
THE CLASSIFICATION OF ALGEBRAS BY 
DOMINANT DIMENSION 
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1. Introduction. Nakayama proposed to classify finite-dimensional 
algebras R over a field according to how long an exact sequence 

0 -> R -> Xx - > . . . - > Xn 

of projective and injective i^-i^-bimodules Xt they allow. He conjectured 
that if there exists an infinite sequence of this type, then R must be quasi-
Frobenius; and he proved this when R is generalized uniserial (17). 

Tachikawa considered similar sequences where the Xt are projective-
injective i^-right-modules, and he called the biggest possible n the dominant 
dimension of R (19). I t is well known that the QF-3 algebras are just those 
that allow a positive n, in both cases (7; 8). 

Morita has shown that the endomorphism-ring R of a fully faithful module 
X over an arbitrary algebra A is QF-3 and that every QF-3 algebra is related 
to one of that type in a certain way (13). Tachikawa proved Nakayama's 
above conjecture for endomorphism-rings R of fully faithful modules X over 
generalized uniserial rings A (19). 

Our main results are as follows: (1) Nakayama's dimension, Tachikawa's 
(right) dominant dimension, and the analogously defined left dominant 
dimension are equal for any algebra R. (2) The class dom. dim. R > 2 is 
just the class of endomorphism-rings R of fully faithful (finitely generated) 
modules over arbitrary algebras A. (3) The dominant dimension can be 
characterized, in two different ways, by the Ext-functors. (4) Nakayama's 
above conjecture holds if R is the endomorphism-ring of a fully faithful 
module which has an ultimately closed projective resolution (in the sense 
of Jans (8); this generalizes the results of Nakayama and Tachikawa on the 
subject). 

Most methods used here will work in more general situations, e.g. for rings 
with suitable chain conditions instead of algebras. We may come back to 
this question later. 

2. Preliminaries. All rings under consideration are finite-dimensional 
algebras with unit element over a field K; all modules are unitary and finitely 
generated. The K-dual Hom^(ilf, K) of an i^-module M is denoted by M*; 
it is an i^-module on the opposite side. 
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ALGEBRAS 399 

Definition. For any i^-module M, we say that its dominant dimension is 
greater than or equal to n, dom. dim. M > n (where « is a non-negative 
integer), if there exists an exact sequence 0 —> ikf—> Xx —>...—> Xn with 
^-modules Xt which are projective and injective. 

Such a sequence can be considered as the beginning of an injective reso­
lution. In general, any jR-module M possesses a so-called minimal injective 
resolution (determined up to isomorphisms) 

which is constructed by taking as Ço the injective hull of M, and as Qn+i 
the injective hull of the cokernel Cok(aJ (5). 

LEMMA 1. Let 

0 -» M -> Qo -> Qi 

be the minimal injective resolution and 

be an arbitrary injective resolution of the R-module M. Then there exist R-modules 
Z0, Zi, . . . such that F0 = Qo 0 Z0, Yn9*Qn® Zn® Zn_i for n > 1, and 
Cok(fe) ^ Cok(a*) 0 Zk for k > 0. Zk = 0 fto/fo if and only if Yk is the 
injective hull of Cok(ft_i). 

Proof. The injective hull is a direct summand in every injective extension; 
hence F0 = Ço 0 Zo and Z0 = 0 if and only if F0 actually is the injective 
hull. The map /30 and its cokernel may be written as 

M™Q0-+Cok(a0) 

e 1 © 
Zo —> Z i 

The injective hull of Cok(/30) = Cok(a0) 0 Z0 is Qi 0 Z0; hence we get 
Fi ^ Ci 0 Zo 0 Zi, Zi = 0 if and only if Yx is the injective hull of Cok(0o), 
and the map fix and its cokernel may be written as 

eo^ei->cok(ai) 
© © j © 
Zo . Z\ —» Zi 

\ ® 0 

Again, the injective hull of Cok(0i) = Cok(«i) 0 Z\ is Q2 0 Zi, so we 
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obtain F2 = Qi © Zx © Z2 and Z2 = 0 if and only if F2 is the injective 
hull of Cok(jSi). The map fc and its cokernel are 

<2i " <22->Cok(a2) 

e e j e 

e\i e 
Zo\o Zl 

\ 

From here on, everything keeps repeating and the lemma is proved. 
Remark. The lemma immediately implies that if dom. dim. R > n, then 

the first n modules Qt of the minimal injective resolution of M are projective. 
Definition. The dominant dimension of the right (left) i^-module R will 

be called the right (left) dominant dimension of the algebra R, r-dom. dim. R 
(1-dom. dim. R). The dominant dimension of the i?-i?-bimodule R will be 
called the Nakayama dimension of the algebra R, N-dim. R/K.1 

Remark. Obviously 

N-dim. R/K < min(r-dom. dim. R, 1-dom. dim. R). 

