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Abstract

This study addresses challenges in sensor fusion for accurate and robust joint orientation estimation in human
movement analysis using wearable inertial measurement units (IMUs). A magnetometer-free refined Kalman filter
(KF) approach is presented and validated to address various indoor environmental constraints and challenges posed
by human movement. These include variability in motion and dynamics, as well as magnetic disturbances caused by
ferromagnetic materials or electronic interferences. Our proposed approach utilizes a Kalman-filter-based framework
that analyzes the accelerometer’s alignment with the Earth’s frame to estimate orientation and correct gyroscope
readings, eliminating reliance on magnetometer inputs. The algorithm was tested on both controlled robotic
movements and real-world upper-limb-motion-monitoring scenarios. First, a comparative analysis was conducted
on the double-stage Kalman filter (DSKF) and complementary filter using the collected robot motion encoder data.
The results demonstrated superior performance in orientation estimation, particularly in yaw measurements, where
the proposed method significantly improved accuracy. It achieved a lower root mean square error (RMSE = 2:447∘)
and mean absolute error (MAE = 2:006∘), outperforming both the DSKF and complementary filter approaches.
Additionally, the study’s findings were validated against a standard motion capture system, revealing error metrics
within generally acceptable ranges (≤ 12:4% of the joint range ofmotion [ROM]) and strong correlation coefficients
(r2 > 0:89). However, some deviations were observed during complex motion cycle intervals, highlighting oppor-
tunities for further refinement. These findings suggest that the proposed approach presents a promising alternative for
human joint orientation estimation in industrial settings with magnetic distortions.

1. Introduction

Inertial measurement units (IMUs) have gained significant interest in recent years as a wearable tool for
quantifying human movement. These systems are wireless, wearable, noninvasive and can provide real-
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time data, making them a potential alternative to traditional motion capture methods such as optical
systems. This technique is particularly used for monitoring the kinematics of the body’s articulated
structures composed of rigid segments (limbs or body parts) connected by joints (articulations). In such
applications, one IMU per segment is used for several applications, such as biomechanics, ergonomics,
and sports (Baklouti et al., 2024; Fain et al., 2024; Vigne et al., 2020). This approach also comes with
several challenges, such as the random nature of movements due to high number of degrees of freedom
and variable dynamics, which eliminate the possibility of relying on movement patterns to improve
motion estimation.

The fusion of gyroscope, accelerometer, and magnetometer data enables the estimation of joint angles
in articulated structures. Data from the magnetometer help to identify the system’s orientation relative to
the Earth’s magnetic north, necessitating adequate calibration. Thus, the reliability of joint angle
estimation becomes dependent on the magnetometer data and adequate calibration procedures, which
limit system versatility. Indoor environments containing ferromagnetic materials and electronic devices
can distort the local magnetic field, leading to orientation errors (Fan et al., 2017; Laidig and Seel, 2023).

Such magnetic disturbances compromise the accuracy and reliability of orientation data, making
magnetometer-dependent systems less robust in real-world conditions (Rogers et al., 2011). Furthermore,
magnetometer calibration is a complex and time-consuming process that often requires specialized
equipment and procedures. Even after calibration, magnetometer performance remains highly sensitive
to prolonged use and variations in the surrounding magnetic environment (Yadav and Bleakley, 2014).
This further highlights the need for methods that can provide consistent and accurate orientation estimates
without relying on the magnetic field.

To address these challenges, current research has explored sensor fusion techniques that exclude
magnetometers. These approaches often employ advanced algorithms to integrate data from multiple
gyroscope and accelerometer sensors and estimate orientation accurately. Madgwick et al. (2011)
developed a gradient descent algorithm that uses accelerometer data to correct gyroscope measurements.
This is achieved by iteratively minimizing the error between estimated and measured accelerations to
refine orientation estimates. In addition, Kim and Golnaraghi (2004) present a quaternion-based KF for
orientation estimation using only gyroscope and accelerometer data. Their method avoids the use of
magnetometers by relying on the relationship between the quaternion representing the platform orienta-
tion and the measurements of gravity from the accelerometers, combined with angular rate measurements
from the gyros. This approach demonstrated accurate and stable orientation estimates over long periods
without the need for magnetometers (Kim and Golnaraghi, 2004). Similarly, the versatile quaternion-
based filter (VQF) algorithm proposed by Laidig and Seel (2023) utilizes a quaternion-based orientation
estimation algorithm that integrates gyroscope and accelerometer data. This approach includes a novel
filtering technique for acceleration measurements and incorporates gyroscope bias estimation to enhance
accuracy, outperforming eight other literature methods (Laidig and Seel, 2023).

