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Quantization of Bending Deformations of
Polygons In E3, Hypergeometric Integrals
and the Gassner Representation
Michael Kapovich and John J. Millson

Abstract. The Hamiltonian potentials of the bending deformations of n-gons in E3 studied in [KM]
and [Kly] give rise to a Hamiltonian action of the Malcev Lie algebra Pn of the pure braid group Pn

on the moduli space Mr of n-gon linkages with the side-lengths r = (r1, . . . , rn) in E3. If e ∈ Mr is a
singular point we may linearize the vector fields inPn at e. This linearization yields a flat connection∇
on the space Cn

∗ of n distinct points on C. We show that the monodromy of∇ is the dual of a quotient
of a specialized reduced Gassner representation.

1 Introduction

In [KM] and [Kly] certain Hamiltonian flows on the moduli space Mr of n-gon link-
ages in E3 were studied. In [KM] these flows were interpreted geometrically and
called bending deformations of polygons. In [Kly], Klyachko pointed out that the
Hamiltonian potentials of the bending deformations gave rise to a Hamiltonian ac-
tion of Pn, the Malcev Lie algebra of the pure braid group Pn (see Section 3), on Mr. It
is a remarkable fact, see [K1, Lemma 1.1.4], that a representation ρ : Pn → End(V ),
dim(V ) <∞, gives rise to a flat connection∇ on the vector bundle Cn

∗×V over Cn
∗,

the space of distinct points in C. Accordingly the monodromy representation of ∇
yields a representation ρ̂ : Pn → Aut(V ).

We see then that if we can find a finite dimensional representation of the Lie alge-
bra B ⊂ C∞(Mr) generated by the bending Hamiltonians under the Poisson bracket,
i.e. if we can “quantize” B, then we will obtain a representation of Pn. Klyachko sug-
gested using a geometric quantization of Mr to quantize B. This appears to be diffi-
cult to carry out because the bending flows do not preserve a polarization. Note how-
ever that the problem of quantizing a Poisson subalgebra of C∞(Mr) can be solved
immediately if the functions in the subalgebra have a common critical point x ∈ Mr.
For in this case we may simultaneously linearize all the Hamiltonian fields at x. We
are fortunate that simultaneous critical points for the algebra B exist if Mr is singular.
Indeed, a degenerate n-gon (i.e. an n-gon which is contained in a line L) is a critical
point of all bending Hamiltonians.

The point of this paper is to compute the representation ρ̂ε,r : Pn → Aut(Tε,r)
associated to a degenerate n-gon P. Here Tε,r = TP(Mr) and ε = (ε1, . . . , εn), εi ∈
{±1}, and r = (r1, . . . , rn), ri ∈ R+, are defined as follows. Fix an orientation on L.
The number ri is the length of the i-th edge of P. Define εi to be +1 if the i-th edge
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is positively oriented and εi = −1 otherwise. We call ε = (ε1, . . . , εn) the vector of
edge-orientation of P.

Our formula for ρε,r : Pn → End(Tε,r) is in terms of certain n× n matrices Ji j(λ)
which are called Jordan-Pochhammer matrices. Let λ = (λ1, . . . , λn) be an n-tuple of
complex numbers. Define matrices Ji j(λ) for 1 ≤ i < j ≤ n by




i-th column j-th column

0 · · · 0 0 0 · · · 0 0 0 · · · 0
i-th row 0 · · · 0 λ j 0 · · · 0 −λ j 0 · · · 0

0 · · · 0 0 0 · · · 0 0 0 · · · 0
...

...
...

...
...

j-th row 0 · · · 0 −λi 0 · · · 0 λi 0 · · · 0
0 · · · 0 0 0 · · · 0 0 0 · · · 0

...
...

...
...

...



= Ji j(λ).

Define Jii = 0 and Ji j(λ) = J ji(λ) for i > j. We have (as can be verified easily)

Lemma 1.1 The matrices { Ji j(λ)} satisfy the infinitesimal braid relations:

• [ Ji j(λ), Jkl(λ)] = 0 if {i, j} ∩ {k, l} = ∅.
• [ Ji j(λ), Ji j(λ) + J jk(λ) + Jki(λ)] = 0, i, j, k are distinct.

Consequently the assignment ρλ(Xi j ) = Ji j(λ) (see Section 3 for the meaning of
Xi j) yields a representation ρλ : Pn → Mn(C) and a flat connection ∇ on Cn

∗ × Cn.
Here we realize Cn as the space of row vectors with n components. It is immediate
that the subspace Cn

0 ⊂ Cn defined by

Cn
0 =
{

z ∈ Cn :
∑

i

zi = 0
}

is invariant under ρλ, in fact ρλ(Pn)(Cn) ⊂ Cn
0. Now we assume

∑n
i=1 λi = 0. Then

λ ∈ Cn
0 and we see that ρλ(Pn)(λ) = 0. Thus we have a Pn-invariant filtration

Cλ ⊂ Cn
0 ⊂ Cn.

Define Wλ = Cn
0/Cλ. Now let P be a degenerate n-gon with side-lengths r =

(r1, . . . , rn) and edge-orientations ε = (ε1, . . . , εn). Our first main theorem is

Theorem A There is a Pn-invariant almost complex structure Jε on Tε,r such that there
is an isomorphism of Pn-modules T1,0

ε,r
∼=Wλ for λ := (

√
−1ε1r1, . . . ,

√
−1εnrn).

