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PENDULUM. PART 1: APPLIED TORQUE

PETER J. BRYANT' AND JOHN W. MILES’

(Received 12 May 1989; revised 18 October 1989)

Abstract

Coplanar forced oscillations of a mechanical system such as a seismometer or a
fluid in a tank are modelled by the coplanar motion of periodically forced, weakly
damped pendulum. We consider the phase-locked solutions of the differential equa-
tion governing planar motion of a weakly damped pendulum driven by a periodic
torque. Sinusoidal approximations previously obtained for downward and inverted
oscillations at small values of the dimensionless driving amplitude ¢ are contin-
ued into numerical solutions at larger values of ¢. Resonance curves and sta-
bility boundaries are presented for downward and inverted oscillations of periods
T, 2T, and 4T, where T(= 2n/w) is the dimensionless forcing period. The
symmetry-breaking, period-doubling sequences of oscillatory motion are found to
occur in bands on the (w, &) plane, with the amplitudes of stable oscillations
in one band differing by multiples of about 7 from those in the other bands, a
structure similar to that of energy levels in wave mechanics. The sinusoidal approx-
imations for symmetric T-periodic oscillations prove to be surprisingly accurate
at the larger values of ¢, the banded structure being related to the periodicity of
the J, Bessel function.

1. Introduction

We consider a pendulum of length / driven by a torque eg/sinw? per unit
mass applied about its pivot. The equation of motion is

6 + 260 +sin @ = gsinwt, (1.1)

where 6 is the angular displacement from the downward vertical, J is
the damping ratio (actual/critical), @ is the ratio of the forcing frequency
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to the natural frequency, and the unit of time is the inverse natural fre-
quency. Periodic solutions of (1.1) describing oscillations about the down-
ward vertical have been obtained by Miles [6] on the alternate hypotheses that
(1) the contributions of the second and higher harmonics to the oscillatory
motion are negligible or (ii) the solution is close to that for free oscillations.
Miles [8] also calculated periodic solutions describing oscillations about the
upward vertical based on hypothesis (i). Neither hypothesis is needed for
the present numerical method. D’Humieres et al [3] analysed an electrical
analogue of the present forced pendulum motion, giving particular attention
to chaotic motion and the routes to chaos. Their choice of the value 1/8 for
the damping ratio J is adopted in the present calculations.
We describe those phase-locked solutions of (1.1) for which

6(t+ mT) = 0(1) (T =2n/w), (1.2a)

where m is the smallest integer for which (1.2a) is satisfied, as mT-periodic.
When

6(t+mT/2)=—-6(), (1.2b)

we describe the oscillation as symmetric. If (f)/w is a rational number,
(() signifies a temporal average) and @ is periodic, we describe the oscillation
as running. (The adjective swinging may be applied to any oscillation for
which (@) = 0, but is redundant for periodic oscillations.) Resonance curves

are defined as plots of (E )% vs w, where
E=6%/2+1-cos@ (1.3)

is a measure of the energy of oscillation. Stability is determined through the
numerical integration of (1.1) with initial conditions close to those of the
solution to be tested.

We consider subsequently ([1], [2]) the coplanar oscillations of a weakly
damped pendulum driven by horizontal and by vertical forcing of the pivot.
The three cases are representative of the different types of forcing that can
occur, given that linear superposition is not applicable. Strongly nonlinear ef-
fects, such as wave breaking on an oscillating fluid in a tank, are not modelled
by the pendulum. Conversely, only some of the types of forced pendulum
oscillation described here are possible in any particular mechanical system.

