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In this paper, we consider a reaction infiltration problem consisting of a parabolic equation for the
concentration, an elliptic equation for the pressure, and an ordinary differential equation for the porosity.
Existence and uniqueness of a global classical solution is proved for bounded domains O C R", under suitable
boundary conditions.
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1. Introduction

Here we consider the mathematical problem, introduced in [5] in order to study the
infiltration of a fluid in a porous medium whose porosity changes due to the reaction of
the porous matrix with the fluid. Part of the porous medium is then dissolved into the fluid
and transported by the fluid flux. In this way the porosity and the concentration of the
compound change with time and, in turn, influence the fluid motion.

Denote by q>, u, and p the porosity of the medium, the concentration of the dissolved
component, and the pressure in the fluid, respectively. Then the conservation law for
the concentration, the conservation law for the mass of the fluid, and the dynamics of
the dissolution of the porous matrix give rise to the following system of partial
differential equations (see [5] for a detailed derivation)

jt<p, (1.1)

^ (1.2)

jtcp = [(<pf - ?)+]2 / 3K, - u) (1.3)
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where t denotes the time, V is the spatial gradient, D and K are, respectively, the
diffusivity and the permeability, f+ = max{/, 0} is the positive part of/, <ps and u^ are
positive constants representing the final porosity and the equilibrium concentration,
respectively.

Here we consider the problem of solving (1.1)-(1.3) in QT = Q x (0, T) (where
Q C R" is a smooth bounded domain) with initial and boundary conditions

u(x, 0) = «o(x), xeQ, (1.4)

— (x,t) = 0, (x, 0 e an x [0, T], (1.6)

p(x, t) = p,(x, t). (x, t) e an x [0, 71. (1.7)

We are interested in global (in time) classical solutions of this problem. For
n c R1, the existence of a unique global classical solution was proved in [7], where the
proof of the existence and uniqueness of a local (in time) classical solution was also
established for any space dimension.

For N = 2, global existence of a classical solution was proved in [4]. In this case
the proof required the assumption of vanishing flux for the concentration, i.e.
condition (1.6).

Here we extend the results obtained for dimension two to any spatial dimension.
Throughout this paper we use the notations of [10] for function spaces and their

norms. In particular HS(QT), s e R is defined as in [10] (with "parabolic" anisotropic
distance). We use also the space C'(QT) which is defined similarly but with the
euclidean isotropic distance in QT.

2. Holder continuity

In this section we prove the Holder continuity of the concentration u. For this let
us consider the equation

q> — u = V(DVu) + KVpVu+/, in QT = Q x (0, T), (2.1)
at

u(x, 0) = «o(x, 0), x e Q , (2.2)

au
- (x ,o = o, (x, o e n, x [o, n (2.3)

an

U(x, t) = uo(x, 0, (x, 0 e rD x [0, T], (2.4)
where TU

D = 3Q\F^ and UQ is the restriction of a C'(Qr) function. We also assume that
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the coefficients q>, D, K and/ are measurable functions satisfying

0 < -^ < <p, D, K < Co, (2.5)
Co

I/I < Co,

\<P,\ < C o ,

,°°(O, T; H\Sl)) is a solution of

V(KVp) = g,

K-£(x,t) = pN(x, t), (x, OeTjx

P(X, t) = PD(X, t), (x, 0 € (aa\r&) >

[0,

c[0

T],

>n

(2.6)

(2.7)

(2.8)

(2.9)

(2.10)

where g e L°°(QT). We assume that pN is a measurable bounded function on
9Q x [0, T] and pD is the restriction of a C'C^) function. If T£ = dil\r"N = 0, we
assume that pN contains a free term, depending only on time, in order to satisfy

/ = [ <pt(;t)

for every t e [0, T], and we choose p such that

P(x, t) = 0,/
JaJn

for every t e [0, T\.

Theorem 2.1. Assume that u e L2(0, T; Hl(Q)) n LX{QT) is a nonnegative solution of
(2.1)-(2.4). Then there exist constants a e (0, 1) and C > 0 JMCA f/ia?