It is known that the following four statements are equivalent: R is QF-3; 
N-dim. R/K > 1; r-dom dim R > 1; 1-dom. dim. R > 1 (18). 

3. The class dom. dim. R > 2. We first recall some known facts about 
QF-3 algebras.2 A dominant right-ideal of the algebra R is defined to be a 
right-ideal generated by an indecomposable idempotent, which is injective. 
Let ei, . . . , ek be orthogonal idempotents such that e\ R, . . . , ek R are non-
isomorphic dominant right-ideals which represent all isomorphism types of 
dominant right-ideals; further set e = ei + . . . + ek. Then R is QF-3 if and 
only if the projective-injective i^-right-module eR is faithful. 

That being the case, the ei^e-left-module eR is fully faithful;3 denote its 
endomorphism-ring by Rr. As eRe is the endomorphism-ring of eRR, R' is 
the second commutator of eRR and R may be considered as a subring of Rr 

with the same unit, in a natural way. Rf is QF-3. We finally notice that eRe 
is self-basic. 

^ o r e precisely, we mean the i^-module R, Re = R®KR° being the enveloping algebra of 
R. This notion depends not only on R but also on K. 

2See, for example, (20; 21; 13, § 17). The theory of QF-3 algebras can be simplified by using 
some facts from the structure theory of injective modules, e.g. that an indecomposable injective 
is the injective hull of each of its non-zero submodules, especially of its socle, which is simple 
(10). 

3A module AX is called fully faithful if every indecomposable projective or injective A -left-
module is isomorphic to a direct summand of X. 
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THEOREM 2. The following statements are equivalent for any algebra P : 4 

(1) r-dom. dim. P > 2; (2) P is QF-3 and R = R'; (3) R is the endomor-
phism-ring of a fully faithful left-module AX. 

Proof. The implication from (1) to (2) has been shown by Tachikawa 
(19, Theorem 1.4). (2) implies (3) trivially, by the preceding remarks. 

Assuming (3), let . . . —» Pi —» P 0 —» X —» 0 be a (finitely generated) pro­
jective resolution of the A -module X. We get the exact sequence 

0 -> HomA(X, X) = R -> HomA(P0, X) -> HomA(Px, X) 

of right-P-modules and P-homomorphisms. XR is projective and injective (13, 
Theorem 17.2); hence so are HomA(P0, X)R and ¥iomA(P1} X)R. Therefore 
dom. dim. R > 2. 

Remark. In the situation of Theorem 2, the algebra A and the module AX 
are essentially determined by R. First of all, 4̂ may be replaced by its basic 
algebra eAe and X by eX without changing the endomorphism-ring; hence 
A may always be chosen self-basic. But then R determines A up to a ring-
isomorphism and AX up to a semilinear isomorphism (15, Theorem 3.3). 

Particularly if A is self-basic, we have a semilinear isomorphism from AX 
to eReeR with a ring-isomorphism from A to ePe. 

LEMMA 3. Let R be the endomorphism-ring of the fully faithful left-module 
AX. Then r-dom. dim. R > n + 2 if and only if Extl(X, X) = 0 /or a// 
1 < jfe < » (n = 0, 1, 2, . . .). 

