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ABSTRACT. A permutation group A of degree n acting on a set X 
has a certain number of orbits, each a subset of X. More generally, 
A also induces an equivalence relation on Xlk\ the set of all k-
subsets of X9 and the resulting equivalence classes are called k-
orbits of A, or generalized orbits. A self-complementary k-orbit is 
one in which for every ^-subset S in it, X—S is also in it. Our main 
results are two formulas for the number s(A) of self-complementary 
generalized orbits of an arbitrary permutation group A in terms of 
its cycle index. We show that self-complementary graphs, digraphs, 
and relations provide special classes of self-complementary 
generalized orbits. 

1. Statement of the theorem. Any permutation group A acting on a finite object 
set ^partitions Zinto orbits in the usual way. It also induces a partition of Xi2\ 
the collection of all 2-subsets of X, and in general of X(k), for all k, l^fc<|X|=/?. 
We call the subsets of X(k) so obtained the k-orbits of A, so that 1-orbits are the 
usual orbits of A. A generalized orbit of A is a &-orbit for some k. Then a subset 
S of X with \S\=k belongs to a self-complementary k-orbit if X— S is in the same 
k-oxbit as S. Of course this can only happen when k=p/29 so that self-comple­
mentary generalized orbits cannot occur in permutation groups of odd degree. 

Our main object is to derive a formula for the number s(A) of self-comple­
mentary generalized orbits of an arbitrary permutation group A in terms of its 
cycle structure. In order to do this, we require the definition of the cycle index of 
A, which we now state for the sake of completeness. A permutation a eA has 
cycle type (jl9f2,... ,fP), where yfc=A(a) *s the number of ^-cycles in a when 
expressed in the usual disjoint cycle form. The permutation group A of degree p 
has as its cycle index, defined by Polya [7], the following polynomial in/? indeter-
minates yk: 

(1) Z(A) = Z(A; yl9 y29. . . , y0) = ± 2 IT yl^ 
\A\ aeA Jc 

We can now state the principal result. 
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THEOREM 1. The number of self-complementary generalized orbits of A is: 

(2) s04) = Z C 4 ; 0 , 2 , 0 , 2 , . . . ) , 

which is obtained from Z(A) on replacing every yk with odd subscript by 0 and every 
yk with even subscript by 2. 

The formulas found by Read [8] for the number of self-complementary graphs 
and directed graphs provide a special case of this formula. The proof of this 
theorem to be given in the next section is based on that of Read but applies the 
process to an arbitrary permutation group instead of to the special permutation 
group known as the pair group of the symmetric group. 

2. Proof of Theorem 1. We begin by reviewing the derivation by Read [8] of 
the formula for the number of self-complementary graphs with a given number of 
points; see also [3, p. 192]. The first step is to define a new equivalence relation on 
graphs in which GX^G2 if either the two graphs are isomorphic or one of them is 
isomorphic to the complement of the other. Let cp be the number of such equivalence 
classes of graphs with/? points. 

We need to compare this equivalence relation with that of isomorphism for a 
given graph G. There are two possibilities: Either G and its complement G are 
different or they are isomorphic. When they are different, the relation counts them 
once even though they are two graphs up to isomorphism, but when G is self-
complementary, the relation ~ still counts this just once. Let gp be the number of 
different graphs with p points (up to isomorphism) and let sv be the number of 
self-complementary graphs withp points. Then we have just observed that gv= 
2cp—sv so that 

(3) sv = 2cv-gv. 

It has been shown [1] that the appropriate permutation group for counting 
graphs is A = S{

V
2\ which is called the pair group of the symmetric group Sp because 

it acts on the set of all point pairs: 

(4) gp = Z(S< 2 ) ;2 ,2 ,2 ,2 , . . . ) . 

It follows from the Power Group Enumeration Theorem [4] that 

(5) c9 = | [Z(^ 2 ) ; 2, 2, 2, 2 , . . .)+Z(S<2); 0, 2, 0, 2 , . . .)]. 

Substituting (4) and (5) into (3), Read found that 

(6) sp = Z(S£ 2 ) ;0 ,2 ,0 ,2 , . . . ) -

The enumeration of self-converse digraphs in [5] uses analogous considerations. 
It was shown in [2] that the substitution of 1 +x into the cycle index Z{A) of an 

arbitrary permutation group A results in a polynomial in which the coefficient 
of xr is the number of r-orbits of A. By definition, this substitution results in 

(7) fA(x) = Z(A; 1+x, l+xz,..., l+xv). 
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Therefore, 

(8) fA(l) = Z(A;2,2,2,2,...) 

is the total number of equivalence classes of subsets of X. By precisely the same 
reasoning as in Read's derivation of the formula (6), the number s(A) of self-
complementary generalized orbits of A is given by Z(A; 0, 2 , 0, 2 , . . . ) , proving 
(2) and Theorem 1. 

3. Alternating sum formula. Comparing (2) with (7), we see that 

(9) s(A)=fA(-l). 

