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ABSTRACT

A three parameter Gaussian exponential approximation to some compound
Poisson distributions is considered. It is constructed by specifying the reciprocal
of the mean excess function as a linear affine function below some threshold and
a positive constant above this threshold. As an analytical approximation to
compound Poisson distributions, it is only feasible either for a limited range
of the Poisson parameter or for higher coefficients of variation. A semipara-
metric determination of the unknown threshold parameter is proposed. The
analysis of a real-life example from pension fund mathematics displays an
improved quality of fit of the new model when compared with other simple
good alternative approximations based on the zero gamma, translated gamma
and zero translated gamma.
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1. INTRODUCTION

Compound Poisson distributions define one of the most important class of
distributions in applied probability and operations research. In practical work
they are used in numerous fields such as insurance, finance, reliability and
queueing theory. They are identified as the distributions of random variables
of the type X=Y,+ ...+ Y, where N is Poisson(A) and the severities Y, are inde-
pendent and identically distributed non-negative random variables, which have
the same distribution as the random variable Y and are independent from N.

Roughly speaking there are three categories of methods for the numerical
and statistical evaluation of these distributions. After a discretization of Y, it
1s possible to compute quickly close numerical approximations using the recur-
sive method of Panjer(1981). Simple analytical approximations of the tails of
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the distribution are obtained with the asymptotic normal-power approximation
(e.g. Beard et al. (1984), Section 3.11), provided the skewness parameter is suf-
ficiently small. Among the simplest analytical approximations, one finds often
quite good approximations with gamma type distributions including the trans-
lated gamma, zero gamma and zero translated gamma distributions (e.g. Dufresne
and Niederhauser(1997)).

Belonging to the latter category, a general reliability constructive approach
proposes to specify first a higher degree stop-loss rate function (hazard rate,
reciprocal of mean residual life and higher order generalization), then derive
a higher degree stop-loss transform model, and through successive differentia-
tion identify the desired distribution, as explained and illustrated in Hiirli-
mann(2000b). Choosing a linear affine function o+ - x for the first three higher
degree stop-loss rates generates three different Gauss type families of distrib-
utions, the first one being the Gaussian survival model by Kodlin(1967). The
second one, which we consider in the present paper, defines the so-called Gaussian
stop-loss model, whose stop-loss transform is of the type n(d) = E [(X d) ] =
u-expa-x—+pf-x %), with i = E[X] the mean.

Used as an analytical approximation to compound Poisson distributions,
the Gaussian stop-loss model is only feasible either for limited ,,small” values
of the Poisson parameter or for ,,high” values of the coefficient of variation.
Albeit this unpleasant restriction, the present model might be useful in some
situations involving either ,,rare events” or ,,high volatility”. Empirical com-
parisons show that the Gaussian stop-loss values 7(d) approximate well for
,medium” values of d around the mean. To improve the empirical fit for an
extended range of higher values of d, especially in the right tail of the distri-
bution, we assume that the reciprocal of the mean residual life function is a
positive constant (in contrast to the Gaussian case for which this vanishes)
above some ,,threshold” to be determined. This simplified assumption implies
in particular an exponential tail distribution, which for some compound Poisson
distributions is justified under a regularity condition (see Panjer and Willmot
(1992), Section 10.2). A more detailed outline of the paper follows.

Some required prerequisites on reliability theory are summarized in Section 2.
The details of the constructed Gaussian exponential stop-loss model are pre-
sented in Section 3. The conditions under which this model defines a feasible
compound Poisson approximation are derived in Section 4. A semiparametric
determination of the unknown threshold parameter of the model is proposed
in Section 5. Finally, in Section 6, a real-life example by Held (1982) from the
field of pension fund mathematics illustrates and justifies the use of the present
model. Based on several significant goodness-of-fit measures, an improved qual-
ity of fit of the Gaussian exponential stop-loss model is found when compared
with the simple alternative approximations based on the zero gamma, trans-
lated gamma and zero translated gamma distributions considered in Dufresne
and Niederhauser(1997). We also analyse the performance of the Gaussian
exponential approximation by varying the individual claim size distribution.
The Gaussian exponential approximation fits better for a light tailed than a
heavy tailed claim size distribution. As a remedy, we expect to see in future work
a similar construction of the Gaussian Pareto model.
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2. ON THE MONOTONE RELIABILITY CLASSES IFR AND DMRL