Here T1,0
ε,r = {w ∈ Tε,r ⊗ C : Jεw =

√
−1w}. We have

Corollary The flat connection on Cn
∗ × T1,0

ε,r has the connection form

ω =
∑

1≤i< j≤n

dzi − dz j

zi − z j
⊗ Ji j(λ)

with λ as above.
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38 Michael Kapovich and John J. Millson

We then adapt the methods of [K1] to give formulae for multivalued parallel sec-
tions of ∇ in terms of hypergeometric integrals and to compute the monodromy of
∇.

Before stating our first formula for the monodromy of∇ we need more notation.
Let γ j , 1 ≤ j ≤ n, be the free generators of the free group Fn. Define the character
χ : Fn → C∗ by χ(γ j) = e2πiλ j , 1 ≤ j ≤ n (recall that λ j =

√
−1ε j r j). Let Cχ−1 be

the 1-dimensional module (over C) in which the free group Fn acts by χ−1. The pure
braid group Pn acts by automorphisms on Fn so that the character χ is fixed. Thus we
have the associated action of Pn on H1(Fn,Cχ−1 ). We let Γn = π1(CP1−{z1, . . . , zn})
be the fundamental group of the n times punctured sphere. Hence Γn is the quotient
of Fn by the normal subgroup generated by γ1 · · · γn. Since χ(γ1 · · · γn) = 1, the
character χ induces a character of Γn. The group Pn fixes γ1 · · · γn and consequently
acts on Γn and on H1(Γn,Cχ−1 ). We can now state

Theorem B The monodromy representation of∇ is equivalent to the representation of
Pn on H1(Γn,Cχ−1 ).

In Section 10 we define the Gassner representation of the pure braid group, the re-
duced Gassner representation and their specializations via characters of the free group.
Let L is the C-algebra of Laurent polynomials on t1, . . . , tn.

Theorem C The monodromy representation of∇ is dual to the quotient of the reduced
Gassner representation Z1(Γn,L) specialized at t j = e−2πε j r j , where we quotient by the
1-dimensional subspace B1(Γn,Cχ) fixed by Pn.

Our results appear to be related to those of [DM] and [Lo] but there are significant
differences. In [Lo], D. D. Long linearizes the action of Pn on the moduli space of n-
gon linkages in S3 obtained from the action of Pn on

Hom
(
π1(S2 − {z1, . . . , zn}), SU(2)

)
/ SU(2)

by precomposition. The corresponding action of Pn on Mr is trivial in our case, see
[KM, Remark 5.1]. In [DM], Deligne and Mostow arrive at the Gassner representa-
tion by considering a variation of Hodge structure over Cn

∗/ PGL2(C) ⊂ Mr. They
obtain the quotient (by the 1-coboundaries) of the reduced Gassner representation
specialized at (e2πir1 , . . . , e2πirn ); we obtain the dual of the quotient of the reduced
Gassner representation specialized at (e−2πε1r1 , . . . , e−2πεnrn ). Here we must assume∑n

i=1 ri = 2 to be consistent with [DM]. Our representation lies in GL(n − 2,R);
their representation is in U (n− 3, 1).

Acknowledgements It is our pleasure to thank Ragnar Buchweitz and Richard Hain
for helpful conversations.

2 The Moduli Space of n-Gon Linkages In E3

Let Poln(E3) be the space of (closed) n-gons with distinguished vertices in the
Euclidean space E3. An n-gon P is defined to be an ordered n-tuple of points
(v1, . . . , vn) ∈ (E3)n. The point vi is called the i-th vertex of P. The vertices are joined
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in cyclic order by edges e1, . . . , en where ei is the oriented segment from vi to vi+1. We
think of ei as a vector in R3. Two polygons P = (v1, . . . , vn) and Q = (w1, . . . ,wn)
are identified if and only if there exists an orientation-preserving isometry g of E3

such that g(vi) = wi , 1 ≤ i ≤ n. Let r = (r1, . . . , rn) be an n-tuple of positive real
numbers. Then Mr is defined to be the moduli space of n-gons with the side-lengths
r1, . . . , rn modulo isometries as above. An element of Mr will be called a closed n-gon
linkage.

We will also need the moduli space space Nr of “open” n-gon linkages. To obtain
Nr we repeat the above construction of Mr except we do not assume the end vertex
vn+1 of the edge en is equal to v1.

The starting point of [KM] was the observation that

Mr =
{

e = (e1, . . . , en) ∈
n∏

i=1

S2(ri) : e1 + · · · + en = 0
}
/ SO(3).

This equality exhibits Mr as the symplectic quotient of
∏n

i=1 S2(ri) and has many
consequences. First Mr is a complex analytic space with isolated (quadratic) singu-
larities. The smooth part of Mr is a Kähler manifold. The singular points of Mr are
the equivalence classes of degenerate n-gons. Thus Mr is singular if and only if r is
the set of side-lengths of a degenerate n-gon.

In [KM] we introduced bending deformations of closed polygonal linkages in E3,
see also [Kly]. Suppose P = e = (e1, . . . , en). Let I ⊂ {1, . . . , n} be a subset and
define fI ∈ C∞(Mr) by

fI(e) =
∥∥∥∑

i∈I

ei

∥∥∥ 2
.