N(Gr<C. (2.11)

The proof of the theorem follows the path of the proof in [10, Chapter II, §7].
However some modifications of the original proof are needed. For the reader's
convenience we provide here most of the details. In the sequel C will denote any
constant depending on given data.

Lemma 2.1. Under the foregoing assumptions, we have

IIPllL~(o.T:c/>(n)) < C, (2.12)

for some /? e (0,1).
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Proof. It follows from the classical theory of elliptic equation in divergence form,
see [9].

Lemma 2.2. For any given e > 0, there exists po(Co, Q, r"D) > 0 such that, if
spt(O C BH{xQ),for some x0 e Cl, then

f K|Vp|> - k)l? < E f |V(u - k)J2C
Ja Ja

+ Ce / (« - k)l(C + IVCI2), for any t e [0, T\,
Ja

where k e R is arbitrary, (u — k)± = max{±(u - k), 0}, C is any cut-off function and
spt(C) is the support of£.

Proof. Multiplying equation (2.8) by (p — p0) (u — k)2
±{,2, where p0 is a function to

be determined in the following, we obtain

0 = f KVpV((p - p0) (« - kfj2) + fg(p- p0) (u - k)lC
Ja Ja

[ ^
Jxi on

= 1 + 11- III.

We can estimate / and / / as follows:

/ = / K|Vp|2(u - k)\C - f KVpVpo(u - k)\
Ja Jn

+ f K{p- po)Vp[2(u - fe)±C2V(« - k)± + 2(u - kf
Ja

>\( K\Vp\\u - k)2
±C2 - C||Vpo||t-.(m f(u - k)lC2

±Ja Ja

- C||p - PolL-^wno) /[|V(u - k)±\2Z2 + (u - kfj
Ja

\U\ < IISfllL~(n)llp-Polli.»(B(,

To estimate / / / , we consider two cases:
(i) dist (x0, rp

D) > p0; (ii) dist (x0,1^) < p0.
In the first case, we take p0 = p(x0, t) which behaves like a constant in the above
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computation. Then it follows that

|Vpo| = 0, ||p - PollL»(B/)0(x0)nn) < PO\\P\\LO°(O.T;CIHCI)) <

and then, using the imbedding

Jaa\ri
< cpg||(u - k)±<

< Cpl\\{u - k)±a2
H>{a) < Cpl f[\V(u - k)±\2C + (" - kf±{C + | VCI2)].

Ja

Combining this with the estimates for / and // , we finally obtain

f K\Vp\\u - k)2
±C < Cpl f |V(w - fc)±|2C2

Ja Ja

+ C f ( u - k)2
±(C + |VCI2),

Ja

which gives the assertion of the lemma for p0 small enough.
In the second case we take p^—Po- Then we have ||Vpo|| < Co and

\\P — Po\\L°°(Bf(.xo)nn) < Cpl since dist(x0, r
p
D) < p0. Consequently the above estimates

remain true, and we obtain the assertion of the lemma again. •

Remark 2.1. The result of the above lemma is the first fundamental estimate for
the proof of Theorem 2.1. It allows to circumvent the problem of the lack of regularity
of the coefficient KVp which forbids the direct use of the classical regularity results
for linear parabolic equations. A similar approach was used in [1] for proving the
continuity of the solution of a mixed parabolic-elliptic system. In [1] the parabolic
equation was allowed to be degenerate. In the nondegenerate case the corresponding
solution is Holder continuous, [6].

In the sequel, p0 will always indicate the radius determined in the above lemma.