We recall the definitions of the monotone reliability classes IFR and DMRL.
For any random variables X taking values in [0, o) with absolutely continuous
distribution F(x) = f f(Odt, f(x),the density, F(x) =1 - F(x) the survival function,
let

2.1) hKx)= d ln {F()} = I]:(( )) x > 0, the failure rate,

22) mx) =E[X-x|X>x]= % x > 0, the (conditional) mean remain-

)
x)’

ing life function,

where 7(x) = fx “F()dt is called the stop-loss transform.

A given function m(x) : (0, e) — (0, =) is the mean residual life function of
o dx
0 m(x)
+ In {m (x)} is non-decreasing on (0, =) (see Bhattacharjee(1982)).

some X if, and only if, it is right-continuous, 0 < 72(0%) < oo, = oo, and

v dx
H(x) = 0 m(t)
The corresponding survival function is uniquely determined by the inversion
formula

m(O [X
(23) Fx)=F0")- ) eXP{‘f m(t)} m(0") = F@O"

A random variable X is of class IFR (DFR) if h(x) is increasing (decreasing)
in x>0, and it is of class DMRL (IMRL) if m(x) is decreasing (increasing) in
x> 0. One knows that IFR = DMRL, but the converse does not hold (Bryson
and Siddiqui(1969), an explicit counterexample is found in Muth(1977)). How-
ever, the converse DMRL = IFR is fulfilled provided the following inequality
holds (Hirlimann(2000a), special case of Theorem 3.2):

24)  m' @) <mx’ ;_:2 In{m(x)}, forall x>0.

This condition is implicit in Muth(1977), and it follows by taking the derivative

1+ m' (x)

of the well-known identity /(x) = and making some rearrangements.

In particular, if m(x) is convex decreasing (Muth(1977)), or log-convex decreas-
ing (Hiirlimann (2000a)), then X is of class IFR. Common distributions, which
are both DMRL (IMRL) and IFR (DFR), include the truncated normal,
the Gamma and the Weibull (Barlow and Proschan(1975)), the Pareto of
types II and III (see Davis and Feldstein(1979)), and the Benktander of types
I and II (see Benktander(1970), Beard et al.(1984), Embrechts et al.(1997),
Hiirlimann (2001)). A computational criterion to test whenever a discrete arith-
metic distribution is of class IFR or/and DMRL is formulated in Theorem 2.1
below.
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Let X be a discrete arithmetic random variable with probabilities f,, n =
0,1, 2, ... such that f,> 0. Appropriate definitions for the discrete case are
obtained from the continuous one by replacing functions f(x), x>0, by sequences
f,,n=0,1,2, ... Given the probabilities, the survival sequence is defined by the
recursion

(2.5) F . =F —f,. Fy=1-f,, n=0,1,2,..

n+l

Then the stop-loss transform satisfies the recursion

(2.6) T, =n,—F, mp=pn n=0,1,2,.

n+

The failure rate and the mean residual life sequences are given by

2.7) h = % m=t n=0,1,2,..

We derive a simple criterion for X to be of class IFR or/fand DMRL.

Theorem 2.1. A discrete arithmetic random variable X with finite mean x>0 and
probabilities {f,}, fo>0is of class IFR if, and only if, the survival sequence {F),}
is logarithmically concave, that is V2 In{F,} =In{F,, , } -2 In{F,} + In{fn-1} <0,
or equivalently

1 Fn+1 ’

(2.8) (F,)'=F, n=12,.

n

Similarly, X is of class DMRL if, and only if, the stop-loss transform sequence
{n,} is logarithmically concave, that is

(2.9) () >m,_,n

e =12,

Proof. The condition (2.8) is seen equivalent to 4, ; < i, by making use of the
recursion (2.5). Taking logarithms, this is equivalent to {F, } being logarithmi-
cally concave. The statement (2.9) is similarly shown equivalent to m, < m,_,;
by using the recursion (2.6).