Proo/. Assume Ext! (X, X) = 0 for all 1 < ife < «, and let 

. . . - > P i - > P o - > - X ' - > 0 

be a projective resolution of AX. We obtain the exact sequence 

0 -> HomA(X, X) = P.-> HomA(P0, X) - > . . . - • HomA(P„, X) 

->HomA(Pn + i , X) 

of P-right-modules and P-homomorphisms, and the modules HomA(Pu X)R 

are projective and injective; hence r-dom. dim. R > n + 2. 
Conversely, let r-dom. dim. P > w + 2 and 1 < m < w such that 

Ext l(X, X) = 0 for all 1 < k < m. We shall show that Ext^(X, X) = 0. 
If Pm —> . . . —•» P 0 —» 4Z —» 0 is exact and the Pt are projective, then 

0-+HomA(X,X)B = RB-* . . .2>HomA(Pn,X)B 

is exact and the HomA(P^ X)R are projective and injective. Denote by E 
the injective hull of the cokernel of a; then 

4The counterexample given by Tachikawa (19, p. 252) is incorrect. The implication from 
(2) to (1) has been proved by Mochizuki (12): our proof of this is much shorter. 
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0 -> RR -> HomA(P0, - * ) * - » . . . - > HomA(Pw , X)R -> P * 

is exact and E is injective and projective, for E is the direct sum of a direct 
summand of HomA(Pw , X)R and Qm+i where 0 —> R —> Ç0 —» (?i —*. • • is the 
minimal injective resolution of P# (Lemma 1), and these two modules are 
both projective. 

Now the injectivity of XR yields the exact sequence 

Horn* (£, X) -> Hom i2(Hom^(Pw, Z ) J ) - > . . . ^ H o m ^ P , X) -> 0 

of lefWl-modules. Since the AP t are (finitely generated) projective and AX 
is fully faithful, and therefore a generator, we obtain the left-^4-module-iso­
morphisms 

Hom i2(HomA(P„ X), X) ÊË H o m ^ X , X) ®APt^A ®A Pt ^ Pt 

and the exact sequence 

H o m i 2 ( P , X ) - > P w - + . . . - * P 0 ^ X - > 0 . 

ERl being projective, injective (and finitely generated) is a finite direct 
sum of indecomposable projective injective modules, i.e. dominant ideals. 
Since XR is projective, injective, and faithful, it contains all isomorphism 
types of dominant ideals as direct summands, so we get 

ER ©* ^ ®XR 

and 
AHomR(E, X) 0 * ^ 0 JHom^Ur, X) ^ ®A A 

and Hom f i(£, X) is a projective ^4-module. Hence the above sequence is part 
of a projective resolution for AX. 

Applying HomA (_, X) we obtain 

0 -> P -> HomA(P0 , X) -+ . . . -> HomA(Pw , X) 

-> HomA(Hom i2(P, X) , X) ^ £ ® a HomA(X, X) ^ P , 

a sequence which is exact by construction of P. But its homology is 

Ext l (X, X) , 1 < k < m; 

hence Ext^(X, X) = 0. 

THEOREM 4. r-dom. dim. R = 1-dom. dim. R for any algebra R. 

Proof. Assume r-dom. dim. R > 2. By Theorem 2, R is the endomorphism-
ring of a fully faithful left-yl-module AX, and r-dom. dim. R is characterized 
by ExtI(X, X) . Obviously R ^ HomA(X*, X*) where X* is the P-dual of 
X, which is a fully faithful A -right-module.5 Hence 1-dom. dim. R > 2, and 
Extl (X", X) ^ Extl (X*, X*) implies that r-dom. dim. R = 1-dom. dim. R 
in this case. 

5Endomorphism-rings always operate on the opposite side of the module. 
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A similar argument holds if 1-dom. dim. R > 2. If both r-dom. dim. R and 
1-dom. dim. R are smaller than two, then either R is QF-3 and we have 
r-dom. dim. R = 1 = 1-dom. dim. R, or R is not QF-3 and both dimensions 
are zero. 

Remark. Several results by Tachikawa (19), e.g. Theorems 1.8 and 2.8, 
are immediate consequences of Lemma 3. 

4. All dimensions are equal. We start with several lemmas which may 
be of interest by themselves. 

LEMMA 5. Dominant dimension and Nakayama dimension are invariant with 
respect to arbitrary (not necessarily finite-dimensional) ground-field-extensions. 