Lemma 2.3. There exist constants v, C > 0 such that, for every £ e Ccc(BPo(xo) x [0, T\)
vanishing on the lateralsurface (for any x0 e Cl) andany0 < t, < t2 < T, we have

f < ,s2r2'='2 I"2/",™ „ ,2,2
I (p(u — k ) . £ + v I I | v ( u — k ) . \ L,

Ja ,=„ J,2 Ja

< C f f[(u - *£(|«,| + IVCI2) + X(o,-*)±>o,C2], (2.13)
Jtt Ja
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where k is any constant chosen according to the following

k e [min {u}, max {u}], if spt (Q n r D x [r,, t2] = {0}

k > max u0 in (u - k)+
if sp t(£) n pD x [tl>

< max u0 in (u — /c)_

Proof. We deal only with the " + " case, the "—" being similar. Multiplying both
sides of equation (2.1) by (u — fc)+{2 and integrating over Q we get:

0= f cput{u-k)+C- I D^(u-k)+Z2+ /" DV«V((u - fc)+C2)
Ja Jxi °n Ja

- f KVpVu(u - k)+C2 - [f(u - k)+C2

>~J<p(u- k)\C - \ [(cp,? + 2cp{Q(u - kf+ - f D%-{u - k)+C
2dtJa 2 Jn Jxt dn

+ £ D|V(u - k)+|2C2 - jf o Q |V(u - k)+\2C2 + 8(u - fc)2
+|V

Since D(8u/3«)(w - fc)+£2 = 0 on 9Q, and cpt e L°°, the assertion the lemma follows from
Lemma 2.2. •

Remark 2.2. Inequality (2.13) is the analogous of inequality (7.5) of Chapt. II of
[10], which implies the appartenence to a De Giorgi parabolic class of the solution.
The main difference is the presence of the factor cp in the first integral. If the ratio
q>M/<pm of the supremum to the infimum of cp is bounded from above by 1 /4, then the
proof of [10] can be carried over without changes. In fact this would allow to choose
(in the notation of [10]) p = 2 in Lemma 7.1, p. 112, which is the smallest possible
value for which the proof of Lemma 7.3 works.

In the following (x0, t0) will denote an arbitrary point of QT. We define

QP0 = (n n B,(X0)) x (t0 - eP
2, t0),

l*±(k, p , t) = measure {x e Q D Bp(x0)\(u(x, t) - k)± > 0},

A±(k, p , 9) = j ; o
o _ O p 2 p.±(k, p , t)dt = measure {(x, t) e fiM|(n(x, t) - k)± > 0},

Mp0 = supe<> 0 u, mp0 = infG(i „ u,

a)p0 = Mp0 - mp0 = oscQi)0u,
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j-oo

oo

max
nr^)x[io-O/

min

if

"o if

if

!<o)"° i f

Bp(x0)n

3p(x0) n

3p(x0) n

ru
D = 0,

0,

mK.o —

Lemma 2.4. 77iere ejcw/ 0O € (0,1) and b0 > 0 SMCA /Aa/, /or anj 0 < p < p0 < 1, one
of the following cases holds:

(i) dist (x0, ru
D) < p,

(ii) wp,o0 < P,

( i i i ) /x+(»V.0o + 1 ^ . 0 0 . P . 0 > b o P N , f o r a l l t e [ t 0 - 0 o p 2 , t0],

( i v ) / i _ ( M p 0 o - 1 c o p M o , p , t) > b o p N , f o r a l l t e [ t 0 - 6 0 p 2 , t0].

Proof. Assume that (i) and (ii) do not hold. Then dist (x0, r
u
D) > p and hence any

k e [min u, max u] is admissible in Lemma 2.3 if spt (Q c Bp(x0). Moreover
c<Vi > "p.oo > P-

Let 0O be a small constant, whose value will be fixed in the sequel. One of the
following cases must hold, for t, — t0 — 00p

2:

/ B , no

We now show that (a) implies (iii) and (b) implies (iv), hence completing the proof.
Without loss of generality, we assume that (b) holds and prove that (b) implies (iv).

Let a e (0,1) be a small constant to be determined and £ = ((*) e Cfj°(Bp(x0)) a cut-
off function satisfying

< C < l , C = 1 in B(1_*>P(*O).