3. CONSTRUCTION OF THE GAUSSIAN EXPONENTIAL STOP-LOSS MODEL

Our choice of the mean residual life function is based on the following obser-
vations. For “medium” values of x around the mean, the reciprocal of m(x) for
a discrete arithmetic compound Poisson distribution, which is the prototype
of the aggregate claims model in classical risk theory, is approximately linear
provided the Poisson parameter is sufficiently small. For “high” values of x,
one can assume that m(x) is approximately constant under a regularity condition
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(see Panjer and Willmot(1992), Section 10.2). Applying the described criterion,
one obtains the feasible model

1
ot px 0=x=x,
(3.1) m(x) = )
>
a+ fix,’ X=X

X, the threshold, with the parameter restriction

(3.2) 0<pB<a?

which follows from the condition that the corresponding density function must
be non-negative. Since m(x) is convex decreasing, the corresponding random
variable belongs to both classes DMRL and IFR. From (2.3) one obtains through

application of a mean scaled reparametrization, after some straightforward cal-
culations, the survival function

aV x] o x 1la xV] o g<, <
{‘”(V) ﬂ} eXp{ U 2(7 u)} 0=x=x,

F(x,) exp {— (%)}, X=X,

and the stop-loss transform

3.3) F(x) =

(3.4) n(x) =

where u = E[X] > 0 is the mean, a = F(0), and y> 1. The obtained probability
model will be called the (mean scaled) Gaussian exponential stop-loss model.
Making use of the standard normal distribution ®(x) with density ¢(x) = ®'(x),
the Gaussian component of (3.4) can be rewritten after the usual completion of

squares as
oo )
(35) TL'G(X) = u- W, x=0.

It is worthwhile to mention that the limiting Gaussian component y — oo of
(3.4) is a mean scaled compound geometric exponential model (e.g. Panjer and
Willmot (1992), Example 2.9.1 and Kaas et al.(1994), p. 39). Alternatively, the
last model is known to be compound Poisson (e.g. Hiirlimann (1990), Section 4,
and Panjer and Willmot(1992), Example 1.3.4), and has been used in actuarial
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risk theory by Willmot(1989), Boogaert and De Waegenere (1990), and Hiirli-
mann (1994).

4. CONDITIONS FOR A FEASIBLE COMPOUND POISSON APPROXIMATION

To relate the parameter y with the volatility 1 + k% where k =< is the coefficient
of variation, one needs the second order stop-loss transform n,(x) = E [(X - x)i] =
2- f “n(f)dt. The required formulas for the Gaussian and exponential models

are given by
5(3} +Q.£)
=22 #’ >0,
@1 Ty () = 2u a 10) X

0 = 2 ) exp |- (58 |z,

where @(x) = 1 —®(x). Since the second order moment about the origin satisfies
the relationships E[X?] = (1 + k*)u?> = 7%(0), one obtains through calculation of
the decomposition 7, (0) = {nz)G(O) - nZ,G(xO)} + 7, ;(x,) the equation
Q
® (V 5z )
’__. a ) MV Gy
4.2) 2 406 (D<y+yz> DO)+—— 1+ K2,

y+?Z

where one sets x, =z - u. For fixed a=F(0), z>0, what is the possible range of
values for the coefficient of variation when y > 1? It suffices to determine the
values taken by the bivariate function

y

Y
| ) J (p<x+§>
4.3) a(x,y)::x‘exp{jx} (I)<x+¥>—d)(x)+— , x=1, y=0.
X+
X

For fixed x > 1, the curly bracket is monotone decreasing in y, hence its min-
imum is attained as y — . Therefore, to find the minimum of a(x,y), it suf-
fices to determine the minimum of