Despite these advancements, several critical gaps in orientation estimation methods remain unad-
dressed. The gradient descent method proposed by Madgwick et al., 2011, for example, relies on initial
assumptions that may not hold across various environments. Similarly, the method by Kim and Golnar-
aghi (2004) is based on the premise of stable and predictable motion patterns, which are often not present
in dynamic or complex environments, such as human motion analysis. This can lead to significant errors,
resulting in unreliable orientation estimates under challenging conditions (Bernal-Polo and Martínez
Barberá, 2017). Additionally, the VQF algorithm, noted for its high accuracy (Laidig and Seel, 2023),
requires meticulous parameter tuning and considerable computational resources. This may hinder its
deployment in real-time applications on devices with limited processing power. This algorithm also
assumes specific characteristics of magnetic disturbances and motion dynamics, potentially limiting its
effectiveness in diverse real-world scenarios. Furthermore, Zihajehzadeh and Park (2017) have
highlighted the challenges faced by various magnetometer-free filters, particularly in maintaining long-
term stability and accurate yaw estimation. These filters struggle to completely eliminate drift without
magnetometer data, impacting their effectiveness. While accelerometers perform well in correcting roll
and pitch orientations (Łuczak et al., 2022), they face difficulties with yaw angle corrections (Kim and
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Golnaraghi, 2004). Traditional yaw measurements utilize magnetometers to detect the Earth’s magnetic
field direction (Xiaoping et al., 2008); however, accelerometers, which measure linear acceleration and
gravitational forces, do not directly inform about the heading relative to the magnetic field (Halitim et al.,
2023), further complicating accurate orientation estimation using accelerometer data alone.

This study addresses these identified research gaps by developing sensor fusion algorithms adapted to
varying environments for human body joint angle estimation with minimal manual calibration. The focus
is on an adaptive orientation estimationmethod that functions effectively across diversemotion directions
and dynamics without requiring extensive calibration processes.Moreover, the approach is designed to be
robust in environments with fluctuating magnetic fields, ensuring reliable performance even in the
presence of magnetic disturbances.

Specifically, the research introduces a novel magnetometer-free approach that uses the Kalman filter to
enhance orientation estimation by analyzing the accelerometer’s alignment with the Earth’s frame. This
method’s accuracy is assessed against well-known algorithms, such as complementary filters and aDSKF,
and benchmarked against a reference sensor solution. Additionally, the study evaluates the practical
application of this method in upper limb motion monitoring. Comparisons are made with a standard
motion capture system to test the method’s integration and effectiveness in real-world scenarios. Through
statistical analysis, the study seeks to identify differences between the systems and determine the factors
that impact the accuracy of IMU-based measurements, thereby offering potential improvements in sensor
fusion technology for dynamic and complex environments.

2. Methods

2.1. Proposed magnetometer-free orientation estimation approach design

The primary objective of the proposed algorithm is to estimate the orientation of wearable IMUs in
environments prone to magnetic interference. Figure 1 showcases a simplified block diagram of the
proposed orientation estimation algorithm.

The inputs for the algorithm include:

• Gyroscope measurements ω, representing angular velocity readings along the three axes (X, Y, Z).
• Accelerometer measurements a, providing acceleration readings along the three axes (X, Y, Z).
• The time step dt, representing the sampling interval between consecutive measurements.
• The output of the algorithm is the state vector x (Equation 2.1). It includes:

Time Step (dt)

x0, P0, Q, R, F, H
Initialization Prediction

State Prediction (xk k 1).

Covariance Prediction (Pk k 1)

Correction

Accelerometer-Based Orientation

Estimation ( a, a, a)

Kalman Gain Calculation (K , Ka)
State Update (xk k, xk+1 k)

State Update

Gyroscope Measurements ( )

Accelerometer Measurements (a)

State Vector (x)
x=[ , , ,bx,by,bz]

Inputs

Output

Figure 1. Simplified block diagram of the proposed orientation estimation algorithm for wearable IMUs.
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• Orientation angles (roll ϕ, pitch θ, yaw ψ) relative to the Earth’s frame.
• Corrected gyroscope biases (bx, by, bz) along the three axes (X, Y, Z), accounting for errors in
gyroscope readings.

x= ϕ,θ,ψ,bx,by,bz
� �T

: (2.1)

The proposed algorithm utilizes a refined Kalman filter (KF) framework to fuse sensor data in three
iterative steps: initialization, prediction, and correction. These steps estimate the orientation angles and
correct gyroscope drift.

The algorithm begins by setting the initial values of the parameters, which are empirically tuned based
on sensor noise statistics and system requirements:

• An initial 6 × 1 state vector (x0) that represents the system’s initial orientation (roll ϕ, pitch θ, yawψ)
and gyroscope biases (bx, by, bz). Initially, all elements of this vector are set to zero, assuming no
prior knowledge of the orientation or biases.

• An initial 6 × 6 symmetric state covariance matrix (P0) that captures the uncertainty in the state
estimates. Each entry quantifies the variance or covariance of state variables, derived from the
standard deviations (stds) of roll, pitch, yaw, and gyroscope biases. This matrix is initialized based
on the expected noise characteristics of the sensors.