We obtain periodic solutions of (1.1) numerically by collocation applied
to truncated Fourier expansions for 8(¢). Considering, for example,

N
6= Z(ak coskwt + by sinkwt), (1.4)
k=0
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3] On a periodically forced, weakly damped pendulum. Part 1: Applied torque 3
and substituting into (1.1), we place the result in the form

N
F =) (Fcoslwt + G,sinlwt) =0, (1.5)
1=0
where the F,, G, are functionals of the a,, b, . The object is to choose
the a,, b, so that the coefficients F,, G, are smaller than some prescribed
error (typically 107 .) By differentiating F with respect to a, , b, in turn,
followed by Fourier analysis of each partial derivative, the Jacobian for F,,
G, with respect to a, , b, may be set up numerically. Trial values are taken
for the a,, b, and are improved by Newton’s method in Fourier space,
using the Jacobian. The method is equivalent to collocation on an array of
points equally spaced over one period of F . If the Fourier series (1.4), (1.5)
are truncated at N harmonics, the accuracy of the expansion may be tested
immediately by examining F;, G, for / > N. The number of harmonics,
N, is increased until the residual harmonics, for / > N, are smaller than the
prescribed error.

In addition, a systematic numerical search was made of the asymptotic
solutions in time of (1.1), using step-by-step integration with the IMSL sub-
routine Dgear. It is a variable-step, variable-order Adams method, operated
with a local error tolerance of 107 '°. Properties of the different forms of
periodic solutions of (1.1), such as regions of occurrence, were calculated by
the Fourier series method described above. The chaotic solutions of (1.1)
were not investigated further, since our primary focus is on the bifurcation
structure.

When the sinusoidal restoring force in (1.1) is replaced by the first two
terms of the sine series, a weakly damped form of the forced Duffing equation
is obtained. Oscillatory solutions of this equation are found to be similar to
those of (1.1) at small 8, as expected, but lack the variety and interest of
solutions of (1.1) at larger 8 [7]. Forbes [5] used a numerical method based
on Fourier series to calculate the periodic solutions of the forced Duffing
equation. Perturbation series for the Fourier coefficients were introduced, a
step which is unnecessary when the successive approximation is based on the
addition of further Fourier coefficients, as described above.

Symmetric swinging oscillations of the form 6 = a sin(wt—¢) are analysed
in [6], with the results being presented in terms of resonance curves for small
values of £. Comparisons are presented here between the exact results from a
full Fourier-series expansion of 8 and those found previously with truncation
at the first harmonic. An unexpected property discovered here is that the
approximation of # by the first harmonic alone is valid not only at small
&(< 0.5), but also at large &(> 1.5), owing to the domination of @ by the
first harmonic.
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The analysis of [6] was extended in [8] to swinging oscillations symmetric
about the upward vertical of the form 8 = n+a sin(wt—¢) . Comparison with
the exact results shows the same unexpected validity of this approximation
at large values of o and ¢.

An interesting property demonstrated here is that each of the different
forms of pendulum oscillation occurs in bands in the (w, &) plane, with the
stable oscillations in one band having amnplitudes differing by multiples of
about n from those in the other bands for the given form of oscillation. The
structure is reminiscent of that of energy levels in wave mechanics. The bands
are classified into two types, major and minor. The major bands contain os-
cillations that occur for a much lower driving torque than in the neighbouring
minor bands, for example an oscillation with a zero mean extending up to
an amplitude near but before the upward vertical. The minor bands contain
oscillations needing a much higher driving torque than in the neighbouring
major bands, for example an oscillation with a zero mean extending up to
and over the upward vertical, stopped by the torque at an amplitude near
but before the next downward vertical. This minor band contains oscilla-
tions with amplitudes about n greater than the larger of the oscillations in
the previous major band. Continuing these examples, the next major band
contains oscillations with a zero mean, with the motion passing through the
upward vertical and on through the downward vertical, with an amplitude
near but before the next upward vertical. Oscillations in this major band
have an amplitude about 27 greater than the larger of the oscillations in the
previous major band. The major bands are broader than the minor bands on
the (w, &) plane, with greater margins of stability.

2. T-periodic downward oscillations and their descendants

We represent T-periodic solutions of (1.1) by the Fourier series (1.4) where
ay, ..., by and N are determined numerically, and 7 = 2n/w . Symmetric,
downward oscillations [6(¢ + T/2) = —0(t)] are obtained by setting a, i =
b,;=0 (j=0,1,2,...).