4.4) b(x): = lim a(x,y) = xe? xzé(x), x>1.
y—oo

Since b’ (x) = exp {% xz} A1+ x)D () - xp (x)} is non-negative, the function b(x)
is increasing. For x > 1 the function b(x), hence also a(x, y), takes values in the
interval [/e - @ (1),00). From (4.2) it follows that the volatility of the Gaussian
exponential stop-loss model must satisfy the inequality
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2/2me - ®(1) _ 13117

a a

(4.5) 1+k* >
For the typical case of a compound Poisson model, the volatility is given by
(4.6) 1+k2=1+%(l+u),

where A is the Poisson parameter, and 1+ v = — is the volatility of the severity
distribution, with m,, m, the first two moments about the origin. Inserting (4. 6)

into (4.5) and noting that o = F(0) =1 — ¢ %, the Gaussian exponential approxi-
mation is feasible provided

4.7) (1.3117)(1_A_A)—/151+u.

The function on the left hand side first decreases and then increases in 4. For
fixed v there is a limited range of values 4 € [/, (), Amax ()] for which (4.7) is

>0.3117
fixed severity volatility only “small” portfolios with 1 < ,,(v) are feasible.
Similarly, for fixed 4, only “highly volatile” portfolios for which v satisfies (4.7)
are feasible.

feasible. If v > 0.75 one has approximately [Ay;, (D), Amax (V)] = [O Tl ] For

5. SEMIPARAMETRIC DETERMINATION OF THE THRESHOLD

Since the Gaussian mean residual life function m;(x) — 0 as x — oo, but m(x) —
positive constant for compound Poisson distributions under a regularity con-
dition, the Gaussian stop-loss transform will underestimate the true value for
large deductibles. To be effectively useful, a precise value must be assigned to
the threshold x, =z - u in (3.3), above which a simple exponential model is chosen
as an approximation. Consider the case of given moments m,, m, and maximal
amount b of the severity, which should be the most often encountered situation
in practice. Then we choose the threshold in such a way that the unexplained
Gaussian mean excess value in the infinite upper layer above the threshold
takes the value of some “highly dangerous” compound Poisson distribution,
where dangerousness is understood in terms of the stop-loss order or increasing
convex order. The described semiparametric approach, for which only three
(two when b — ) parameters need to be determined, allows for a computa-
tion of the threshold as follows.

Let X; be a random variable with survival function F (x) equal to the
Gaussian component of (3.3). From the compound Poisson distribution of the
random variable X, we suppose that in addition to the Poisson parameter 4,
one knows the mean m,, the relative variance v = ; —1of Y, and the relative

b—
maximal severity v, = m1 , where b is the maximal amount of the severity.
Note that v, can be interpreted as the maximal relative variance for given mean
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m and range [0, b] of the severity. Furthermore let v, = 7~ Y be the ratio of these
relative variances. Yo

In the following, the notation X'<;,_Y means X precedes Y in stop-loss
order by equal means, that is E[X] = E[ Y] and 7y(x) <7y (x) for all x. Based on
Hiirlimann (1996/98), we construct a stop-loss upper bound

(5.1) X=Y,+.+ Yy <, X =Y +..+7,,

where N is P01sson(/1) dlstr1buted the Y s are independent and identically dis-
tributed as Y* and the Y’ /s are mdependent from N. According to the above
approach, the threshold is now chosen such that the unexplained Gaussian con-
ditional mean excess value in the infinite upper layer equals the correspondlng dis-
tribution-free quantity obtained from the stop-loss upper bound X", in formulas:

(5.2) mglxy) = E[Xg— x| Xg> x| = E[X" = x| X" > x] = m" ().

Replacing the unexplained approximate component m;(x,) by a distribution-
free quantity m*(x,) of the true compound Poisson amount m,(x,) intuitively
reduces the modelling specification error, that is the possible wrong choice of
an approximate model.