• A 6× 6 process noise covariance matrix (Q) that models uncertainty in the state prediction due to
sensor noise characteristics.

• A3× 3 diagonal measurement noise covariancematrix (R) that characterizes sensor noise during the
correction step.

• A 6× 6 state transition matrix (F) that models the evolution of the state over time. It incorporates
angular velocity integration and gyroscope bias dynamics, with the parameter dt representing the
sampling interval between measurements.

• A 3× 6 measurement matrix (H) that maps the state vector to the estimated tilt angles. It extracts the
relevant components of the state vector (roll, pitch, and yaw) for comparison with sensor data.

In the prediction step, the state x and covariance P are projected forward using the state transition
matrix F and process noise covariance Q, as described in Equations (2.2) and (2.3):

xk∣k�1 =F �xk�1, (2.2)

Pk∣k�1 =F �Pk�1 �FT þQ: (2.3)

The proposed method determines orientations from accelerometer data by aligning the sensor frame
with the global Cartesian frame (Earth’s frame), enabling the correction of gyroscope drift. When static,
accelerometer readings reflect the projection of gravity (g) along its axes. A rotation matrix Ralign aligns
the sensor frame with the global frame, as given in Equations (2.4) and (2.5):

~ωref =R
T
align � ~ω, (2.4)

~aref =R
T
align �~a: (2.5)

Here, ~ωref and ~aref represent angular velocity and acceleration in the Earth’s reference frame, respectively,
while ~ω and ~a represent their respective values in the sensor frame.
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By aligning the IMU sensor frame with the Earth’s reference frame, the algorithm computes the
accelerometer’s orientation angles (ϕa, θa, ψa, illustrated in Figure 2) relative to the Earth’s axes:

• ϕa (roll): Rotation about the Earth’s X-axis.
• θa (pitch): Rotation about the Earth’s Y-axis.
• ψa: Angle between the IMU’s Z-axis and the gravity vector, serving as yaw approximation.

These angles (Eqs. 2.6–2.8) are derived from transformed accelerometer measurements ~aref =
~aref ,x,~aref ,y,~aref ,z
� �

(Fisher, 2010; Pedley, 2013). In upper limb motion analysis, this yaw approximation
is particularly effective in biomechanically constrained scenarios due to anatomical coupling.Movements
such as shoulder elevation or forearm rotation inherently alter the IMU’s inclination relative to gravity,
correlating with task-specific orientation changes.

ϕa = arctan2
~aref ,yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~a2ref ,xþ~a2ref ,z

q
0
B@

1
CA (2.6)

θa = arctan2
~aref ,xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~a2ref ,yþ~a2ref ,z

q
0
B@

1
CA (2.7)

ψa = arctan2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~a2ref ,xþ~a2ref ,y

q
~aref ,z

0
@

1
A (2.8)

Following this, an update step refines estimates using gyroscope data, as described in Equations (2.9)
and (2.10). Here,Hω maps the state vector to gyroscope measurements, and Rω characterizes gyroscope
noise.

Kω =Pk∣k�1 �HT
ω � Hω �Pk∣k�1 �HT

ωþRω

� ��1
(2.9)

xk∣k = xk∣k�1þKω � ωk�Hω �xk∣k�1
� �

(2.10)

Figure 2. Schematic illustration of the accelerometer-derived inclination angles.
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Finally, the accelerometer-derived angles correct the state estimate via Equations (2.11) and (2.12).
Here,Ha maps the state vector to accelerometer measurements, andRa characterizes accelerometer noise.
By fusing accelerometer-derived angles with gyroscope data, the algorithm corrects gyroscope drift
across all three axes.

Ka =Pk∣k �HT
a � Ha �Pk∣k �HT

a þRa
� ��1

(2.11)

xkþ1∣k = xk∣kþKa �
ϕa
θa
ψa

2
64

3
75�Ha �xk∣k

0
B@

1
CA (2.12)

The Kalman gain matrices (Kω and Ka) weight the contributions of gyroscope and accelerometer data,
ensuring optimal fusion of sensor inputs.

2.2. Upper limb kinematics estimation from IMU data

To transform the orientation data from IMU sensors into joint angles, this study models the kinematics of
the upper extremity, focusing on the shoulder, elbow, and wrist joints, as illustrated in Figure 3.

Initially, the IMU sensors are aligned with the Earth frame. This alignment ensures that the sensor
frames are consistent with the anatomical frames. The relative quaternion, qrelative, between two consec-
utive segments represents joint variations due to movement, as shown in Equation (2.13). Here, q1 and q2
represent the orientations of the first and second segments, respectively.

qrelative = q
�1
1 �q2 (2.13)

1

2

1, 3

2

1

2

3

1 3

2

1

2

3

4

5

6

7

3

/

Figure 3. Representation of upper body kinematics, including the spine and upper limbs.
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The joint angles are defined as rotations around the X, Y, and Z axes. Depending on the rotation
sequence, joint angles θx, θy, and θz are estimated from the quaternions. For each joint, quaternions are
calculated based on their respective Euler sequences:

• For the shoulder joint, qshoulder is computed using the Y-X-Z rotation order, considering the thorax
and upper arm segments.