2.1. Symmetric oscillations

The resonance curve for symmetric oscillations with 6 = 1/8 and ¢ =
0.4 is plotted in Figure la. The lower part of the curve is triple valued in
(E)* between the two turning points @ = (w_), = 0.657 and w = w_ =
0.750, and the symmetric oscillations are unstable on the dotted section of
the curve joining these points. The separate upper part of the curve in Figure
la describes stable symmetric oscillations on the solid section between the
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turning point at @ = (w_), = 0.538 and the symmetry-breaking bifurcation
point at w = 0.470 and unstable oscillations elsewhere. The value ¢ = 0.4
is slightly less than the maximum value &, (in the notation of [6]) for which
the resonance curve separates into two parts, with ¢ = 0.403 when ¢ =
1/8. A comparison of the two solutions for stable symmetric oscillation at
w = 0.5 shows that the oscillation on the lower part has an amplitude 0.17x,
while that on the upper part has an amplitude 0.897 (almost to the upward
vertical). A similar comparison at @ = 0.7 finds an amplitude 0.28n on the
lower stable section and 0.707 on the upper stable section. The resonance
curve for symmetric oscillations at this value of ¢ calculated from [6], (3.2)
and (3.11) lies on the top of the lower part to the accuracy of Figure 1a and
differs only on the upper part, where the neglect of higher odd harmonics in
[6] becomes significant.

Epsilon=0.4

1.6 T T 1T 7T 7 rr1rrJ7 1T 77 1T™7 71"°7

Root mean energy
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FIGURE la. The resonance curve for symmetric oscillations with ¢ = 0.4, § = 1/8. The
oscillations are stable on the solid sections and unstable on the dotted sections.
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When ¢ is increased from the value 0.4 of Figure la, the two parts join
together. The lower section describes stable symmetric oscillations at all
values of @ up to the right turning point at @ ,+» and the upper section at
all values of w greater than the symmetry-breaking bifurcation value. An
example of such a resonance curve at ¢ = 0,5, § = 1/8 is given in [6],

Figure 4, together with the approximate analytical curve for comparison.

As £ is increased further the value e of the right turning point de-
creases, until the lower left section of the resonance curve is extinguished.
Simultaneously, loops begin to form on the upper section of the resonance
curve. The resonance curve at ¢ = 1.2, § = 1/8 is plotted in Figure 1b.
Stable symmetric oscillations are described by the curve for all values of @
greater than the symmetry-breaking bifurcation value at w = 0.870. The
solutions are unstable as w continues along the resonance curve from this
point until the upper right of the first loop is reached, where the symmet-
ric oscillations are stable from the right turning point at @ = 0.403 to a
symmetry-breaking bifurcation point at @ = 0.390. Another smaller inter-
val of stability occurs at the upper right of the next loop, from the right
turning point at w = 0.268 to a symmetry-breaking bifurcation point at
w = 0.264 , followed by a further smaller stable interval at the top of the third
loop (not visible in Figure 1b), from the right turning point at w = 0.205
to a symmetry-breaking bifurcation point at @ = 0.203. There is also a
symmetry-breaking bifurcation point at w = 0.209, close to the left turning
point at the lower left of the first loop, but the symmetric and asymmetric
oscillations near this point are both unstable.

In the first stable interval of Figure 1b, spanning all values of w greater
than the first symmetry-breaking bifurcation value, the amplitude of the sym-
metric oscillations ranges from near zero at large @ to 0.82n at the bifur-
cation point. The range of amplitudes in the second stable interval is 2.61xn
to 2.80x%, it is 4.697% to 4.84m in the third stable interval, and 6.667 to
6.767 in the fourth stable interval. In other words, symmetric oscillations in
the first stable interval do not reach the upward vertical, those in the second
stable interval pass through the upward vertical once in each direction during
each forcing period with an amplitude near but before the next upward ver-
tical, those in the third stable interval pass through the upward vertical twice
consecutively in each direction during each forcing period with an amplitude
near but before the next upward vertical, and so on.