Proof. Let MR be an i?-module and F an extension-field of the ground-field 
K. An exact sequence 0 —> M —» Xi —*...—> Xn of i£-modules yields an 
exact sequence 

0 -> M ®K F-> X1 ®K F-* . . . -> Xn ®K F 

of (R ®K F)-modules; and if XR is injective and projective, then so is 
X 0 FB®F. (If X is i?-injective, it is an indirect summand in H o m ( ^ , XK); 
hence X (g) F is an (R ® F)-direct summand in 

Hom(RK, XK) ® F ^ HomCR ® FF, X <g> FF) 

which is (R ® F)-injective.) 
Conversely, if we have an exact sequence 0 —> M ® F —» Fi —>. . . —» Yn 

with injective-projective (R ® ^-modules Yi} then looking at it as a sequence 
of i^-modules only, we obtain 

M ® F^ 0 1 = Af 0 M' and 0 ^ i e i ' - > F i - > . . . - > 7 „ , 

where the Yt are i^-projective-injective (3, p. 166). Let 0—> Af—> Ci —> (?2 —». . . 
and 0 —•> M' —> Q[—> Q'2—> . . . be minimal injective resolutions; then 

0 -> M -><2i -» Q2 -> . . . 
e e e 
M'-><2 ' i -*<2 ' 2 -+ . . . 

is a minimal injective resolution for M © ikT. Hence Yt = Qt © <2'z © * 
(Lemma 1) and Q* is ^-projective (1 < i < n). 

Taking MR = RB, we obtain dom. dim. R = dom. dim. R ® F. Replacing 
R by the enveloping algebra Re and choosing ikf^ = BRRj we use 

^ ® z F ^ i ^ ® ^ 0 f e F ® ^ È (R ®KF) ®F (R ®K F)° = (i? ®X JP)e 

and we get N-dim. R/K = N-dim. R ® F/F. 

LEMMA 6. dom. dim. R ®K S = min (dom. dim. R, dom. dim. S) for any 

two algebras R, S. 
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Proof. Given an exact sequence 0 —> R ® S —> X^ —» . . . —» Xn of (iî ® S)-
projective-injective modules Xi} we obtain dom. dim. i? > n, dom. dim. 5 > n 
as before. 

Conversely, let 0 —> i£ —> F0 —* . . . and 0 —> S —> Z0 —» . . . be minimal 
injective resolutions of RR or of Ss> The tensor product of these two complexes 
(over K) yields an exact complex 

0 -> R ® 5 -> F0 ® Zo -> F0 ® Zi 0 7i ® Zo - > . . . 

of i£ ® S-modules, and the modules Yf ® Z^ are (R ® S)-projective-injective 
whenever i, k < min(dom. dim i?, dom. dim. S). This implies that 

dom. dim. R ® S > min (dom. dim. i?, dom. dim. 5). 

LEMMA 7. Let Rbea QF-3 algebra and M an R-module. Then dom. dim. M > w 
i/" cmd 0w£y if Ext#(i3, ikf) = 0 for allO < & < n and all simple right-R-modules 
B which are not isomorphic to right-ideals of R. 

Proof. Let 

O ^ J i f f l i & f j Q , - . . . 
be the minimal injective resolution. Since R is QF-3, the injective hull of 
any simple (right)-ideal is isomorphic to a dominant ideal. 

If Bi © . . . © Bk is the socle of M, all Bt simple, then Qi is the direct 
sum of the injective hulls of the I?/s. Hence Qi is projective if and only if 
all the BiS are isomorphic to right-ideals of R. 

Analogously, Qk+\ will be projective if and only if all simple modules in 
the socle of Qk/lm ak are isomorphic to ideals. 

Given a simple module B in the socle of Qk/lm ak, we get an exact sequence 
0—^ Im aj -* X —-> B —» 0, where X is the inverse image of B under 
Qk —> (?*/Im ak- Since Qk is an essential extension of I m ^ , this sequence does 
not split, whence ExtB(B, lmak) ^ 0. 

Conversely, let B be any simple .R-module such that ExtR(B, lmak) ^ 0. 
Then there exists a non-splitting exact sequence 0 —>lmak—> Y —» B —> 0. 
The monomorphism Imak—> F is essential, for otherwise we had 0 7^ Y\ C F, 
Fi D Imak = 0; hence Im a# C Im ak © Fx C F, I m a ^ © Fi = F as B is 
simple, and the sequence would split. Since Qk is the maximal essential ex­
tension of Im aki Y is contained in Qk (up to an isomorphism over Im ak) 
and B = Y/lmak is in the socle of Qk/lmak. 