• For the elbow joint, qelbow is computed using the X-Z-Y rotation order, considering the upper arm
and forearm segments.

• For the wrist joint, qwrist is computed using the X-Y-Z rotation order, considering the forearm and
hand segments.

These computations assume the shoulder is initially abducted 90∘ in the frontal plane and the forearm is
fully pronated.

Given qrelative = qw,qx,qy,qz

h i
, the joint angles are calculated as shown in Equations (2.14)–(2.16).

Here, θ1 represents flexion/extension, θ2 represents abduction/adduction, and θ3 represents internal/
external rotation of the shoulder joint.

θ1 = arcsin 2 qwqx�qyqz
� �� �

(2.14)

θ2 = arctan2 2 qxqz�qwqy
� �

, q2w�q2x �q2y þq2z
� �� �

(2.15)

θ3 = arctan2 2 qxqyþqwqz
� �

, q2w�q2x þq2y �q2z
� �� �

(2.16)

For the elbow joint, the joint angles are calculated as shown in Equations (2.17)–(2.18). Here, θ4
represents flexion/extension, and θ5 represents pronation-supination rotation.

θ4 = arctan2 2 qwqxþqyqz
� �

, q2w�q2x þq2y �q2z
� �� �

(2.17)

θ5 = arctan2 2 qwqyþqxqz
� �

, q2wþq2x �q2y �q2z
� �� �

(2.18)

For the wrist joint, the joint angles are calculated as shown in Equations (2.19)–(2.20). Here, θ6 represents
flexion/extension, and θ7 represents adduction/abduction.

θ6 = arctan2 �2 qyqz�qwqx
� �

, 1�2 q2x þq2y
� �� �� �

(2.19)

θ7 = arctan2 �2 qxqy�qwqz
� �

, 1�2 q2y þq2z
� �� �� �

(2.20)

2.3. Experimental setup for the evaluation of the proposed method

The evaluation of the proposed algorithm for sensor orientation estimation is conducted in two distinct
phases. In Phase 1, the algorithm’s performance is assessed against renowned sensor fusion algorithms
using controlled robotic movements. In Phase 2, the algorithm is tested in a real-world scenario using a
wearable IMU-based system for human motion analysis. The 9-degree of freedom (DoF) MPU-9250
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micro-electromechanical systems (MEMS)-based IMU used in this study includes: A 3-axis accelerometer
( ± 16g range), a 3-axis gyroscope ( ± 2000∘=s range), and a 3-axis magnetometer ( ± 4800μT range). This
sensor was employed in both the controlled robotic experiments and the human motion analysis trials.

2.3.1. Phase 1: Controlled environment testing
In Phase 1, the 9-DoF IMU is mounted on the end effector of a 5-axis SCORBOT ER-9 PRO robot. The
X-, Y-, and Z-axes of the sensor are aligned with those of the robot (Figure 4), ensuring that the IMU’s
orientation accurately reflects the rotationalmotions of the robot’s end effector. The setup, connected to an
ARDUINOMega2560microcontroller, facilitates the capture of rotation data around the three axes of the
sensor. A total of 20 repetitions are performed for each rotational axis to evaluate the algorithm’s accuracy.

2.3.2. Phase 2: Human motion analysis
The second phase involves implementing the algorithm in a wearable IMU-based system for upper limb
motion capture. The system comprises seven IMU nodes attached to the upper arm, forearm, and hand
segments, operating at a sample rate of 10Hz. Three healthy female volunteers (age: 28 ± 2 years; height:
167 ± 3:5 cm;weight: 65:5 ± 3 kg) participated in the acquisition session. Theywere equippedwithwearable
sensors and 28 reflective markers. The 3D trajectories of the markers were collected at 100Hz using a Vicon
Optical Motion Capture (OMC) system with 38 cameras (Vicon, Oxford Metrics Ltd, Oxford, UK).

After a 30-s T-pose for calibration, participants performed 10 repetitions of upper body movements
representing the key degrees of freedom. These included: 3 movements at the shoulder: θ1 (flexion/
extension), θ2 (abduction/adduction), and θ3 (internal/external rotation); two movements at the elbow: θ4
(flexion/extension) and θ5 (pronation/supination); and twomovements at thewrist: θ6 (flexion/extension)
and θ7 (radial/ulnar deviation). The aim was to measure the movements within each DoF individually.

Data from both systemswere compared to assess the validity of the IMU-based system against the gold
standard OMC system. The data obtained from the OMC system were processed using the Plugin-Gait
(PiG) upper body model for kinematic calculations, as illustrated in Figure 5.