The number of loops on the resonance curve increases as ¢ is increased
from the value 1.2 of Figure 1b. The resonance curveat ¢ = 2.0, 6 = 1/8,is
sketched in Figure Ic. The dominant, stable interval is bounded below by the
symmetry-breaking value @ = 1.057. Subsequent, major stable intervals, of
decreasing width, are bounded above by the right turning points and below by
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FIGURE 1b. The resonance curve for symmetric oscillations with ¢ = 1.2, § = 1/8. The
oscillations are stable on the solid sections and unstable on the dotted sections.

symmetry-breaking bifurcation points on each loop of the resonance curve.
The amplitude of the symmetric oscillations increases by 2z approximately
between each of the consecutive stable intervals, as in the previous example.

A minor stable interval occurs at the first left turning point (magnified in
the inset to Figure 1c), from a symmetry-breaking bifurcation value at w =
0.4521 to the turning point at w = 0.4505 . Stable symmetric oscillations in
this interval have amplitudes in the range 1.697 to 1.71x, differing by about
n from amplitudes in the major stable intervals on either side. The margin
of stability in this region is small, which is to be expected when the amplitude
lies near the downward vertical for an oscillation passing through the upward
vertical. Oscillations in this interval are unstable in Figure 1b at ¢ = 1.2, but
the larger driving force (¢ = 2.0) in Figure Ic is sufficient to stabilise this
unusual motion. A smaller stable interval occurs at the second left turning
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FiGurE lc. The resonance curve for symmetric oscillations with ¢ = 2.0, 6 = 1/8. The
oscillations are stable on the solid sections and unstable on the dotted sections. The first left
turning point is magnified in the inset.

point, where w = 0.313, with an amplitude 3.697. Symmetry-breaking
bifurcation points occur near the third and fourth left turning points, but the
motions near these points are unstable at ¢ = 2.0.

The resonance curve from Figure 1c is compared in Figure 1d with the
approximate analytical resonance curve obtained from [6], (3.2) and (3.11),

W = Q201+ (6% )’ — 45°Q + 46} (2.1a)

and y
(B)t = (a’@’/4+ 1 = Jy(e)) (2.1b)
where Q = _2a_1J(;(0‘) . This excellent agreement was unexpected, because

6 is approximated by the first harmonic alone in these calculations. However,
a full Fourier expansion of 6 (with all even harmonics zero) shows that
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FIGURE 1d. The resonance curve from Figure lc, with the dashed approximate analytical
curve (2.1).

it is dominated by the first harmonic at these larger values of ¢ and «.
For Figures 1c, 1d, the ratio of the third to the first harmonics is 0.017
at the first major bifurcation point w = 1.057, 0.020 at the third major
bifurcation point @ = 0.356 and 0.018 at the fifth major bifurcation point
w = 0.235. (The major bifurcation points, after the first, bound the major
stable intervals extending to each of the right turning points.) We note that,
at the fifth major bifurcation point, the first harmonic has a magnitude (a in
the analytical approximation) 8.537 , where the stable symmetric oscillation
has an amplitude 8.75%.

The ratio of the third to the first harmonics is larger at the minor bifur-
cation points (near the left turning points). At the first minor bifurcation
point, w = 0.452, the ratio is 0.042, and at the second minor bifurcation
point, @ = 0.313, it is 0.045. The larger value of this ratio is consistent
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with the lesser accuracy in Figure 1d of the analytical approximation at the
left turning points.

The symmetric oscillations approximated in [6] by @ = asin(wt — ¢) are
shown there to follow the resonance curve given by (2.1). The asymptotic
form for the J, Bessel function is

Jola) = (%) i cos (a - %n) +0 (é) . (2.2)

It follows that, for given ¢ and &, at large a, (E)% exhibits a similarity in
form with a periodicity of 27 in a. This similarity is evident in Figures 1b,
¢, d and is consistent with the amplitudes in major and minor stable intervals
differing by multiples of = .

2.2. Asymmetric oscillations

Asymmetric, T-periodic oscillations are represented here by the full
Fourier series (1.4) and in [6] by 6 = 6, + asin(wt —¢), —n < 0, < 7,
a >0, 0<¢ < rn. The symmetry-breaking boundary between symmet-
ric and asymmetric oscillations is determined numerically by calculating the
curve on which the even harmonics of the asymmetric oscillations tend to
zero, and in the approximate model by allowing 6, to tend to zero. It is the
stability boundary for the symmetric oscillations, with symmetric oscillations
on the unstable side of the curve losing stability to asymmetric oscillations.