Putting things together, we see that there exists an exact sequence 
0 —> M —> Xi —> . . . —> Xn of injective-projective modules Xt if and only if 
all the simple modules in the socles of M and the Qk/lm ak, k < n, are iso­
morphic to right-ideals, which is the case if and only if 

Ext°R(B, M) = Horn*(5, M) = 0, 

ExtR(B, M) = ExtR{B, lmak) = 0, 1 < k < n, 

for all simple modules B which are not isomorphic to right-ideals. 
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THEOREM 8. N-dim. R/K = dom. dim. R = dom. dim. Re for any algebra R. 

Proof. Since every injective-projective Pe-module is injective-projective 
when considered as an P-module, we have dom. dim. R > N-dim. R/K. 

To prove the converse inequality, we may assume that R is QF-3, for other­
wise both dimensions are zero. Lemma 5 allows to assume that K is alge­
braically closed. Under these circumstances the simple i£e-modules are of the 
form Bi <8>KB2 where Bly B2 are simple i^-left-, P-right-modules (see, e.g., 4 

2, §7, no. 7). If Bi ® B2 is not isomorphic to an Re-(right)-ideal, then at 
least one of Bi, B2 (say B2) is not isomorphic to an R-ideal; hence Hom i2(^2, 
R) = 0. Assuming dom. dim. R > n we obtain Extk

R(B2, R) = 0 for all 
0 < k < n, from Lemma 7. Therefore we get the isomorphism (3, p. 167) 

Exta.(Bi,®52, R) = Extâ(5i, HomB(B2, R)) = 0 

for 0 < k < n; and applying Lemma 7 again we have N-dim. R/K > n. 
Finally Lemma 6 yields 

dom. dim. Re — min(dom. dim. R\ dom. dim. R°) = dom. dim. R, 

as r-dom. dim. R° = 1-dom. dim. R. 

5. Nakayama's conjecture. This is the following yet unproved proposi­
tion: If dom. dim. R = œ, then R is quasi-Frobenius. 

I t is an old conjecture that the finitistic global projective dimension of 
any (finite-dimensional) algebra (over a field) is finite (4; 9; 11). If this were 
proved, Nakayama's conjecture would follow immediately: since all the 
kernels in an infinite exact sequence 0 —> R —» Xi —» X2 —». . . with pro-
jective-injective X/s have finite projective dimension, the sequence would 
split and R would be injective, hence quasi-Frobenius. 

Nakayama showed that his conjecture is true when R is generalized uni-
serial. Tachikawa proved it when R is the endomorphism-ring of a fully 
faithful module AX over a generalized uniserial ring A. Tachikawa's result 
is a generalization of Nakayama's because of Theorem 2 and the (apparently 
known, and provable) fact that A must be generalized uniserial if R is. (The 
converse of the last statement is not true, but R is QF-2 if A is generalized 
uniserial (see 13, Theorem 17.4). 

We shall prove a generalization of Tachikawa's result. The following notion 
was introduced by Jans (8): a projective resolution . . . —» P i —> P0 —> M —» 0 
is called ultimately closed if there exists a kernel In C Pn which is a (finite) 
direct sum In = © ; Inj of submodules Inj each of which is isomorphic to a 
direct summand of some earlier kernel I\, i < n. If every i?-module possesses 
an ultimately closed projective resolution, R is said to be ultimately closed.6 

Remarks. 1. Nakayama's conjecture holds for ultimately closed algebras R. 
This is a consequence of Lemma 7 and the following theorem by Jans: If R 

6Recall that all modules under consideration are finitely generated. 
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is ultimately closed and M an R-module such that Kxtk
R(M, R) = 0 for all 

k > 0, then M = 0 (8). 

2. An algebra R is ultimately closed if the square of its radical is zero (8). 

3. A generalized uniserial algebra is ultimately closed. 

Proof. Recall that any indecomposable R- (right-) module ^ 0 may be 
written, in a unique way, as a factor-module of a primitive ideal:7 M = eR/I\. 
Hence we get the exact sequence 0 —» I\ —> eR —» M —» 0, and since the sub-
ideal I\ of eR is indecomposable again, we may continue with Ii instead of M 
to construct a projective resolution . . . —> P i —» P0 —-> M —> 0 where the P / s 
are primitive ideals and the kernels are subideals of primitive ideals.8 Since 
there are only finitely many of those, say n, one kernel has to appear twice 
among the first n + 1 kernels, say It ~ Ih i < j < n + 1. The uniqueness 
of the construction then implies that It+i = Ij+i; hence Ik ~ In+i for some 
k < n + 1. An arbitrary P-module is the direct sum of indecomposable ones, 
and constructing a projective resolution as the direct sum of the above resolu­
tions for the indecomposable summands, we see that its (n + l ) th kernel 
has the required property for an ultimately closed resolution. 