Applying Lemma 2.3 with arbitrary t2 = t e [£,, t0] and fc = (mp0(l + MpOo)/2, we have

[<p(.,t)(u-kf±e < [<p(;t)(u-k)lt2

Ja , Ja (,

+ C T A(u - fc)i(C2 + IVCI2) 4- C2]
Ji,Ja

<(.Mp,0o-kf\f <p(.,t,)
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; t.)

since MpOo — fe = 50^0,, > | p , t — tt < 0p2, (p < 1). From the previous estimates (and
the fact that MpOa - \(o9 Oo - k = |OJP Oo) it follows that

«'B(i-«)pno

— / <?(-, t)X[u>Mf.oa-\aif.oa)

> f ?»(•, 0 - 77^ r ITT / <P(-. 0(« -

Since |<p,| < Co, we have

Bpna

-I/"
' J B ( | . j ) f n

Hence we have

by taking <7 = 1/4CC* and 0O small enough. Since q> < Co, the assertion of the lemma
follows. •

In the sequel we fix 6 = 90 and we omit the subscript 8 in all related quantities, e.g.
QP.o = Q,, etc.

Lemma 2.5. There exists a constant C > 0 JMC/J //M/ for all p e (0, p0), a e (0, ^),
and k satisfying (2.14)
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I IK« " fc)±II Ift,^, s sup ||(ii - k)±
2

) 2 2

Proof. It is enough to choose the cut-off function ((x, t) e C°°(RN+1) in Lemma 2.3
such that £ = 0 if | x - x o | > p or t < t0 - 60p

2, £ = 1 in Q^a)p, O < C < 1 a n d
ICI + IVCI2 < Clap1. U

Lemma 2.6. Assume that Ho e (Afp — \a>p, Mp) (or H0e(ml>,ml,-\-\cop)) and that
H0>M°p (or Ho < m°). Define, for n =1,2,...,

- Ho) ^or H. = mp

1/1 1

Then

Or

Proof. Using the imbedding || • H^+WK) < C||| • |||, see formula (3.4) of [10, §3,
Chapt. 2, p. 75], and Lemma 2.5, we have

A-(H,

'" + ~ C \ PN ) '

1 f
A+(Hn+l, Pn+|) < — • 2+WN) / (" - Hr,)2**"^

< c-
- Hn)

2-H4/N)
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where we made use of ||(« - Hn)+1|^ < 4n+l(Hn+1 - Hn)
2A+(Hn, pn). D

Lemma 2.7. We have

(i) Ifmes({u(; t) < k) n Bp n Q) > bop" then, for alll>k

(l-k)ii+{l,p.t) < Cp\\V(u(;t)-k)+\\LHB,na)(ji+(k,p,t)-n+(l,p,t))l/2, (2.15)

(ii) / / « " " ' ( B , n r o ) > ^ p " - 1 am/ u|B)>nr. < k, then (2.15) /IOWJ. //ere / /"" ' denotes
the Hausdorff measure.

Proof. Part (i) of the lemma follows immediately from inequality (5.5) of [10,
Chapt. II, p. 91], by means of the Holder inequality. To prove (ii), one has to prove
first an equivalent of the above mentioned inequality (5.5) when the set {u < k] is
localized on the boundary of Bp n Q. This is almost immediate if Bp n ft = Bp since, in
this case, the same proof as in [10] can be carried out simply integrating over the
boundary of Bp. The general case can be reduced to this one if 9Q is regular enough
and p is sufficiently small. •

Lemma 2.8. For every e > 0, there exists S(e) > 0 such that one of the following
holds:

(1) cop/2 < 2sp

(2) M,>Ml+^a>,
AT+2

(3)mp<ml-l-cop

(if dist(x0, ru
D) < p then 2p replaces p in the inequalities involving A+andA_).

Proof. We are of course interested in the case in which (1) fails. First we consider
the case dist (x0, T"D) > p. By Lemma 2.4 we can assume, without loss of generality,
that

M-\Mpll - g Q)p/2,|, tj > bop
N for every t e L - - ^ p2, t0J.