2.4. Data analysis

2.4.1. Error analysis compared to encoders and filtering techniques
IMU sensor calibration, orientation estimation, and encoder measurement calculations were performed
according to the study by Baklouti et al. (2022). Statistical measures were used to compare the IMU

Robot Frame

Axis 1

Encoder 1

Axis 2

Encoder 2

Axis 5

Encoder 3

IMU Frame

x

z

y

Roll
Pitch

Yaw

Figure 4. Experimental setup with the MPU-9250 IMU mounted on the SCORBOT ER-9 PRO robot.
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system’s performance against the robot’s reference encoder measurements (considered as the ground
truth). Additionally, comparisons were made with the DSKF and complementary filter for orientation
estimation around the X, Y, and Z-axes.

TheDSKF, as described in Sabatelli et al. (2013), employs a two-step correction process for orientation
estimation using quaternions. During the first stage, roll and pitch angles are corrected by comparing the
expected and measured gravity vectors from the accelerometer. In the second stage, the yaw angle is
refined using magnetometer data.

The complementary filter integrates the high-frequency response of gyroscope data with the low-
frequency response of accelerometer and magnetometer data. It uses the accelerometer to correct roll
and pitch angles and the magnetometer to correct the yaw angle. The filter is formulated as shown in
Equation (2.21):

bθt = α bθt�1þωtΔt
� �

þ 1�αð Þθaccel=mag,t (2.21)

wherebθt is the estimated orientation at time t,bθt�1 is the estimated orientation at the previous time step,ωt

is the angular rate measured by the gyroscope, Δt is the time step, θaccel=mag,t is the orientation calculated
from the accelerometer and magnetometer data, and α is the filter gain, typically chosen to balance the
contributions of the gyroscope and accelerometer/magnetometer. In this study, α = 0:9.

The metrics utilized included the correlation coefficient rð Þ, which indicates the linear relationship
strength and direction between the IMU and encoder measurements; the coefficient of determination r2ð Þ,
representing the variance proportion in encoder measurements explained by the IMU data; RMSE,
measuring the average magnitude of errors; intra-class correlation coefficient (ICC, two-way mixed
effects), assessing the measurement reliability and consistency; lower limit of agreement (LoA), provid-
ing the range capturing most differences between IMU and encoder measurements, indicating agreement;
mean absolute error (MAE), computing the average absolute differences; and normalized mean bias error
(NMBE), reflecting the average bias of the IMU measurements relative to the encoders.

2.4.2. Kinematic analysis using statistical parametric mapping
To assess the agreement between IMU and VICON (considered as the ground truth) measurements, a set
of metrics was employed, including RMSE, MAE, NMBE, and r2. These metrics were further

(a) (b)

38
 C

am
er

as

Computer 1

OMC-based system data

stocking and processing

Computer 2

IMU-based system data

stocking and processing

Markers landmarks
IMU landmarks

Figure 5. Visual representation of the experimental setup: (a) schematic Illustration and (b) real-life
experimental setup of IMU-based and OMC-based systems.
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contextualized by considering the ROM for each joint, allowing for a more nuanced interpretation of the
error measures. To statistically evaluate potential differences between IMU and VICON measurements
for each DoF, a curve analysis was performed using statistical parametric mapping (SPM) with a two-
tailed paired t-test (Flandin and Friston, 2008). This analysis included a two-tailed paired t-test to compare
joint angles from both systems, setting a significance level at α = 0:05. Data were synchronized and time
normalized withinMATLAB after aligning to the first movement peak, formatted into 101 data points (0–
100%). The SPM{t} statistic was computed at each time node to determine the level of similarity between
the curves. Regions where SPM{t} exceeded the critical t-value, indicating statistically significant
differences, were identified and analyzed to pinpoint phases in the movement cycle with notable
discrepancies.

3. Results

3.1. Error analysis results

The performance of sensor fusion methods, double-stage Kalman, complementary, and the proposed
filters, was evaluated across different orientations: Roll, pitch, and yaw. Figure 6 shows a sample of the
experiment result. The results are summarized in Table 1.

All methods demonstrated very high correlation coefficients (R > 0:997) and coefficients of determi-
nation (r2 > 0:995) across all orientations, indicating strong linear relationships and predictive accuracy
with the reference data. However, our proposed magnetometer-free method outperformed the other
methods in terms of RMSE andMAE, especially in the yaw orientation. This suggests that, in a controlled
environment, it provides better accuracy in estimating true values. Additionally, the proposed method
exhibited the lowest NMBE across all orientations, indicating less measurement bias relative to the
reference. The LoA analysis also highlighted the superior performance of the proposedmethod. It showed
narrower ranges between the lower and upper LoAs, particularly in the yaw orientation, which suggests
better agreement with the reference measurements.

3.2. Validity study results

Figures 7–9 summarize the results of the data analysis phase comparing IMU-derived measurements to
the VICON PiG model. All IMU traces presented in these figures were processed using the proposed
approach. The std metrics reported in these figures reflect the variability between subjects and repetitions
during the experimental trials. Specifically, it quantifies the differences in joint angle measurements
across the volunteers performing ten repetitions of upper limb movements. In the figures, the notation t∗

refers to the critical t-value, which identifies statistically significant differences between the IMU-based
and reference VICON systems.

