREM 2. A semiperfect l-ring R with squares positive is an f-ring.

PROOF. We first reduce to the case that R is local. Since the idempotents of
R, and hence of R/N, are central, R/N - D i 0 - • - 0 D n (ring direct sum),
where each Dt is a division ring. Let {et} be an orthogonal set of idempotents of
R such that et + N is the identity of D,. Then 1 = ex + • • • + en, so, by Lemma 5,
R is a direct sum of local /-rings.

Now assume that R is local. Suppose that X A V = 0 and aGR*. Let
b = av2. If b£N, then b~' £ R and b'1 = bb~2GR*. Since b and b'1 are both
positive, multiplication by b is a lattice homomorphism of R [Steinberg (1972),
Lemma 1], so bx A by = 0. If b £ N, then (b - I)"1 £ R*, whence

( ) ( l ) y =0.

So

0S(fc-l)xAyS(6-l)xA(fc-l)y =0.

Hence

OS bx/\y = [(b - l)x + x]/\y S (b - l)x Ay + x Ay = 0.

In either case, bx A by = 0. Thus ax A ay = 0, and similarly xa Aya = 0; i.e., R is
an /-ring.

Birkhoff and Pierce [(1968), p. 62, Corollary 5] have shown that R is an
/-algebra provided it is a finite dimensional real /-algebra with an identity
element that is a weak order unit. Since an artinian ring is semiperfect we get the
following generalization of this result.

COROLLARY 2. A finite dimensional unital l-algebra over a totally ordered
field that has squares positive is an f-algej>ra.

Note that the /-algebra (T, P,) of Theorem 1, where T = Q[x], is a commuta-
tive /-algebra with squares positive and an identity element. It has the maximum
condition on ideals and is /-simple, but is not an /-ring.

Next we consider algebraic /-algebras. The element a in the ring R is called
regular if there exists x in R with a = axa; equivalently, the right (left) ideal
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generated by a has an idempotent generator. R is called regular if each of its
elements is regular, and it is called 7r-regular if a power of each of its elements is
regular. It is well-known (and easily verified) that an algebraic algebra over a
field is 7r-regular.

COROLLARY 3. A unital ir-regular l-ring R that has squares positive is an
f-ring

PROOF. Since the conditions of the corollary are inherited by each /-
homomorphic image of R, and since R is a subdirect product of subdirectly
irreducible /-rings, we may assume that R itself is subdirectly irreducible. But
then R is local. To see this, let L be the set of non-units of R and let N be the
Jacobson radical of R. If a £ R, then there exists a positive integer n and an
idempotent e such that Ra" = Re. By Lemma 5 e = 0 or e = 1. If a £ L, then
e = 0 and a is nilpotent. If x £ R, then xa is also nilpotent; otherwise xa, and
hence a, is a unit. Thus Ra C N and L = N; i.e., R is local. Whence R is an
/-ring by Theorem 2.

An algebra over a field is locally finite is each of its finitely generated
subalgebras is finite dimensional. As an analogue of the fact that an algebraic
algebra that satisfies a polynomial identity is locally finite [Herstein (1968), p.
167] we have

COROLLARY 4. A unital algebraic I-algebra R (over a po-field) that has
squares positive is a locally finite f-algebra. It is commutative modulo its Jacobson
radical.

PROOF. By Corollary 3 and the remarks preceding it, R is an /-algebra.
Recall that in an /-ring the set Zn = {x : x" = 0} is a nilpotent /-ideal [Birkhoff
and Pierce (1968), Theorem 16, p. 63]. Since the Jacobson radical N of R is nil
[(1964), p. 19], N is the set of nilpotent elements of R and thus is locally finite. It
is well-known [Arens and Kaplansky (1948), Theorem 3.3] (and can easily be
seen) that^an algebraic algebra without nilpotent elements is strongly regular.
Thus R = R/N is a regular /-algebra, whence each one-sided ideal of R is an
/-ideal. If P is a prime ideal of R, then R/P is totally ordered division ring. Since
RIP is algebraic over its center, a theorem of Albert (1940) or Herstein (1968),
p. 103 tells us that R IP is a field. Thus R /N is commutative, and hence locally
finite. Finally, since N and R/N are locally finite, so is R [Jacobson (1964),
p. 241].

The ring R is left rr-regular if for each a £ R there exists an integer n and
an i G R with a" = xa"*1; equivalently, each chain of principal left ideals
Ra D Ra2 D • • • is finite. It is not surprising that a unital left ir-regular l-ring R

with squares positive is an f-ring: To see this let a £ R* and let b = a v l . If
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JC £ R with b" = xbn+\ then (1 - xb)b" = 0. Since b" is not a zero divisor in JR +

and since (1 - xbfb" = 0, (1 - xbf = 0. Thus xb = 1 - (1 - xb) is invertible and
hence so is b. But then left (right) multiplication by b, and hence a, is a lattice
homomorphism of R.

Added in proof: The example (Z[JE], P,) of Theorem 1 appears as Example
1.7 in [T. M. Viswanathan (1969), 'Ordered Modules of Fractions', J. /. d. reine
u. angew. Math. 235, 78-107].
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