Then fI is the Hamiltonian potential of a Hamiltonian vector field BI . The vector
eI =

∑
i∈I ei is constant along an integral curve of BI . By [KM, Lemma 3.5], BI(e) =

(δ1, . . . , δn), where δi = eI × ei , i ∈ I, and δi = 0 for i /∈ I. The integral curves of BI

are obtained as follows. Define an element ad(eI) ∈ so(3) by

ad(eI)(v) = eI × v

and a one-parameter group RI(t) ⊂ SO(3) by

RI(t) = exp
(

t ad(eI)
)
.

Then the integral curve e(t) of BI passing through e is given by

ei(t) = RI(t)ei , i ∈ I

e j(t) = e j , j /∈ I.

This motion of a polygon P has a simple geometric interpretation if the elements of
I are consecutive. In this case eI is a diagonal and it divides the polygon into two
parts. Keep one part fixed and bend the polygon by rotating the other part around
the diagonal with the angular speed ‖eI‖. For this reason we call the above motion
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a bending deformation of the polygon. We will be specifically interested in the case
I = {i, j}, i < j. We abbreviate f{i, j} to fi j and B{i, j} to Bi j . We have:

fi j(e) = ‖ei + e j‖
2.

Lemma 2.1 Let e ∈ Mr be a degenerate polygon. Then Bi j(e) = 0 for all i, j.

Proof The bending field Bi j is given by

Bi j(e) =
(

0, . . . , (ei + e j)× ei, 0, . . . , (ei + e j)× e j , 0, . . .
)

= (0, . . . , e j × ei, 0, . . . , ei × e j , 0, . . . ).

If e is degenerate then ei and e j are linearly dependent, so ei × e j = 0.

Remark 2.2 In fact BI(e) = 0 for all I if e is degenerate.

Define Ñr :=
∏n

i=1 S2(ri) where S2(ri) is the round 2-sphere of the radius ri . We
also define M̃r ⊂ Ñr by

M̃r =
{

e ∈ Ñr :
n∑

i=1

ei = 0
}
.

Hence Nr is the quotient of Ñr by SO(3) and Mr is the quotient of M̃r by SO(3).

3 The Malcev Lie Algebra of the Pure Braid Group

Let Pn be the pure braid group on n strands in C (see [C, Section 1]). Let Cn
∗ de-

note the subset of Cn consisting of distinct n-tuples. Then Pn is isomorphic to the
fundamental group of Cn

∗.
Let Pn be the Malcev Lie algebra of Pn, see [ABC]. Kohno found the following

presentation for Pn in [K2] (see also [I, Proposition 3.2.1]).

Lemma 3.1 The Lie algebra Pn is the quotient of the free Lie algebra over Q generated
by Xi j , 1 ≤ i, j ≤ n, subject to the relations:

1. Xii = 0, 1 ≤ i ≤ n.
2. Xi j = X ji , 1 ≤ i, j ≤ n
3. [Xi j ,Xkl] = 0 if {i, j} ∩ {k, l} = ∅.
4. [Xi j ,Xi j + X jk + Xki] = 0, i, j, k are distinct.

We will now see that any finite dimensional representation of Pn induces a finite
dimensional representation of Pn on the same vector space. This remarkable fact is
an immediate consequence of the following lemma of Kohno [K1, Lemma 1.1.4].
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Lemma 3.2 Suppose V is a finite dimensional vector space and Ai j , 1 ≤ i, j ≤ n, are
elements of End(V ) such that Aii = 0 and Ai j = A ji . Let ∇ be the connection on the
trivial V bundle over Cn

∗ with connection form

ω =
∑

1≤i< j≤n

dzi − dz j

zi − z j
⊗ Ai j .

Then∇ is flat if and only if the relations (3) and (4) for Pn are satisfied by the Ai j ’s.

Thus there is a 1–1 correspondence between Lie algebra homomorphisms ρ :
Pn → End(V ) and flat connections∇ on Cn

∗ ×V of the above form. Suppose we are
given ρ as above. Since π1(Cn

∗, z) ∼= Pn (z is a base-point), the monodromy represen-
tation of∇ gives an induced representation of Pn to Aut(V ).

Let F : Cn
∗ → V be a smooth map. Then F induces a parallel section of ∇ if and

only if F satisfies the equation (of the V -valued 1-forms on Cn
∗)

dF =
∑

1≤i< j≤n

dzi − dz j

zi − z j
⊗ Ai j(F).

4 A Hamiltonian Action of Pn On Mr

We define the function fi j on Ñr by

fi j(e) = ‖ei + e j‖
2.

The next proposition was proved in [Kly]. Since it is central to our paper we give a
proof here.

Proposition 4.1

1. fi j = f ji .
2. { fi j , fkl} = 0, if {i, j} ∩ {k, l} = ∅.
3. { fi j , fi j + f jk + fki} = 0, if i, j, k are distinct.

Proof The assertions (1) and (2) are obvious. The third assertion will be a conse-
quence of the following discussion. Since Ñr is a symplectic leaf of the Lie algebra
(R3,×) equipped with the Lie Poisson structure it suffices to prove (3) for the func-
tions fi j extended to (R3)n using the same formula. Let gi j : (R3)n → R be given by
gi j(e) = ei · e j and hi jk : (R3)n → R be given by hi jk(e) = ei · (e j × ek).