It is shown in [6], (2.2a), that symmetry-breaking occurs when Jy(a) =0,
where it was assumed that only the first zero of J, is relevant. However,
the above analysis suggests that the higher zeros of J, also are relevant. The
symmetry-breaking curves, adapting [6], (4.1a, b), then are

& =al(w -Q,+26%) +45°2(Q, - %), (2.3)
n=1,2,..., where a, is the nth zero of J,, and Q, = —2a; ' J(e,).
The exact major, symmetry-breaking curves, calculated numerically from
(1.4), are compared in Figure 2 with the approximate major curves given by
(2.3)with n=1, 3, 5, 7, 9. Although the analytical approximation is un-
satisfactory for the first symmetry-breaking curve, the agreement is excellent
for the higher curves in that (2.3) does predict the major symmetry-breaking
curves accurately for the larger odd values of n.

The minor symmetry-breaking curves, near the left turning points in Fig-
ures 1b, c,d are approximated by the even values of n in (2.3). It can be seen
in Figure 1d that the analytical approximation does not provide an accurate
estimate of the left turning points. This inaccuracy is reflected in an un-
satisfactory fit between the approximate and exact minor symmetry-breaking
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Epsilon

Frequency

FiGURE 2. The symmetry-breaking curves for oscillations with 4 = 1/8. The solid and
dotted curves are the numerically calculated results, and the dashed curves are the approximate
results (2.3) with the values of n shown.

curves, which proves to be qualitative only, without the quantitative accuracy
of Figure 2.

As w is changed further at fixed &, the T-periodic, asymmetric oscilla-
tions become unstable in turn, tending asymptotically in time to 27 -periodic,
asymmetric oscillations. This period-doubling sequence continues to 47,
8T, ...-periodic, asymmetric oscillations. The mT -periodic asymmetric os-
cillations are calculated using the Fourier expansion

N
6= Z[ak cos(kwt/m) + b, sin(kwt/m)], (2.4)
k=0

where a,, ..., by, and N are determined numerically. The bifurcating res-
onance curves are illustrated in [6], Figure 5, for ¢ = 0.5, § = 1/8. Here, in
Figure 3, the pattern of bifurcation is sketched for ¢ = 2.0, = 1/8. The
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FiGURE 3. Resonance curves for the symmetry-breaking, period-doubling sequence of periods
T, 2T, 4T, ..., with ¢ =20, & = 1/8. The oscillations are stable on the solid sections and
unstable on the dotted sections.

symmetry-breaking, period-doubling sequence is shown by the stable (solid)
resonance curves, with the unstable (dotted) continuations sketched also. The
resonance curves leap-frog towards the unlabelled curve for 87T -periodic os-
cillations. The 167 -periodic curve is slightly below the 87 -periodic curve,
but is indistinguishable from it on the scale of the figure. The pattern in
Figure 3 at ¢ = 2.0 is the same as that in [6], Figure 5 at ¢ = 0.5, but on
the same scale it is found that the angles and curve lengths all differ. The
ratios of the curve lengths approximate those predicted by Feigenbaum [4],
but cannot be compared exactly because the ratios depend on ¢ as well as
w , while Feigenbaum’s analysis is applied to one-parameter problems.

The symmetry-breaking, period-doubling sequence illustrated by resonance
curves in Figure 3 is demonstrated alternatively by the stable (8, 9) phase-
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FIGURE 4. (6, §) phase-plane orbits for the symmetry-breaking, period-doubling sequence
of periods T, 2T, 4T with ¢=2.0, § = 1/8.

plane orbits in Figure 4. The first orbit, at w = 1.06, is of a symmetric 7-
periodic oscillation with an amplitude 2.509(= 0.80x%). Symmetry-breaking
has occurred in the second orbit, at @ = 1.02, the maximum and minimum
angles 6 being 1.858(= 0.597) and -3.135(= —0.9987). The amplitude
of the oscillation is almost the same as in the symmetric orbit, but the mean
has moved to —0.20n. The third orbit, at @ = 1.013, illustrates period-
doubling to a 27 -periodic oscillation, and the fourth orbit, at @ = 1.009,
shows further periodic-doubling to a 47T -periodic oscillation. The minimum
angles @ in the third and fourth orbits are —3.203(= —1.02%) and -3.247(=
—1.037) respectively. The angles are of this magnitude (slightly past the
upward vertical) because the driving force is large, the maximum driving
acceleration being 2g(=¢eg).
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FIGURE 5. Stability boundaries for oscillations of periods T, 2T, 4T, with § = 1/8.
C_, C,, C are turning point curves, C, is a symmetry-breaking curve, and C,, C, are
period-doubling curves.