In view of this last remark, the following is a generalization of Tachikawa's 
theorem : 

THEOREM 9. Nakayama's conjecture holds for any algebra R which is the 
endomorphism-ring of a fully faithful module AX having an ultimately closed 
projective resolution. 

Proof, dom. dim. R = oo implies that Extl (X, X) = 0 for all k > 1 
(Lemma 3). Since X is fully faithful, we get Ext^(X, A) = 0; hence the 
projective dimension of X is either zero or infinite. We shall show that it is 
indeed finite, and hence zero; consequently X is projective and so is A*, 
since every indecomposable injective A -module is direct in X. Therefore A 
is quasi-Frobenius, and P , being the endomorphism-ring of the fully faithful 
projective module X over the quasi-Frobenius-algebra A, is quasi-Frobenius 
(13). 

Taking duals with respect to the ground-field, we see that XA* possesses 
an ultimately closed injective resolution, which means an injective resolution 
0 —•> X* —> Ço —» Qi —> • • • such that there exists a cokernel Qn —» L —> 0 
which is a (finite) direct sum L — © j Uù and where each U = L'j is a 
direct summand in some earlier cokernel Ç* —» L! © U' —> 0, 0 < i < n. 

From the exact sequence 0 —» X* —-> Ço —* • . • —> Qn.—» L —> 0 we get 

0 = ExtA(X,X) ^ Exti(X*,Z*) ^ E x t f n+1(L,X*) ^ Ext\(L, L) 

for all k > 1, where the middle isomorphism comes from the fact that 

7Nakayama (16). 
8If some Ii = 0, continue with zeros. 
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Extk
A(X*,X*) = 0 and X* fully faithful implies ExtA(Q, X*) = 0 for all 

injective Q. 
Let 0 -* L' -* Q'i+1 - > . . . -» <2'„ -> C'n -* 0 and 

0 _+ L» _» ç » i + 1 _ • . . . _ > e»„ _» C"„ -» 0 

be the beginnings of minimal injective resolutions, then so is 

Lemma 1 then implies that the cokernel Cn' © Cn" is a direct summand in 
the corresponding cokernel L of the injective resolution 

0 -> L' © L" -* Ç m - » . . . - > Qn -* Qn+1 - > . . . . 

Hence from Extl(L, L) = 0, we obtain Ext£(C"„, L') = 0 for all k > 1. 
The diagram 

0 _> n _> Ç ' m - , . . . ^ -* £'„ -> C» -> 0 
^ W — 1 V 

0 ^ 0 
shows that 

Exti(C'ni C'n_i) ^ Extr ' (C'n, £ ') = 0, 

so that 0 —> C'n-i —» O'rc —» C n —> 0 splits and Cw is injective. Consequently 
the injective dimension of L' is not larger than n — i < n; and since this 
holds for any U = L'jy we get i-dim. L < w. But then i-dim. X* < 2w + 1 
and p-dim. X < 2w + 1 < œ, and the theorem is proved. 

6. Examples and supplements. The following algebra Rn was given in 
(6, p. 92) as an example of a ring with global dimension n. Let ei, . . . , en+i, 
mi, . . . , mn be a basis of i ^ over the ground-field, and let the multiplication 
be defined by et

2 = eu eimiei+i = mu all other products zero. The algebra 
Rn has the following properties: Rn is generalized uniserial and dom. dim. Rn = n; 
if n > 2, then i?w is QF-1 and isomorphic to the endomorphism-ring of the 
minimal fully faithful module over Rn„x (14; 20). 

This shows that algebras R of arbitrary dominant dimension exist, and 
that such strong requirements as R being generalized uniserial or QF-1 put 
no restriction on the possible values of the dominant dimension. (Trivially 
a QF-1 algebra cannot have dominant dimension one; see Theorem 2.) 