Lemma 4.2 {gi j , g jk} = −hi jk.

Proof It suffices to prove the lemma for i = 1, j = 2, k = 3. We use coordinates
(xi , yi, zi), 1 ≤ i ≤ n, on (R3)n. Then

{xi , yi} = zi , {yi, zi} = xi , {zi, xi} = yi , 1 ≤ i ≤ n.
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We have

{g12, g23} = {x1x2 + y1 y2 + z1z2, x2x3 + y2 y3 + z2z3}

= {x1x2, y2 y3} + {x1x2, z2z3} + {y1 y2, x2x3} + {y1 y2, z2z3}

+ {z1z2, x2x3} + {z1z2, y2 y3}

= x1 y3z2 − x1 y2z3 − x3 y1z2 + x2 y1z3 + x3 y2z1 − x2 y3z1

= −e1 · (e2 × e3).

Corollary 4.3 { fi j , f jk} = −4ei · (e j × ek).

Proof fi j = fii + f j j + 2gi j . But fii and f j j are Casimirs.

We now prove the 3-rd assertion.

{ fi j , fi j + f jk + fki} = { fi j , f jk} + { fi j , fki} = { fi j , f jk} + { f ji , fik}

= { fi j , f jk} + { f ji , fik} = −4ei · e j × ek − 4e j · ei × ek

= −4ei · e j × ek + 4ei · (e j × ek) = 0.

Since the function fi j is SO(3)-invariant it induces a function (which is again
denoted by fi j ) on Mr . The Poisson bracket of these functions remain the same and
we obtain

Theorem 4.4 There exists a Hamiltonian action of the Lie algebra Pn on the symplectic
manifold Ñr. This action induces an action on Mr.

From Lemma 3.1 and Proposition 4.1 we see that if we can find a finite-dimension-
al representation of the Lie subalgebra of C∞(Mr) generated by { fi j , 1 ≤ i < j ≤ n}
then we will get a representation of Pn. As explained in the introduction we obtain
such a representation on Te(Mr) for a degenerate n-gon e.

5 Linearization of the Bending Fields at Degenerate Polygons

This section is the heart of the paper. We compute Ai j ∈ End
(

Te(Mr)
)

, the lin-
earization of the bending field Bi j at a degenerate polygon e ∈ Mr. Now assume that
e is degenerate, so we may write

e = (r1ε1u, . . . , rnεnu)

for some vector u ∈ S2 and εi = ±1.

https://doi.org/10.4153/CMB-2001-006-3 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2001-006-3


Quantization Of Bending Deformations 43

Let M be a manifold, m ∈ M. We recall the definition of the linearization AX ∈
End
(

Tm(M)
)

of a vector field X at a point m where X(m) = 0. Choose a connection
∇ on T(M). Let u ∈ Tm(M), then

AX(u) := (∇uX)(m)

Since X(m) = 0, AX is independent of the choice of connection.
For the case in hand the above definition must be modified since Mr is singular

at e. There is a commutative algebra version of the above construction that goes as
follows. Assume M is a real affine variety, m ∈ M and X is a vector field on M
satisfying X(m) = 0. Let m be the maximal ideal of m. Then (since X(m) = 0)
we have Xm ⊂ m whence Xm2 ⊂ m2 and X induces an element of End(m/m2) =
End
(

T∗m(M)
)

. By duality we obtain AX ∈ End
(

Tm(M)
)

. The reader will verify that
if m is a smooth point of M then the two definitions coincide.

We now compute the linearization of Bi j at e in Mr. Recall that we have a diagram

M̃r −−−−→ Ñr� �
Mr −−−−→ Nr

where Ñr = S2(r1) × · · · × S2(rn) and M̃r = {e ∈ Ñr :
∑n

i=1 ei = 0}. Define
gi j : Ñr → R by gi j(e) = ‖ei + e j‖2. Hence gi j |M̃r is SO(3)-invariant and descends to
the function fi j on Mr . Let B̃i j be the Hamiltonian vector field of gi j . Then

B̃i j(e) = (0, . . . , e j × ei, 0, . . . , ei × e j , 0, . . . )

and hence B̃i j vanishes at e and is tangent to M̃r. The induced field on M̃r will be de-
noted B ′i j . Then B ′i j projects to Bi j on Mr . We note dim Te(Ñr) = 2n, dim Te(M̃r) =
2n− 2 and dim Te(Mr) = 2n− 4.

Remark 5.1 Since e is a singular point of Mr we have

dim Te(Mr) = 2n− 4 > dim Mr = 2n− 6.

We will first compute the linearization of B̃i j at e in Ñr (e is a smooth point on
Ñr so we use the first procedure) to obtain Ãi j ∈ End

(
Te(Ñr)

)
. Then Ãi j will pre-

serve the subspace Te(M̃r) ⊂ Te(Ñr) whence we obtain an induced element A ′i j ∈

End
(

Te(M̃r)
)

. But there is an exact sequence

Ve → Te(M̃r)→ Te(Mr)

where Ve = {δ : ∃v ∈ R3 such that δi = ei × v, 1 ≤ i ≤ n}, we note that dim Ve = 2.
We will verify that A ′i j(Ve) ⊂ Ve (in fact Ai j(Ve) = 0). Hence A ′i j will descend to

Te(Mr). The resulting element of End
(

Te(Mr)
)

will be Ai j , the linearization of Bi j

at e.
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Accordingly we begin by computing the linearization Ãi j of B̃i j on Te(Ñr). Thus
Ãi j will be 2n× 2n matrix (instead of a 2n− 4× 2n− 4 matrix).