Hence, taking l> k > Mp/2 — |a)p/2 in Lemma 2.7(i), and from the estimate of Lemma
2.5, we have
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40 ^ i l . ,

Let us take kn = Mp-\^(o9l2, n — 0, 1,2, 3 , . . . , S — 3. Then, taking k = kn, and
/ = fcB+1> we have that

Since co^ > 2sp, adding up the above inequalities for n = 0,1, 2 , . . . , S — 3, we obtain

Taking S large enough, we obtain

which is the claim of the lemma.
We now consider the case dist(x0, r

u
D) < p. Since

(*J2p = OSCfjng^C^o) o — ^P'

we can assume, without loss of generality, cop > 2co^, and therefore, either

Mp > max Uo + - (op

or
1

m < min UQ-- co

Assume that the first case holds (the second one is analogous). We can now use the
results of Lemma 2.7 (ii) and of Lemma 2.5. Then, proceeding as above, we show that
there exists S such that

+(ks, p) < £<j,)N+2, ks = M^ - 1 wp.
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This completes the proof of lemma. •

We now state an algebraic lemma whose proof can be found, for instance, in [10].

Lemma 2.9. If the sequence {yn}%L0 satisfies

0 < y_+1 < C"yi+(2W

for some positive C > 1, then there exists e > 0 depending on C, such that, if yQ < e,
then

lim yn = 0.
n-*oo

In the sequel we fix the value of £ in Lemma 2.8 in such a way that Lemma 2.9
can be applied.

Lemma 2.10. There exists v e (0, 1) such that, for all 0 < p < p0, we have

(Op/4 < VO)2p + Cp

Proof. Without loss of generality we can assume cop/4 > Cp. Let us first consider
the case dist(xo,rp) > p. In this case, using Lemma 2.6, Lemma 2.8 and Lemma 2.9,
we have that either

Mp/4 < Mp - ^ cop/2

or

In both cases we have that

from which we get

1
CUp/4 < j - COp.

Now we consider the case dist (x0, r
u

D) < p. Since oscp^g^Uo < Cp, we have that
either Mp > M\p + \o)p or mp <mlp — ±wp. In both cases we can apply Lemma 2.6,
Lemma 2.8 and Lemma 2.9 to conclude that

1
0ipn < p COlp.
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This concludes the assertion of the Lemma. •

Finally the assertion of Theorem 2.1 follows from Lemma 2.10 and Lemma 5.8, p.
96 of [10].

3. A priori estimates

We establish here some a priori estimate for the solution of the system (1.1)-(1.7),
under the assumptions

D' is Lipschitz continuous, D > Dm > 0; (3.1)

K' is Lipschitz continuous, K > Km > 0; (3.2)

p, e C\QT), <p0 e H2+*(fi); (3.3)

«o G H2+*(n), ^ = 0, x e 3 Q . (3.4)
an

As a first step, we prove

Lemma 3.1. Under assumptions (3.1)-(3.4), we have

\u\ < M, (x, t) € QT (3.5)

HVull̂ e,.) < M, (3.6)

\\P(; Oilmen) + IIVK". Olltfm ^ M - Z0'- «»«^ f e P . Tl. (3-7)

\<p\ + \q>,\<M, (x,t)eQT, (3.8)

HVg»(-, t)||L2(0) < M, for every te[0,T], (3.9)

Proof. Inequality (3.5) is a standard consequence of the maximum principle and
inequality (3.8) follows immediately from (3.5) and equation (1.3). Inequalities (3.6)
and (3.7) are easily obtained multiplying equation (1.1) times u and equation (1.2)
times p and then integrating by part, see Lemma 4.1 of [7] for more details. •

Lemma 3.2. Under assumptions (3. l)-(3.4), we have the following a priori estimates

\u(£a) < M, (3.10)

IPlj£ + |Vp|(£ < M0). for any 5 e (0,1), (3.11)

M. (3.12)
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Moreover p e L°°(0, T; H2+X(co))for any co CC fi.

Proof. Writing equation (1.1) as

^ ^ (3.13)
at at

we can apply, because of the estimates of Lemma 3.1, the results of Section 2, thus
obtaining the Holder continuity of u in QT. Consequently also cp and q>t are Holder
continuous functions.