This specializes at once to the equations (4) and (6) for graphs and self-comple­
mentary graphs. Writing gm for the number of graphs with p points and q lines, 
we have defined, see [3, p . 185], the counting polynomial gp(x) for/?-point graphs 
by 

(10) gsW = I & / , 
Q 

where the sum runs from # = 0 to p(p—1)/2. The formula obtained b y P ô l y a f o r 
gp(x), as in [1], is 

(11) g9(x) = Z(S<2); 1 + x , 1 + x 2 , 1 + x 3 , . . .)• 

On taking (11) and (6) as special cases of (7) and (2), equation (9) expressed in 
terms of graphs becomes 

(12) sp = gp(- l) , 

which in view of (10) gives 

(13) s, = 2 (-l)e&*-
a 

This simple but useful formula appears not to have been explicitly observed pre­
viously. We now illustrate (13) using the tables for gPQ in [3; p . 214]: 

51 = l 
52 = 1 - 1 = 0 

s3 = 1 - 1 + 1 - 1 = o 

s4 = 1 - 1 + 2 - 3 + 2 - 1 + 1 = 1 
s5 = 1 - 1 + 2 - 4 + 6 - 6 + 6 - 4 + 2 - 1 + 1 = 2. 

Clearly ̂ = 0 when/?=2 or 3 (mod 4) because in these cases, the numberp(p—1)/2 
of lines in Kp is odd. The expression for ^3 above illustrates the corresponding 
behavior of the coefficients, and this is also seen for ,y6, s7, s10, sll9 etc. In Figure 1, 
we show the self-complementary graphs for/?=4 and 5. 

4 
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O- HO O O 

FIGURE 1. The smallest non-trivial self-complementary graphs 

The structure of self-complementary graphs was developed in detail by Ringel 
[9] and Sachs [10]. 

We now apply (9) to write an equation which generalizes (13) to any permuta­
tion group A, of degree w. The proof proceeds exactly like that of (13). 

THEOREM 2. Let ar{A) be the number ofr-orbits of Ai then 

(14) s(A) = i(-iyar(A)-
r=0 

The specialization of (13) to obtain the number of self-complementary digraphs 
is assisted by the data in [6] and in [3, Appendix 2], Let sp be the number of self-
complementary /7-point digraphs and dm be the number of digraphs with p points 
and q arcs (directed lines). Then (14) becomes 

(15) *, = 2(- i ) a <U 
Q 

so that 
J 1 ==l 

Ja = 1-1 + 1 = 1 

s3 = 1 - 1 + 4 - 4 + 4 - 1 + 1 = 4. 

Surprisingly all four digraphs with 3 points and 4 arcs are self-complementary, as a 
glance at Figure 2 can verify. 

To illustrate (14) with binary relations, we show in Figure 3 all of these with 
only two points. 

We denote the number of relations with p points and q arcs (with loops per­
mitted) by rvq and we write 

(16) rv{x)Jlrmx\ 

Then by (9), the number of self-complementary /?-point relations is ^(—1). Thus 

V V V V7 
FIGURE 2. The self-complementary 3-point diagraphs 
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FIGURE 3. The relations with 2 points 

using Figure 3 we find that there are 

r 2 ( - l ) = 1 - 2 + 4 - 2 + 1 = 2 

self-complementary relations with just two points, and these are the last two of the 
four relations shown with two arcs. 

4. Special permutation groups. We now apply equation (2) of Theorem 1 to 
some special permutation groups of even degree 2m, including the cyclic group 
C2m, the dihedral group D2m, the identity group E2m, the symmetric group, and 
the alternating group. It is well known (see [3, p. 184]) that 

z(c2m) = ± 2 <Kk)tir*> 
2m k\2m 

z(D2 J = |z(c2j + icr+yï^-1), 
Z(E, J = y\m. 

(17) 

(18) 

(19) 

Applying (2) to (17), we find at once that the number of self-complementary 
generalized orbits of a cyclic group is 

(20) 
2m dim 

which reduces for m=r, an odd prime, to the pleasing result that 

2 r~1-l 
(21) 5(C2r) = l + " 

When the vertices of a polygon are colored green or red, the result has been 
called a necklace [3, p. 192]. If green is considered presence and red absence of a 
bead, we can speak of the complement of a necklace. Then the number of self-
complementary necklaces becomes precisely the number of self-complementary 
generalized orbits of the dihedral group: 

(22) 5(D2J = HC2 J + 2™"2. 

As a consequence of the way in which s(C2m) occurs in the right side of (22), we 

https://doi.org/10.4153/CMB-1974-041-6 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1974-041-6


208 R. FRUCHT AND F. HARARY 

note that it is always an even number. For the identity group, we note that 

(23) s(E2 J = 0, 

since yx in (19) has an odd subscript. Finally, for the symmetric group S2m and 
the alternating group A2m, we find just one self-complementary generalized orbit 
in each case. 

5. Conclusion. Just as for many other enumeration results, we can calculate 
s (A), provided we know the cycle index Z(A)9 but this gives no clue to the process 
of constructing the self-complementary generalized orbits of A. 
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