Another advantage in passing to Ñr is that Te(Ñr) is now a direct sum of the tan-
gent bundles of the factors

Te(Ñr) =
n⊕

i=1

Tei

(
S2(ri)

)
.

The Riemannian connection on Ñr is a direct sum of the Riemannian connections
on the summands. Thus we may write (for δ ∈ Te(Ñr))

Ãi j(δ) = (0, . . . ,∇δ(e j × ei), 0, . . . ,∇δ(ei × e j), 0, . . . ).

We will suppress the zeroes in the above row vectors henceforth.

Lemma 5.2

Ãi j(δ) = (u× δi, u× δ j)

[
ε j r j −ε j r j

−εi ri εi ri

]

Proof In the above formula for Ãi j(δ) we use the Riemannian connection ∇ on S2.
We will compute using the flat connection ∇̄ on T(R3)|S2 and then project back into
T(S2) to get∇. We have

∇̄δ(e j × ei) = δ j × ei + e j × δi

∇̄δ(ei × e j) = δi × e j + ei × δ j .

Evaluating at e we obtain

∇̄δ(e j × ei)|e = εi riδ j × u + ε j r ju× δi = ε j r ju× δi − εi riu× δ j .

Since the right-hand side is in Te(S2) we have also

∇δ(e j × ei)|e = ε j r ju× δi − εi riu× δ j .

Finally∇δ(ei × e j)|e = −∇δ(e j × ei)|e and the lemma follows.

We now relate the action of Pn on Te(Ñr) we have just computed to the action
on Te(Mr). We recall that M̃r = {e ∈ Ñr :

∑n
i=1 ei = 0} whence Te(M̃r) = {δ ∈

Te(Ñr) :
∑n

i=1 δi = 0}. We have the 2-dimensional subspace Ve of tangents to the
SO(3)-orbit through e described above. Thus we have a filtration F• given by

Ve ⊂ Te(M̃r) ⊂ Te(Ñr)

and a canonical isomorphism

Te(M̃r)/Ve
∼= Te(Mr).

We now show that Pn preserves the above filtration.
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Lemma 5.3

(1) PnTe(Ñr) ⊂ Te(M̃r).
(2) PnVe = 0.

Proof (1) is immediate. We prove (2). Suppose δ ∈ Ve. We claim

δ j × ei + e j × δi = 0, 1 ≤ i < j ≤ n.

Indeed,

δ j×ei +e j×δi = (e j×v)×ei +e j×(ei×v) = (e j×v)×ei +(e j×ei)×v+ei×(e j×v).

But e is degenerate, so ei × e j = 0.

We collect our results in

Theorem 5.4

1. There is a Pn-stable filtration

Ve ⊂ Te(M̃r) ⊂ Te(Ñr).

2. Te(Mr) ∼= Te(M̃r)/Ve.
3. There is an isomorphism

φ : Te(Ñr)→ Tu(S2)⊗ Rn

such that φρφ−1(Xi j) = ad u⊗ Ji j(εi ri, ε j r j).
4. φ

(
Te(M̃r)

)
= Tu(S2) ⊗ Rn

0 and φ(Ve) = Tu(S2) ⊗ Rv(ε, r). Here Rn
0 =

{(x1, . . . , xn) :
∑n

i=1 xi = 0} and v(ε, r) = (ε1r1, . . . , εnrn).

Here Rn is realized as the space of row vectors with n components.

6 The Action On the Holomorphic Tangent Space

The point of this section is that Te(Ñr) has a Pn-invariant almost complex structure
that descends to Te(Mr). We will compute the corresponding action of Pn on the
holomorphic tangent space.

Define an almost complex structure J ∈ End
(

Te(Ñr)
)

by

J(δ) = η such that ηi = u× δi, 1 ≤ i ≤ n.

Lemma 6.1

1. J is Pn-invariant.
2. The filtration F• is invariant under J.
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Proof The first assertion is immediate. It is also clear that Tt (M̃r) is invariant under
J. It remains to check that Ve is invariant under J. Suppose δ ∈ Ve. Hence there exists
v ∈ R3 such that δi = εi riu×v, 1 ≤ i ≤ n. Then Jδi = u×(εi riu×v) = εi riu×(u×v).
Hence if we put w = u× v then

Jδi = εi rru× w, 1 ≤ i ≤ n.

Therefore Jδ ∈ Ve.

Remark 6.2 The almost complex structure J is not the one induced by the complex
structure on Ñr =

∏n
i=1 S2(ri). We have changed the complex structure on S2(ri) to

its conjugate for each i such that ei is a back-track (i.e. εi = −1).