By (3.3) and (3.4), the left hand side of (5.2) equals

_K®
7.
o+ (%) z
Let us show how to evaluate the right hand side of (5.2). From Hﬁrlimann(1996)

Table 4, one first notes that Y~ is the random variable with support {xo, xl, xz,
x3}and probablhtles {po> P1» P> P3}such that

(5.3) mg(Xo) = mg(z - 1) =

* * 1 *
. X 1, X 1+3(e-v) x5
XO—O, xl'_ﬁ_fk’XZ'_F_f” x3'_7_0rTrU0’
5.4) B B
U= Uy~ v,

__V — -0 - -
Po= T+ pl_(1+v)(1+00)’ P2 = (L+vp) (v, + ) P37 o3

7f_*(xo)
F(xy)
following (finite) analytical formulas (use (3.17) in Hiirlimann(1996)):

oo 3
n*(x0)=n*(z~,u)=,u {1_Z+CXP{ } Z P(”lanzs’%)'[z_znz’xf] }:

n, hy, 3=

Then the distribution-free mean residual life m" (x,) = is described by the

0
(5.9 f*(xo) =FG-p= v—x,= 1~ €exp {— é} -2 plm,ny,m)- 1{»%””;
0 =1 .

m, my, 3=
(4p)" (Ap,y)" (Aps )n3
n!nyln,!

P(”la”2a”3)
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We remark that in the limiting case as v, — o (i.e. an unbounded severity), one
observes that x,, x; — e, p,, p; — 0 and (5.5) simplifies to

n*(z~,u):,u~{1—z+exp{—é}~ i %(é)n (z—%nk2>+},

1

(5.6) N )
F'z p)=1-exp {— %} ; ng() % <p> e

2

which shows by passing that 7*(z - u) is approximately %,u for sufficiently large z.
The simple structure of (5.5) allows one to write

x 1-B.—(1-A. 1-B.

where one has

(5.8) A = exp{—%} -2 p(n,my,n)- l{pgw},
ny, 1y, 1,=0 i=1
3
1 °° Z‘in"x"
(5.9) B, =ex {——} . ——— 1.3, .1
P ke? 11],77,2,271320 p(nl,n2,n3) {- iE]l ’}

In the limiting case v, — e these expressions are replaced by

_ _1 ]l vy
(5.10) Az—exp{ k2} ZO n!(k2> ot
1 1] & 1 1\
(511) BZ_ fexp{—ﬁ} n;] (n_l)'<p) .1{:>%nk2}'

(5.12) ———=C.-z, C.=1—F,

as the solution of an implicit quadratic equation, and satisfies the formula

1 I Ll S 1
(5.13) z=5 I_OLCZ-H(I_OLCZ) +4E<1—OLCZ> .

As z increases, the quantities 4., B. increase and tend to the values 4. — 1 and
B. — 4 as z— 0 and v, — . In this situation, one has C. — « and there is a
limiting maximal threshold, which is given by
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max

1 ‘/ yz
(5.14) z :§{1+\/1+4E}'

The values of z, y are obtained iteratively by inserting (5.13) into the volatility
equation (4.2). In our later examples the relations (5.13) and (5.14) often yield
similar values of z, y.

6. NUMERICAL IMPLEMENTATION AND ILLUSTRATIONS

The numerical evaluation of the unknown parameters z, y simplifies if one
takes into account the following property of the volatility equation (4.2). The
well-known inequality x®(x) < ¢(x) for x >0 shows that the true value of y is
bounded above by the solution y, of the pure Gaussian volatility equation

) 6(Vo) _
@ 9()

With this maximal value of y, the corresponding threshold z is an implicit
solution of (5.13). With the obtained value of z, it is possible to adjust for y
by usmg (4.2). The described iterative algorlthm used to compute z, y con-
verges in our experience quickly to the accurate values.

Our first numerical illustration is based on the pension fund PK-230 of
Held(1982), also discussed in Dufresne and Niederhauser(1997). A comparative
study varying the relative maximal severity v, is summarized in Tables 6.1 and 6.2.
As a remarkable feature, the Gaussian exponential stop-loss model for v, = 8,
which corresponds to the effective maximal severity of amount b = 487’000, is
on the safe side from a reinsurance viewpoint. In general, increasing v, up to
vy = oo, the stop-loss values do not always remain on the safe side. A very good
fit in the right tail of the distribution is obtained for the limiting value v, = e

Let us justify more formally the use of the simplest limiting model v = oe.
This is done by comparing its quality of fit with that of the zero gamma, trans-
lated gamma and zero translated gamma approximations considered in Dufresne
and Niederhauser(1997). The quality of fit is measured using 5 goodness-of-fit
measures, which are “probability” analogues to those used in statistical estima-
tion. Assume the data is grouped into m = 15 classes with boundaries ;= j - u,
J=0,...,m, and that the distribution function and stop-loss transform of the
true compound Poisson distribution are known such that F Pr(X<¢), #
E[(X-¢)4], /=0, ..., m are the observed data set. The correspondlng approx1-
mated Values are denoted by F, m;, j=0, ..., m. We use the following goodness-
of-fit measures:

(6.1) 2 1+ k2.