The RMSE across all joints varied from 5.352° for wrist adduction-abduction to 12.075° for elbow
pronation-supination. The MAE ranged from 3.688° for wrist adduction-abduction to 7.501° for elbow
flexion-extension. The NMBE showed a minimal value of �0.839 in wrist flexion-extension, indicating
potential underestimation, to a maximum of 0.143 in elbow flexion-extension, suggesting slight over-
estimation. These error metrics fall within 3–12.4% of the ROM (Namdari et al., 2012; Raiss et al., 2007)
of the studied joints. The r2 values, reflecting the correlation between the IMU and VICON data, were
strongly positive, ranging from 0.890 in wrist adduction-abduction to 0.974 in shoulder flexion-
extension.

In shoulder joint motion monitoring, the comparative evaluation of IMU- and OMC-based systems
across various DoF using SPM analysis is depicted in Figure 7. The analysis shows no significant
differences in shoulder DoF θ1, θ2, and θ3 between the IMU-based and the reference Vicon OMC system
across all trials. In elbow joint motion monitoring, Figure 8 shows that there were no significant
differences observed in elbow θ4 DoF during flexion-extension trials. However, significant differences
were found in forearm θ5 DoF during pronation-supination trials between 44 and 59% of the motion
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cycles. For the wrist joint motion monitoring, Figure 9 shows that significant differences in θ6 DoF were
observed between 15 and 33% during flexion-extension, and θ7 DoF between 5 and 6.5% and 44 and 57%
during adduction-abduction motion cycles.
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Figure 6. Sample results of orientation estimation for (a) Roll, (b) Pitch, and (c) Yaw trials on a
SCORBOT ER-9 Pro robot, comparing the estimates of a double-stage Kalman filter, a complementary

filter, and our proposed approach against the robot’s encoder reference measurements.
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4. Discussion

In this study, we proposed a novel magnetometer-free approach integrating the refined KF to correct
orientation estimation. This approach aligns with clinical biomechanical practices prioritizing relative
segment angles (e.g., arm elevation) over absolute heading (Cutti et al., 2007). While pure yaw about the
global vertical axis remains unobservable without magnetometers, studies confirm inclination-based
metrics quantify functional ranges (e.g., shoulder abduction) with errors 5∘ (Picerno et al., 2008). The
method’s trade-off between sensor limitations and anatomical realities has been validated in applications
ranging from stroke rehabilitation to athletic training, demonstrating its effectiveness for upper limb
motions characterized by inclination-linked coupled kinematics rather than isolated yaw (Zhou et al.,
2006).

Table 1. Error analysis of sensor fusion methods: double-stage Kalman, complementary, and proposed filters Across roll, pitch, and
yaw orientations

Metric Kalman Complementary Proposed

Roll R ( ± std) 0.9992 ( ± 0.0003) 0.9993 ( ± 0.0003) 0.9992 ( ± 0.0003)
r2 ( ± std) 0.9985 ( ± 0.0006) 0.9985 ( ± 0.0006) 0.9985 ( ± 0.0006)
RMSE (deg ± std) 2.049 ( ± 0.262) 2.954 ( ± 0.324) 1.639 ( ± 0.275)
MAE (deg ± std) 1.657 ( ± 0.226) 2.460 ( ± 0.300) 1.317 ( ± 0.218)
NMBE ( ± std) 0.0276 ( ± 0.0043) 0.0503 ( ± 0.0081) 0.0202 ( ± 0.0054)
Lower LoA (deg ± std) –4.414 ( ± 0.579) –5.870 ( ± 0.574) –3.549 ( ± 0.609)
Upper LoA (deg ± std) 1.845 ( ± 0.418) 1.203 ( ± 0.496) 1.672 ( ± 0.546)

Pitch R ( ± std) 0.9976 ( ± 0.0009) 0.9977 ( ± 0.0009) 0.9977 ( ± 0.0009)
r2 ( ± std) 0.9953 ( ± 0.0018) 0.9953 ( ± 0.0018) 0.9953 ( ± 0.0017)
RMSE (deg ± std) 3.407 ( ± 0.716) 3.471 ( ± 0.660) 3.076 ( ± 0.594)
MAE (deg ± std) 2.803 ( ± 0.604) 2.873 ( ± 0.600) 2.554 ( ± 0.525)
NMBE ( ± std) 0.0418 ( ± 0.0223) 0.0414 ( ± 0.0192) 0.0312 ( ± 0.0198)
Lower LoA (deg ± std) �3.485 ( ± 1.031) �3.742 ( ± 0.957) �3.764 ( ± 1.009)
Upper LoA (deg ± std) 7.245 ( ± 1.519) 7.462 ( ± 1.424) 6.577 ( ± 1.367)