We can decompose Te(Ñr)⊗C into the +i-eigenspace of J denoted by Tε
e (Ñr) and

the−i-eigenspace denoted by T−εe (Ñr). Accordingly we have

Tε
e (Ñr) = {δ ∈ Te(Ñr)⊗ C : u× δ j =

√
−1δ j}

Similarly we denote the +i-eigenspaces of J acting on Te(M̃r) ⊗ C and Ve ⊗ C by
Tε

e (M̃r) and V ε
e respectively. We denote the quotient Tε

e (M̃r)/V ε
e by Tε

e (Mr). Clearly
the latter space is the +i-eigenspace of J acting on Te(Mr)⊗ C.

Now we recall that we have an isomorphism

φ : Te(Ñr)→ Tu(S2)⊗ Rn

complexifying we obtain

φ : Te(Ñr)⊗ C→ Tu(S2)⊗R Cn.

We see that φ conjugates J to ad u ⊗ 1 and we have an induced isomorphism (again
denoted by φ)

φ : Tε
e (Ñr)→ T1,0

u (S2)⊗C Cn.

Under φ the action of Xi j transforms to
√
−1I ⊗ Ji j(εi ri, ε j r j). We note that

dimC T1,0
u (S2) = 1 and we obtain a canonical isomorphism

ψ : Tε
e (Ñr)→ Cn.

This isomorphism has the property:

ψ
(

Tε
e (M̃r)

)
= Cn

0, ψ(V ε
e ) = Cv(ε, r).

We have completed our computation of the action of Pn.

Theorem 6.3

1. There is a canonical isomorphism ψ : Tε
e (Ñr)→ Cn

2. ψ induces the action of Xi j ∈ Pn on Cn by
√
−1 Ji j(εi ri, ε j r j).

3. Cn admits a Pn-invariant filtration by ψ
(

Tε
e (M̃r)

)
= Cn

0 , ψ(V ε
e ) = Cv(ε, r).

4. There is an Pn-invariant complex structure J on Te(Mr). The induced action of
Pn on the +i-eigenspace of J in Te(Mr) ⊗ C corresponds to the action of Pn on the
quotient Cn

0/Cv(ε, r).

Here Cn is realized as the space of row vectors with n components.
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7 The Associated Hypergeometric Equation

As discussed in the introduction we use the linear operators Ai j ∈ End(Cn) to obtain
a flat holomorphic connection∇ on the trivial Tε

e (Ñr)-bundle E over M = Cn
∗. The

connection form ω of∇ is

ω =
∑

1≤i< j≤n

dzi − dz j

zi − z j
⊗ Ai j .

A (multivalued) holomorphic section of E corresponds to a row vector F =
(F1, . . . , Fn) of (multivalued) holomorphic functions. The hypergeometric equation
comes from the condition that F be parallel for the connection∇:

dF = Fω

or equivalently

dFi =
∑
j, j 
=i

(λ jFi − λiF j)
dzi − dz j

zi − z j
(1)

with λ j =
√
−1ε j r j . We will refer to (1) as the hypergeometric equation.

We observe that the operators Ai j leave invariant the subspace Cn
0 and annihilate

the line Vλ = C(λ1, . . . , λn). We obtain a diagram of flat bundles over Cn
∗:

Cn
∗ × Cn

0 −−−−→ Cn
∗ × Cn�

Cn
∗ × Cn

0/Vλ

The monodromies of these bundles will be the representations of Pn correspond-
ing to the actions of Pn on Te(Ñr), Te(M̃r), Te(Mr).

8 Solving the Hypergeometric Equation By Hypergeometric Integrals

Let λ1, . . . , λn be complex numbers with λ j /∈ Z, 1 ≤ j ≤ n. Let (ξ, z1, . . . , zn) ∈
(Cn+1)∗ and Φ(ξ, z1, . . . , zn) be the hypergeometric integrand

Φ(ξ, z1, . . . , zn) := (ξ − z1)λ1 · · · (ξ − zn)λn .

Letχ := χλ : Fn → C∗ be the character defined byχ(γ j) = exp(2π
√
−1λ j), 1 ≤ j ≤

n. Recall that {γ1, . . . , γn} is a generating set for Fn, the free group of rank n. Here
we identify Fn with the fundamental group π1(M, b), where M = C − {z1, . . . , zn},
so that the conjugacy class of γ j is represented by a sufficiently small loop which goes
once around z j in the counterclockwise direction. Note that χ(γ j) �= 1, 1 ≤ j ≤ n.
For any character χ : Fn → C∗ we let Lχ be the local system over M given by

Lχ = M̃ × C/
(

(x, z) ∼
(
γx, χ(γ)z

))
.
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We define a multivalued parallel section σ of Lχ by σ(x) = [x, 1] (where [x, z] de-
notes the equivalence class of (x, z)). Note that the lift of σ to the universal cover
satisfies

σ(γx) = [γx, 1] = [x, χ(γ)−1] = χ(γ)−1σ(x).

The following lemma is obvious:

Lemma 8.1 The Lχ-valued 1-forms ζ j , 1 ≤ j ≤ n, defined by

ζ j(ξ) = (ξ − z1)λ1 · · · (ξ − zn)λn
dξ

ξ − z j
⊗ σ

are single-valued on M.

Hence ζ j gives rise to a class [ζ j] in the de Rham cohomology group H1
dR(M, Lχ).