Then using the regularity result of Theorem 17.1 of [2], we have

for some P e (0,1), for every t e (0, T).
Then we proceed as in the proof of Theorem 2.3 of [4], i.e. for every positive

constants h and y, we denote by pyh the difference (j>{-,t + h) — p(-,t))/hy. Then pyh

satisfies the elliptic equation

, t + h))VPyJ<) = (<p,)y„ + V(K(cp)yhVp). (3.14)

Since K(q>)yh is Holder continuous, uniformly in h, for every y e [0, 1], we then know
that Vpa/2/l is bounded independently of h, [2]. Hence, we obtain

\p\t + |Vp|<fr < M.

Again, we proceed as in part (d) of the proof of the above mentioned theorem of
[4], i.e. differentiating equation (3.13) and multiplying by IVul21^, summing over i and
integrating by parts (noting that du/dn = 0 on 3QM x (0, T)), we get

Here we have used the conventional summation notation over doubled indices. The
first two terms in the integrand are good terms which will give the positive terms
||Vu(-, OIILAOM)

 a n d
 H I V H I ' K " * , * ; ) ! ! ! ^ , ) , where we indicate by \(uXIXj)\ the euclidean

norm of the Hessian matrix in RN*N. Using the equation to replace u,, the fourth term
in the integrand can be estimated by /0' / / o J e l V u h O ^ ) ! 2 + C£(l + IVul2^4 + I 2 ^
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Similar estimates also hold for the rest of the terms. Since l|V<p||L2,.M(nMi) <
C(l + l|Vu||L2.+4(nMi)), taking e small enough, we obtain

sup |||Vu|I+l||2t2(nM) + NVul'Kii ) | |£ 1 ( O M I ) < C(s) [ l + f ff \Vu\M\
o<t<t • I Jo J JaM J

Since u e C" / 2 and du/dn = 0 on the boundary, using a reflection technique we can
rewrite the imbedding of [10, (5.8), p. 94] in the form:

< ff e\Vu\^\(uxlx.)\
2 + Cc\Vu\2

I T " I ^ / / t |VH| H,UX(X|̂ | T O ( | V « |

from which it follows that

sup |||V«r'||2L2(OM) + IHVuri(u )|||22(nMi) < C(s) \l+ [ ff |V«
o<t<i • L Jo J JaMJaM

Gronwall's inequality then gives that Vu e L°°(0, T; L 2 1 * 2 ^) ) for any s > 0.
We thus obtain an estimate for the Ls(gT)-norm of |VM| for any s. Such an estimate

induces a similar estimate for V<p. Then we can consider 3.13 as a linear equation
whose coefficients are bounded in appropriate spaces. Theorem 9.1, p. 341, of [10] and
the subsequent corollary can now be applied, and we obtain that

for any q > 2 and any y e (0,1).
The statement of the lemma then follows from standard regularity theorems on

linear elliptic and parabolic equations by means of a simple boot-strap argument. •

We assume now that u0 satisfies the following weaker condition.

u0 e Wr
2-iN+2)/r(Q), r > N + 2 , ^ = 0 , x e 3 Q . (3.15)

an

Theorem 3.3. Under the assumptions (3.1), (3.3) and (3.15), problem (1.1)-(1.7) has a
unique classical solution (u, p, <p) such that

QT), (3.16)

<P e C2-("+2) / '(er). (3.17)

p e L°°(0, T; H2+\co)) wGCCl, (3.18)

for a suitable v e (0,1). Moreover p satisfies (3.11), u and q> satisfy inequalities (3.10)
and (3.12) in Q x (T, T)for any x > 0.
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Proof. Local existence and uniqueness of a classical solution satisfying (3.16) and
(3.17) is granted by Remark 1.2 of [7] (in [7] a Dirichlet datum was assigned for u, but
the arguments used there work also for a Neumann boundary condition).

Standard regularity theory implies that this solution satisfies the assumptions on the
initial data of Lemma 3.2 for any positive t in the interval of existence. The a priori
estimates of Lemma 3.2 then guarantee that the solution can be extended for arbitrary
positive time preserving the regularity required in (3.16)-(3.18) ((3.18) is a trivial
consequence of elliptic regularity theory, [9]). •

Remark 3.1. The previous results remain true under the boundary condition
(9u/3«) = h(x, t), with h regular enough, providing that an estimate for \u\ is available.
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