Yaw R ( ± std) 0.9986 ( ± 0.0013) 0.9986 ( ± 0.0014) 0.9986 ( ± 0.0015)
r2 ( ± std) 0.9972 ( ± 0.0027) 0.9972 ( ± 0.0027) 0.9971 ( ± 0.0030)
RMSE (deg ± std) 2.998 ( ± 0.667) 3.042 ( ± 0.613) 2.447 ( ± 0.680)
MAE (deg ± std) 2.491 ( ± 0.516) 2.473 ( ± 0.496) 2.006 ( ± 0.566)
NMBE ( ± std) 0.0522 ( ± 0.0093) 0.0504 ( ± 0.0081) 0.0370 ( ± 0.0054)
Lower LoA (deg ± std) �1.357 ( ± 0.913) �1.764 ( ± 0.933) �1.875 ( ± 1.190)
Upper LoA (deg ± std) 6.006 ( ± 1.548) 6.248 ( ± 1.431) 5.164 ( ± 1.616)

Time (%)

(a)

Time (%)

(b)

Time (%)

(c)

SPM{t}

t*

Difference Region

Bottom Figures Legend

Upper Figures Legend

RMSE: 10.931° ±2.5
MAE: 7.015° ±1.5
NMBE: -0.037 ±0.1
r²: 0.974 ±0.006

RMSE: 8.204° ±3.8
MAE: 4.971° ±3.8
NMBE: -0.136 ±0.2
r²: 0.955 ±0.02

RMSE: 10.008° ±2.1
MAE: 5.79° ±0.8
NMBE: -0.029 ±0.3
r²: 0.945 ±0.003

Figure 7. Comparative evaluation of IMU- and OMC-based systems for (a) shoulder flexion-extension
θ1, (b) shoulder adduction-abduction θ2, and (c) shoulder internal-external rotation θ3 DoF with SPM

Analysis.
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While extended Kalman filter (EKF) algorithms are typically preferred for human motion estimation
due to their ability to handle nonlinear dynamics (Sabatini, 2011), our approach employs a standard KF
through careful system design. Nonlinear accelerometer-derived orientation angles (ϕa,θa,ψa) are pre-
computed and treated as direct linear measurements within the filter, eliminating the need for EKF-based
Jacobian linearization. The measurement matrix H directly maps the state vector (containing orientation
angles and gyroscope biases) to these preprocessed measurements, as validated in lightweight inertial
fusion frameworks (Valenti et al., 2016). The gyroscope-driven prediction step utilizes a first-order
kinematic model, which is valid for small Δt by avoiding nonlinear error growth (Luinge and Veltink,
2005). This design reduces computational complexity to O n3ð Þ compared to EKF’s O n3ð Þ plus Jacobian
calculations, a critical advantage for real-time wearable IMU systems with limited processing resources
(Särkkä, 2013). By decoupling nonlinear operations from the filtering process and including linearized
state transitions, our approach ensures sensor orientation estimation while prioritizing computational
efficiency.

In controlled robotic movements, the proposed magnetometer-free orientation estimation approach
showed a superior performance, particularly in yaw estimation. This can be attributed to its combination
of gyroscope and accelerometer data fusion within a KF framework, along with its direct alignment of the

(a) (b)

SPM{t}

t*

Difference Region

Bottom Figures Legend

Upper Figures Legend

Time (%) Time (%)

RMSE: 9.285° ±1.4
MAE: 5.666° ±0.7
NMBE: -0.839 ±2.1
r²: 0.955 ±0.009

RMSE: 5.352° ±2
MAE: 3.688° ±1.4
NMBE: -0.354 ±1.1
r²: 0.890 ±0.073

Figure 9. Comparative evaluation of IMU- and OMC-based systems for (a) wrist flexion-extension θ6,
and (b) wrist adduction-abduction θ7 DoF with SPM Analysis.

(a) (b)

Time (%) Time (%)

SPM{t}

t*

Difference Region

Bottom Figures Legend

Upper Figures Legend

RMSE: 9.389° ±3.5
MAE: 7.501° ±3.6
NMBE: 0.143 ±0.1
r²: 0.953 ±0.039

RMSE: 12.075° ±2.6
MAE: 6.270° ±2.4
NMBE: -0.199 ±0.5
r²: 0.955 ±0.009

Figure 8. Comparative evaluation of IMU- and OMC-based systems for (a) elbow flexion-extension θ4,
and (b) forearm pronation-supination θ5 DoF with SPM Analysis.
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sensor frame with the global frame using accelerometer-derived angles. The proposed method includes
the strengths of the gyroscope at capturing short-term dynamic changes in orientation and accelerometer
at capturing long-term dynamic changes in orientation (Chen and Rong, 2023; Trinh et al., 2020). By
fusing these measurements, the algorithm compensates for the inherent limitations of each sensor, such as
drift in gyroscope readings and noise in accelerometer data.