The Pearson’s chi-square measure

(B Fa (R - FL))
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TABLE 6.1

PARAMETERS OF THE (GAUSSIAN EXPONENTIAL STOP-LOSS MODEL

51

Basic portfolio parameters

expected number of claims
probability at least one claim occurs
expected aggregate claims
coefficient of variation of aggregate claims : k=1.2737
relative variance of the claim size

S =123
© a=0.70771
: w=67'000

tv=2k>-1=0.99544

Calculation of the threshold: parameters and values

Vo X1 X2 X3 Y z
P P2 D3
8 0.81116 4.01446 7.31707 3.12823 2.37462
0.39003 0.0958 0.01532
12 0.81116 5.65734 10.56911 3.21131 2.86238
0.42422 0.07006 0.0068653
16 0.81116 7.29178 13.82114 3.24389 3.1375
0.44232 0.05495 0.0038734
32 0.81116 13.80849 26.82927 3.28944 3.70555
0.47084 0.02933 0.00097117
oo 0.81116 oo oo 3.32231 4.47972
0.50114 0 0
TABLE 6.2
STOP-LOSS TRANSFORM APPROXIMATIONS FOR THE PENSION FUND PK-230
Deductible | Compound Gaussian exponential model
XU Poisson model Vy=8 12 16 32 oo
1-u 32000 32182 32224 32239 32260 32275
2-u 14308 14686 14763 14792 14831 14858
3-u 6368 6432 6446 6471 6510 6536
4-u 2762 2807 2764 2748 2734 2748
S-u 1186 1225 1185 1166 1135 1111
6-u 500 535 508 495 471 447
T-u 198 233 218 210 196 180
8- u 78 102 94 89 81 72
9-u 30 44 40 38 34 29
10- 1 12 19 17 16 14 12
11-u 4 8 7 7 6 5
121 2 4 3 3 2 2
13- 1 2 1 1 1 1
14-u 0 1 1 1 0 0
15 u 0 1 0 0 0 0
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In statistics, this is the standard goodness-of-fit measure with grouped data, for
which an elegant statistical theory exists (e.g. Hogg and Klugman (1984), p. 107).

The weighted Cramér-von Mises minimum measure
K= 2 F (1 F) (F,—F,)?

The chosen weights are largest at the ends of the distribution, which render the
K-statistic especially useful for the empirical testing of the tails of the distri-
bution (e.g. Hogg and Klugman (1984), p. 135).

The stop-loss distance measure

SLD = f}( _ﬂ)

J

The limited expected value distance measure

LEL

LED = 2 LE]

] , with LE; = ny—n;, LE;=#,—#

The mean excess distance measure

MED = 2

a 1-F> A P

ME; - ME
J J

j : 4Ji A j
ME : ,WlthMEjZ : ME, = —

The last two “ad-hoc” measures have been used and motivated by some actu-
aries (Hogg and Klugman (1984), Klugman et al.(1998)). Apart from Carriere
(1992) who studies the LED, it seems that these measures have not received too
much attention. The goodness-of-fit analysis is summarized in Table 6.3. The
analytical approximations are calculated using the parameter values 4 =1.23

TABLE 6.3

GOODNESS-OF-FIT COMPARISONS

Distribution Vi K SLD LED MED

Gaussian exponential 0.00535 0.0234 0.33631 0.00068 0.88545
Zero gamma 0.00713 0.03917 3.15515 0.00094 0.27553
Translated gamma 0.02195 0.7894 2.71291 0.03076 0.25867
Zero translated gamma 0.01147 0.08547 1.28125 0.0011 0.10766
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(Poisson parameter), u = 67000 (mean), k = 1.2737 (coefticient of variation),
7, = 1.895 (skewness).