The stability boundaries for swinging oscillations of periods T, 2T, and
4T are summarised in Figure 5. The C_ curve is the locus of the lower
turning point @_ , when this occurs, as in Figure la. It marks the stability

boundary for stable symmetric oscillations at small @ and (E )% . The section
of the resonance curves describing these oscillations is extinguished at about
e = 1.13 (for 6 = 1/8). The C_ curve is the locus of the upper turning
point(s), when they occur. There are two upper turning points, w_ in Figure
la, corresponding to the two intersections of the line ¢ = 0.4 with the C_
curve. The right curve C, is the first major symmetry-breaking curve from
Figure 2. Stable symmetric oscillations are found everywhere between, and
to the right of, the C_ curve and the right C, curve. Independent, stable,
symmetric oscillations are found everywhere to the left of the C, curve.
The two families are the same for all ¢ below the intersection of the C_
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and C, curves. The two independent families exist together in the triangle
between the C_, C_, and right C, curves (as in the examples for @ =10.5,
® = 0.7 taken from Figure 1a). The dotted continuation of the C_ and
right C, curves is the locus of the turning point on the upper part of the
resonance curve, where it becomes difficult to find a stable oscillation. The
analytically calculated C_ and part of the C_ curves are sketched in [6],
Figure 3. There is reasonable agreement between the analytical approximate
C, and C_ curves and the numerically exact C, and C_ curves of Figure
5.

Stable, T-periodic, asymmetric oscillations occur in the band between the
right C, and C, curves, where C, is the first period-doubling stability
boundary, and stable, 27T -periodic, asymmetric oscillations are found be-
tween the C, and C, curves. Period doubling occurs again on C,, and
stable, 4T-periodic, asymmetric oscillations exist between C, and C; (the
latter curve is not drawn in Figure 5 because it is indistinguishable from C,
on the scale of the figure). As w is decreased slightly from C,, nearly-
periodic oscillations occur with orbits near those in the period-doubling se-
quence. Although chaotic motion may ensue when @ is decreased again,
in practice there are so many alternative stable solutions that the motion
asymptotic in time is typically an independent family of oscillations. When
the period-doubling sequence is followed through the right family of curves
C,, C,, ... atthe larger values of ¢ in Figure 5, (as in Figures 3 and 4, for
example) the motion tends asymptotically in time to a T-periodic running
oscillation with a mean angular velocity @ for values of w beyond the above
period-doubling sequence.

The major bands of stable, 7T-periodic, oscillations after the first, corre-
spondingto n =3, 5, 7, 9 in (2.3), begin on the right of each band witha C,
turning-point stability boundary. This is a sharp transition between stable, 7'-
periodic, symmetric oscillations on the left and chaotic or some independent
stable motion on the right of the curve. It is follows by a symmetry-breaking
stability boundary, C, from Figure 2, and then by periodic-doubling sta-

bility boundaries C,, C,, ... . The dotted curve at the base of the n = 3
band denotes the section where it is difficult to find stable oscillations of fixed
periodicity,

The minor bands of T-periodic oscillations correspond to n =2, 4, 6, 8
in (2.3). The stable sections have a turning point boundary C, on the left
of each band, followed by a symmetry-breaking boundary C, towards the
right of the band. The period-doubling boundaries C, are indistinguishable
from the C; boundaries on the scale of the figure. The dotted curves on the
minor bands correspond to unstable oscillations.
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3. T-periodic inverted oscillations and their descendants