One may ask if there is any relation between the dominant dimensions of 
A and R} if the latter is the endomorphism-ring of a fully faithful A -module 
X. First of all, it is easy to construct, for any non-semisimple A, a fully 
faithful AX such that dom. dim. R has the smallest possible value, namely 
two (e.g. take X = ^ 1 © ^ * © F © Z with Ex t i (F , Z) ^ 0). On the other 
hand the largest possible value of dom. dim. R for given A is obtained for 
the minimal fully faithful A -module X (Lemma 3). But even if we confine 
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ourselves to this case, there seems to be no relation between dom. dim. A 
and dom. dim. R, as is illustrated by the following example. 

Let B be the subalgebra of the full 14 X 14 matrix-algebra over a field K 
generated by the 27 elements 

C\\ + Ê22 + £33, £44 + £55, Ê66 + £77, ^88 + ^99 + £l0,10, 

£ l l , l l + 012,12, Ci3,13 + £l4,14Î C n , l + ^12,3, Cl3,l + £j4,2, 

^94 + £l0,5> ^86 + £lO,7Î ^26, £28> £34, £39> £51, £5,11» £5,13» 

£71, £7,11> £7,13> £l0 ,1 , £lO,H» £l0,13» £l2,4, £l2,9, £l4,6, £l4,8-

Then9 dom. dim. B = 3; B is the endomorphism-ring of the minimal fully 
faithful module over an algebra A with dom. dim. ^ 4 = 0 ; and the endo­
morphism-ring R of the minimal fully faithful ^-module has dominant dimen­
sion two. 

Nakayama (17) used another dimension besides N-dim. R/K, defined as 
follows: E-dim. R/K > n if every exact sequence 0-+R—>Xi^>...—±Xk of 
Re-homomorphisms and Re-projective modules Xt with 0 < k < n admits an 
extension to a similar exact sequence 0 —> R—» Xi —>. . . —* Xk —> Xk+i. This 
dimension is of interest inasmuch as it does not involve injectivity. 

THEOREM 10. N-dim. R/K = E-dim. R/K for any algebra R. 

Proof.10 I t is known that the following three statements are equivalent 
(18): R is QF-3; N-dim. R/K ^ 1; E-dim. R/K > 1. We can therefore 
restrict our attention to QF-3 algebras R; then Re is QF-3 too and the infec­
tive hull of an i£e-module M is projective if and only if all simple i?e-sub-
modules of M are isomorphic to i£e-ideals. 

If a sequence 0 —> R —» Xi —» . . . —» Xk can be extended as described above, 
then Xk+i can be chosen injective as well as projective; for the cokernel C of 
Xk_i —> Xk\ being monomorphic to a projective i^-module, contains only such 
simple submodules that are isomorphic to i^-ideals, so we can take for Xk+i 
the (projective) injective hull of C. Assuming now that E-dim. R/K > n, 
we can extend successively 0 —> R to 0 —* R —> Xi to 0 —» R —> Xi —> X2 up 
to 0 —•» R —> Xi —> . . . —> Xn, always choosing injective-projective i£e-modules 
Xi\ hence we get N-dim. R/K > n. 

Conversely N-dim. R/K > n implies that Extk
Re(B, R) = 0 (Lemma 7) as 

well as Extk
R(B, Re) = 0 (again Lemma 7, using dom. min. Re > n from 

Theorem 8) for all 0 < k < n and all simple i^e-modules B non-isomorphic 
to i?e-ideals. The latter yields Ext^(J5, X) = 0 for all ^"-projective X. 
Dividing the exact sequence 

0 -> R -> Xi . . . -> Xk -> C -> 0, ft < n, 

9This example was given by Tachikawa (19, p. 252). 
10The theorem remains true if we allow non-finitely generated modules Xi in the definition 

of E-dim. R/K. 
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of i£e-homomorphisms and Re-projective modules Xt up into short exact 
sequences and using the long exact sequence for Ext we get 

Horn*. (5, C) = Ext%.(B, C) ^ Ext^.(Bf R) = 0, 

for any such B. Hence every simple submodule of C is isomorphic to an ideal 
and the sequence can be extended; consequently E-dim. R/K > n. 
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