With respect to the first 4 criteria, the Gaussian exponential approximation
displays the best fit. Note that a high MED-value does not necessarily mean
a lack of fit. As observed in another recent study, the best overall fits in a set
of alternatives show often higher MED-values (e.g. Hiirlimann(2001)). This
observation seems to be related with the longer tails of the distributions, but
no precise explanation has been found so far for this phenomenon. Further-
more, a final comment on statistical estimation is in order. Based on the para-
meter vector (4, u, k), which is a reasonable choice in statistical studies, only
the three parameter Gaussian exponential and zero gamma could actually be
compared. The other distributions require knowledge of the skewness parame-
ter, which is more difficult to estimate.

As a second case study, it is instructive to analyse the performance of the
Gaussian exponential approximation by Varymg the individual claim size dis-
tribution. Tables 6.4 and 6.5 illustrate this issue using gamma and Pareto claim
size distributions. These are prototypes for light tailed and heavy tailed distribu-
tions used in life insurance and reinsurance. The compound Poisson distribu-
tions are evaluated using a discretization of the continuous claim sizes and then
applying Panjer’s(1981) recursion.

TABLE 6.4

STOP-LOSS TRANSFORMS OF COMPOUND POISSON GAMMA AND GAUSSIAN EXPONENTIAL

Parameters
L=5 =10
_ 4= 103.09079 f:5'39453 u=20618158 /= 130378
Deductible k= 0.97497 z=15.93584 k= 0.68941 z=1.89113
comp. Poisson Gaussian exp. comp. Poisson Gaussian exp.
0 103.091 103.091 206.182 206.182
60 57.848 57.500 148.966 150.334
120 31.798 31.705 101.881 104.287
180 17.185 17.282 66.835 68.828
240 9.167 9.313 42.435 43.219
300 4.841 4.961 26.246 25.819
360 2.535 2.613 15.886 14.675
420 1.318 1.360 9.444 7.985
480 0.682 0.700 5.529 4318
540 0.351 0.356 3.195 2.335
600 0.180 0.179 1.825 1.263
660 0.092 0.089 1.032 0.683
720 0.047 0.045 0.578 0.369
780 0.024 0.022 0.321 0.200
840 0.012 0.011 0.177 0.108
900 0.006 0.005 0.097 0.058
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TABLE 6.5

STOP-LOSS TRANSFORMS OF COMPOUND POISSON PARETO AND GAUSSIAN EXPONENTIAL

Parameters
A=5 A=10
B y=2.67528 B y=1.15366
Deductible z - 5?829?2217 2=3.23044 i _ 3?23“3‘223 S I=175426
comp. Poisson Gaussian exp. comp. Poisson Gaussian exp.
0 102.206 102.206 204.412 204.412
60 52.149 55.709 145.338 147.564
120 25.239 28.957 94.104 99.849
180 12.853 14.353 57.274 63.328
240 7.119 6.784 34.115 37.647
300 4.290 3.058 20.521 20.978
360 2.775 1.322 12.712 10.957
420 1.897 0.568 8.183 5.549
480 1.349 0.244 5.481 2.810
540 0.987 0.105 3.806 1.423
600 0.734 0.045 2.722 0.721
660 0.552 0.019 1.992 0.365
720 0.414 0.008 1.479 0.185
780 0.309 0.004 1.107 0.094
840 0.225 0.002 0.829 0.047
900 0.158 0.001 0.615 0.024

The Gaussian exponential approximation is excellent and usually yields “safe”
net stop-loss premiums for deductibles below the threshold x, = z - u. For values
in the right tail beyond the threshold, the approximation seems only good for
a light tailed claim size distribution. To improve the goodness-of-fit for heavy
tailed claim sizes, we suggest replacing the exponential right tail by a Pareto
right tail. A possible similar construction of the Gaussian Pareto model is left
as a challenge to the interested practitioner.
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