We represent T-periodic, inverted solutions of (1.1) by the Fourier series

N
0=0,+) (a,coskwt + b, sinkwt), (3.1)
k=1
where ) = =, 4 = sz =0, j=1,2,..., for symmeiric osciiiaiions,
and 6, lies near n with all harmonics present for asymmetric oscillations.
Symmetric oscillations are investigated in [8] with the truncated form

6 = n + asin(wt — ¢). (3.2)

The resonance curves for symmetric, inverted oscillations display a similar
looping structure to those of the downward oscillations at larger &, with
the number of loops increasing as ¢ increases. The lowest value of ¢ for
which stable inverted solutions occur is about 0.48 (for 6 = 1/8), at which
the resonance curve has one loop and the stable interval lies near the right
turning point of the loop. The analytical approximation (3.2) is not accurate
for this &, the ratio of the third to the first harmonics being about 0.07.
As ¢ is increased, this major band of stable symmetric inverted oscillations
increases in width, being bounded on the right by the right turning-point
curve and on the left by the first major symmetry-breaking curve. Further
major, stable bands occur as further loops appear on the resonance curve,
each being bounded on the right by a right turning-point curve and on the
left by a major symmetry-breaking curve. Minor symmetry-breaking curves
are found near left turning points, as for the downward oscillations, but the
solutions near these points are unstable for ¢ less than about 1.31.

The resonance curve for inverted, symmetric, 7-periodic oscillations at
¢ = 2.0 is sketched in Figure 6a. The first major stable interval extends from
the right turning point at w = 0.712 to the symmetry-breaking bifurcation
value w = 0.656, in which the symmetric oscillations have a mean of 7 and
amplitudes between 1.447 at the turning point to 1.79z at the bifurcation
point. The second major stable region on the second loop extends from
the right turning point at @ = 0.424 to the symmetry-breaking bifurcation
value w = 0.413, with symmetric inverted oscillations having amplitudes
between 3.65n and 3.81m, about 2m greater than those in the first major
band. The next major band describes stable symmetric inverted oscillations
with amplitudes near 5.657, and the fourth major band with amplitudes
near 7.657.

The first minor stable region extends from the first left turning point at
w = 0.633 to a symmetry-breaking bifurcation point at w = 0.639, with
amplitudes in the range 0.757 to 0.70m respectively. This is the stable

https://doi.org/10.1017/50334270000008183 Published online by Cambridge University Press


https://doi.org/10.1017/S0334270000008183

un On a periodically forced, weakly damped pendulum. Part 1: Applied torque 17

Epsilon=2.0

3‘6 I[IIII|Illl]lll[[llll["f1|llll||IIlllIlI[]’l’TT]lllllllll

Root mean energy

-------

ool b eagdea el aa bt aa oo a e aalaa gty radaes

1.2
.20 .25 .30 .35 .40 .45 .50 .55 .60 .65 .70 .75 .80
Frequency

FIGURE 6a. The resonance curve for symmetric inverted oscillations with ¢ = 2.0, d =1/8.
The oscillations are stable on the solid sections and unstable on the dotted sections.

interval identified in [8], where it had not been expected that the approximate
representation (3.2) would be valid for larger values of «. The above values
for @ and o agree with those describing the stable interval for ¢ = 2.0 in
[8], Figure 1. The symmetric oscillations in this band are unusual, having the
upward vertical as a mean, but being stopped by the torque before reaching
the downward vertical. It is not surprising that the torque must be large (e >
1.31) for the oscillations in this band to be stable. The second minor stable
band occurs in the neighborhood of the left turning point at w = 0.365, with
amplitudes near 2.717, about 27 greater than those in the first minor band.
Symmetric inverted oscillations in the third minor band near the left turning
point @ = 0.275 are also stable for ¢ = 2.0, with amplitudes near 4.687,
but those near the left turning point @ = 0.224 are unstable for ¢ = 2.0.
The exact resonance curve for ¢ = 2.0, from Figure 6a, is compared in
Figure 6b with the approximate analytical resonance curve, calculated from
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FIGURE 6b. The resonance curve from Figure 6a, with the dashed approximate analytical
curve.