Let γ ∈ H1(M, Lχ−1 ). Let G j be the Kronecker pairing 〈ζ j , γ〉 considered as a
function of z1, . . . , zn. This Kronecker pairing is traditionally represented as an in-

tegral. To make this precise let γ =
∑k

i=1 ai ⊗ τi , where each ai , 1 ≤ i ≤ k, is a
1-simplex and τi is a parallel section of L−1|ai . Then 〈ζ j , γ〉 is given by

G j(z1, . . . , zn) =
k∑

i=1

∫
ai

(ξ − z1)λ1 · · · (ξ − zn)λn〈σ, τi〉
dξ

ξ − z j
.

We will use the following more economical notation:

G j(z1, . . . , zn) =

∫
γ

(ξ − z1)λ1 · · · (ξ − zn)λn
dξ

ξ − z j
⊗ σ.

Now we let z = (z1, . . . , zn) vary. Let π : Cn+1
∗ → Cn

∗ be the map that forgets the
first component. Then π−1(z) is isomorphic to C− {z1, . . . , zn}. By [DM, 3.13], the
flat line bundle Lχ on π−1(z) is the restriction of a flat line bundle L̃χ on Cn+1

∗ . As
z varies, the forms ζ1, . . . , ζn give rise to relative holomorphic 1-forms on Cn+1

∗ with
coefficients in L̃χ. We recall that a relative holomorphic form on the total space E of a
holomorphic fiber bundle p : E→ B is an element of the quotient differential graded
algebra

Ω•(E)/
(

p∗Ω•(B)+
)
.

Here Ωq denotes the holomorphic q-forms and
(

p∗Ω•(B)+
)

denotes the differential
ideal inΩ•(E) generated by the pull-backs to E of holomorphic forms on B of positive
degree. A relative holomorphic q-form η is relatively closed if dη is in the above ideal.
The forms ζ1, . . . , ζn are relatively closed, hence they induce holomorphic sections
[ζ1], . . . , [ζn] of the vector bundle H1 over Cn

∗ with fiber over z given by

H1
(
π−1(z), L̃χ | π

−1(z)
)
.

Precisely, [ζi](z) is the class of the 1-form ζi(z) on π−1(z) in the above cohomology
group. The bundle H1 has a flat connection, the Gauss-Manin connection, whose
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definition we now recall. Note first that a local trivialization of π induces a local
trivialization of H1. Then a smooth section of H1 is parallel for the Gauss-Manin
connection if it is constant when expressed in terms of all such induced local trivial-
izations. The bundle H1 of the first homology groups with coefficients in L̃χ−1 admits
an analogous flat connection. Now let p : C̃n

∗ → Cn
∗ denote the universal cover of Cn

∗.
We obtain a pull-back fiber bundle π̃ : E→ C̃n

∗ of n-punctured complex lines over C̃n
∗

and pull-back flat vector bundles H̃1 and H̃1. ‘ Choose a base-point z0 = (z0
1, . . . , z

0
n)

in Cn
∗. We use M to denote C−{z0

1, . . . , z
0
n} henceforth. Choose a base-point z̃0 in C̃n

∗

lying over z0. We may identify the fiber of H̃1 over z̃0 with H1(M, Lχ−1 ). Hence given
γ ∈ H1(M, Lχ−1 ) there is a unique parallel section γ̃ of H̃1 such that γ̃(z̃0) = γ. We
can now define a global holomorphic function G j(z) on C̃n

∗ by

G j(z) =

∫
γ̃

(ξ − z1)λ1 · · · (ξ − zn)λn
dξ

ξ − z j
⊗ σ.

Here we have used the same notation for corresponding (under pull-back) objects on
Cn
∗ and C̃n

∗. We may also write

G j(z) = 〈[ζ j(z)], γ̃〉

where 〈, 〉 is the fiberwise pairing between H̃1 and H̃1. We have

Lemma 8.2

dGi(z) =
n∑

j=1

(∫
γ

∂

∂z j

( Φ

ξ − zi

)
dξ ⊗ σ

)
dz j .

Proof We have
dGi(z) = 〈∇[ζi(z)], γ̃〉

where ∇ is the Gauss-Manin connection. We will need another formula for the
Gauss-Manin connection, see [KO] or Remark 8.3 below. Before stating the formula
we need more notation. Let FqΩq(E) denote the subspace of holomorphic q-forms
on E that are multiples of pull-backs of q-forms from the base C̃n

∗ by elements of
O(E). Then we have a canonical isomorphism (because the fibers of π̃ have complex
dimension 1)

Ω2(E)

dF1Ω1(E) + F2Ω2(E)
∼= Ω1(C̃n

∗, H̃
1).

Now the formula for∇ is
∇[ζi] = [dζi].

Here dζi denotes the exterior differential of ζi where ζi is considered as a 1-form on
E (modulo F1Ω1(E)) with values in the line bundle p∗L̃χ. The symbol [dζi] denotes
the class of dζi modulo dF1Ω1(E) + F2Ω2(E). The lemma follows from the formula

dζi ≡
n∑

j=1

∂

∂z j

( Φ

ξ − zi

)
dz j ∧ dξ ⊗ σ

together with the observation that integration over γ̃ factors through [ ].
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Remark 8.3 The above formula for∇ can be proved as follows. First note that the
formula does indeed define a connection, to be denoted∇ ′ on H1. To show that ∇
and ∇ ′ agree it suffices to show they agree locally. Since they are both invariantly
defined it suffices to prove that they agree on trivial bundles. But it is clear that in
this case a section of H1 is parallel for∇ ′ if and only if it is constant.