The traditional methods, however, rely onmagnetometers for yaw correction,making them susceptible
to magnetic disturbances (Chen and Rong, 2023). The proposed method’s independence from magne-
tometer data contribute to more accurate yaw estimates, as evidenced by the lower RMSE, MAE, and
NMBE values. This robustness against disturbances makes it suitable for diverse environments, including
industrial applications. In addition, in real environments such as human motion, the variability in error
metrics for the joints, observed across different movements, was noted to be within 3–12.4% of the joints’
ROM. This variability falls within acceptable limits for various motion capture technologies (Morrow
et al., 2017; Schiefer et al., 2014; Song et al., 2023), though it is unsuitable for applications requiring high
precision (Berner et al., 2020; Nakano et al., 2020). Additionally, the r2 values ranged from 0:890 to
0:974, indicating a strong positive correlation and highlighting a high degree of correlation between IMU
and VICON data.

The variability in IMU-based system measurements is further demonstrated by the SPM analysis
where motion cycle intervals with significant differences are identified. Namely, a significant difference
was identified between IMU-based and OMC for the elbow joints motion cycles between 44 and 59% in
θ5 of the cycles of forearm pronation-supination, corresponding to the return to the neutral position in the
pronation phase.

Similarly, a significant difference between the two technologies was identified for the wrist joint. This
difference is specifically in the wrist joints between 15 and 33% of wrist flexion-extension cycle θ6,
corresponding to the maximal flexion.

A significant difference was also identified for the wrist joint in θ7, where the IMU-based system
underestimated the joint angle value between 5 and 6.5% of the motion cycle, corresponding to the
beginning of the abduction phase, and between 44 and 57% of the motion cycle, corresponding to the end
of the abduction phase. This could be related to the inherent nature of IMU as a similar observation has
been done by Mittag et al., 2020, who reported that IMU may not always capture the full range of wrist
abduction, suggesting underestimation in some cases.

The variations observed among subjects in the precision of the joint measurements using the IMU-
based system may be attributed to intersubject variations in sensor placement and movement-induced
artifacts stemming from the sensor attachment methodology, as previously established in the literature
(Wang et al., 2022).

Furthermore, it is noteworthy to mention that the precision of measurements obtained using IMU
technology may decrease as the movement speed increases (Cooper et al., 2009). It is important to note
that variations between the joint angles obtained using IMU-based and OMC technology are an inherent
result of the different definitions of the segment axes and the distinct effects of soft tissue artifacts on the
measurements (Cutti et al., 2007).

While OMC systems have been established to provide reliable ground truth, it is important to
acknowledge that, like all noninvasive techniques, OMC systems are subject to soft tissue artifact effects.
According to Morrow et al. (2011), the precision of a standard OMC system is within 3° of angular
accuracy for human kinematics.

5. Conclusion

This study has addressed the critical challenges in sensor fusion for wearable IMU by proposing a
magnetometer-free KF approach for robust and accurate orientation estimation. Traditional IMU-based
systems, which often rely onmagnetometers, face significant limitations due tomagnetic interference and
the need for extensive calibration processes. By eliminating the dependency on magnetometers, our
approach enhances the versatility and reliability of IMU systems in diverse environments.
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The proposed method effectively integrates gyroscope and accelerometer data using a refined KF,
aligning the sensor frame with the Earth’s frame. This approach demonstrated superior performance
across multiple metrics. In controlled robotic movements, the novel algorithm achieved an RMSE of
2.447° and MAE of 2.006° for yaw orientation, outperforming established techniques. The proposed
method also showed the lowest NMBE across all orientations, indicating minimal measurement bias
relative to reference data. The LoA analysis confirmed the results of the proposed method, with narrower
ranges between the lower and upper LoAs, especially in yaw orientation, suggesting better agreement
with reference measurements.

In real-world applications, such as upper limb motion monitoring, the variability in error metrics for
joint measurements was within 3–12.4% of the joints’ ROM. This variability is acceptable for many
motion capture technologies, although further refinement is needed for high-precision applications. The
method demonstrated low error metrics and a strong positive correlation with VICON data, highlighting
the high degree of agreement between the IMU-based and the OMC systems.

The SPM analysis further revealedmotion cycle intervals with significant differences between the IMU-
based system and the OMC system. Short but significant intervals of differences in joint motion cycles were
observed in the elbows and wrists. These discrepancies are likely related to the inherent nature of IMU, as
they sometimes underestimate or overestimate joint angles, particularly in complex movements.

The proposed magnetometer-free KF approach offers a promising alternative for accurate and reliable
orientation estimation in environments with magnetic distortions. By minimizing manual calibration
requirements and incorporating detailed algorithmic refinements, this method has significant potential for
improving sensor fusion technology in dynamic and complex settings. Future research will focus on
optimizing the algorithm for real-time applications on devices with limited processing power and
enhancing the method’s accuracy and stability for diverse motion dynamics.
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