[8], (4a) with (1.3) above. The agreement is excellent, apart from the left
turning points after the first. This close fit was unexpected because of the
large amplitudes of oscillation, and it occurs for the same reason as for the
downward oscillations, that the Fourier expansions for § are dominated by
the first harmonic. At the first major bifurcation point @ = 0.656, the ratio
of the third harmonic to the first harmonic is 0.023, while at the fourth
major bifurcation point w = 0.256 (where the first harmonic has magnitude
7.58n) this ratio is only 0.018.

The stability boundaries for inverted oscillations of periods T and 2T
are summarised in Figure 7. The major stability bands correspond to n =
2,4,6,8 in (3.3), and the minor stability bandsto n =1, 2, 5, 7 in (3.3).
(The oscillations in the #n th band have amplitudes near to but less than nz).
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FIGURE 7. Stability boundaries for inverted oscillations of periods 7", 2T, with § = 1/8.
C, denotes turning point curves, C; symmetry-breaking curves, and C, a period-doubling
curve.

Each of the major bands is bounded on the right by a turning-point curve
C, , then progresses to the left through the symmetry-breaking curve C, and
the period-doubling curves C,, C,, ... . The sequence is reversed on each
of the minor bands because they begin on left turning points. The first minor
band, with the smallest amplitudes, is that described in [8). The bands are
dotted where the oscillations are unstable.

If @ is represented by the truncated form (3.2), symmetry breaking oc-
curs when Jy(a) = 0, for the reasons indicated in [6], (2.2a). It follows
from [8], (3a, b) that the symmetry-breaking curves for inverted, T-periodic
oscillations satisfy

& =al(0 +Q,+26°) - 46%02(Q, +67), (3.3)

n=1,2,..., where a, is the nth zero of J,, and Q, = —Za;lJ(;(a").
The exact symmetry-breaking curves, calculated numerically from (3.1), are
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FiGURE 8. The symmetry-breaking curves for inverted oscillations with = 1/8. The
solid and dotted curves are the numerically calculated results, and the dashed curves are the
approximate results (3.3) with the values of n shown.

compared in Figure 8 with the approximate curves given by (3.3) with n =
1,2,4,6, 8. The even values of n describe the major symmetry-breaking
curves, and n = 1 describes the first minor symmetry-breaking curve. The
agreement is excellent for the higher major curves, and is satisfactory for the
lower major curves and for the first minor curve. The higher minor curves
are not drawn in Figure 8 because the fit between the exact and approximate
curves is qualitative only, which is anticipated by the lack of accuracy at the
left turning points in Figure 6b.

4. Further stable oscillations

The torque-driven pendulum has a full range of stable oscillatory solu-
tions, including oscillations of periods 37, 5T, 7T, ..., both symmetric
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or asymmetric, downward or inverted, and their descendants. Systematic in-
tegration of (1.1) for a range of values of ¢ and @ shows the same banded
stability structure for these other forms of oscillatory solution of (1.1) as is
described above for T-periodic solutions and their descendants.

An example is provided by running oscillations with mean angular velocity
@, described by

N
0 = wt + Y _[a, coskwt + b, sinkwt]. (4.1)
k=0

The oscillations relative to the mean rotation wt¢ are asymmetric and T-
periodic. When ¢ = 2.0, the oscillations relative to the mean rotation in
the first dominant stable band have amplitudes between 0.487 and 0.81x
with means of about 0.05n. The relative amplitudes in the second stable
band lie near 1.927, with means of about 0.05z also. In other words, the
amplitudes of the asymmetric motion relative to the mean rotation increase
by about 7 between consecutive stable bands. However, the next stable band
when e = 2.0 has almost the same relative amplitudes as the previous stable
band, but it has relative means that lie near #. The running oscillations
in this stable band are inverted asymmetric oscillations relative to the mean
rotation. This pattern continues in subsequent stable bands, with increases
of about z in the amplitudes between bands whose means relative to w?
lie near zero, and independently, increases of about z in the amplitudes
between bands whose means relative to w? lie near 7.

The banded stability structure appears to be an intrinsic property of the
torque-driven pendulum, and it has not yet been found for other forced pen-
dulums.
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