The proof of the next lemma is a modification of [K1, Proposition 2.2.2].

Lemma 8.4 The functions G = (G1, . . . ,Gn) satisfy

dGi =
∑
j, j 
=i

(λ jGi − λ jG j)
dzi − dz j

zi − z j
⊗ σ or dGt = ωGt .

Proof We will drop the⊗σ for the course of the proof:

Gi(z) =

∫
γ

Φ
dξ

ξ − zi
.

whence by Lemma 8.2

dGi = −
n∑

j=1

[∫
γ

λ jΦ(ξ − z j)
−1(ξ − zi)

−1 dξ
]

dz j +
[∫

γ

Φ(ξ − zi)
−2 dξ

]
dzi

= −
∑
j 
=i

[∫
γ

λ jΦ(ξ − z j)
−1(ξ − zi)

−1 dξ
]

dz j

−
[∫

γ

(λi − 1)Φ(ξ − zi)
−2 dξ

]
dzi.

We simplify the first term using

1

ξ − zi
·

1

ξ − z j
=

1

zi − z j

( 1

ξ − zi
−

1

ξ − z j

)
to obtain

= −
∑
j 
=i

λ j

zi − z j

[∫
γ

Φ
dξ

ξ − zi
−

∫
γ

Φ
dξ

ξ − z j

]
dz j

−
[∫

γ

(λi − 1)Φ(ξ − zi)
−2 dξ

]
dzi

= −
∑
j 
=i

λ jGi

zi − z j
dz j +

∑
j 
=i

λ jG j

zi − z j
dz j −

[∫
γ

(λi − 1)Φ(ξ − zi)
−2 dξ

]
dzi.

Now we have

d
(
Φ(ξ − zi)

−1
)
= (λi − 1)Φ(ξ − zi)

−2dξ +
∑
j 
=i

λ jΦ(ξ − zi)
−1(ξ − z j)

−1dξ.
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Thus by Stokes’ Theorem

−

∫
γ

(λi − 1)Φ(ξ − zi)
−2 dξ =

∫
γ

∑
j 
=i

λ jΦ(ξ − zi)
−1(ξ − z j)

−1 dξ

=

∫
γ

∑
j 
=i

λ jΦ
1

zi − z j

( 1

ξ − zi
−

1

ξ − z j

)
dξ

=
∑
j 
=i

λ j

zi − z j
Gi −

∑
j 
=i

λ j

zi − z j
G j

hence

−
[∫

γ

(λi − 1)Φ(ξ − zi)
−2 dξ

]
dzi =

∑
j 
=i

dzi

zi − z j
(λ jGi − λ jG j).

We obtain

dGi =
∑
j 
=i

dzi − dz j

zi − z j
(λ jGi − λ jG j).

Remark 8.5 The simplification using Stokes’ Theorem above is equivalent to ob-
serving that

Φ(ξ − zi)
−1dzi ⊗ σ ∈ F1Ω1(E), 1 ≤ i ≤ n,

and we work modulo dF1Ω1(E) in computing∇.

We now define Fi := λiGi , 1 ≤ i ≤ n.

Lemma 8.6 F = (F1, . . . , Fn) is a solution of the hypergeometric equation (1).

Proof

dFi = λidGi =
∑
j 
=i

dzi − dz j

zi − z j
(λiλ jGi − λiλ jG j)

=
∑
j 
=i

λ j(λiGi)− λi(λ jG j)
dzi − dz j

zi − z j

=
∑
j 
=i

(λ jFi − λiF j)
dzi − dz j

zi − z j
.

We have proved

Theorem 8.7 Let γ be an element of H1(M, Lχ−1 ) and σ a flat multivalued section of
Lχ. For λ = (λ1, . . . , λn) ∈ Cn define a holomorphic function on C̃n

∗ by

Fi := λi

∫
γ̃

(ξ − z1)λ1 · · · (ξ − zn)λn
dξ

ξ − zi
⊗ σ.

Then F = (F1, . . . , Fn) is a solution of the hypergeometric equation.
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9 The Monodromy Representation of the Hypergeometric Equation
and the Action On Homology

We have seen that for γ ∈ H1(M, Lχ−1 ) we obtain a solution S = (F1, . . . , Fn) of the
hypergeometric equation by the formula

Fi := λi

∫
γ̃

(ξ − z1)λ1 · · · (ξ − zn)λn
dξ

ξ − zi
⊗ σ.

It is important to recall that
∑n

j=1 λ j = 0. The differential forms

η j = λ j(ξ − z1)λ1 · · · (ξ − zn)λn
dξ

ξ − zi
⊗ σ

are de Rham representatives of the cohomology classes [η j], 1 ≤ j ≤ n, in
H1(M, Lχ−1 ). Note that

d
(

(ξ − z1)λ1 · · · (ξ − zn)λn ⊗ σ
)
= η1 + · · · ηn

hence we have the relation

[η1] + · · · + [ηn] = 0(2)

Lemma 9.1 The span of the cohomology classes [η j], 1 ≤ j ≤ n, has dimension n−1.

Proof First since
∑n

j=1 λ j = 0 we have χ(γ1γ2 · · · γn) = 1. Thus Lχ extends to a flat

line bundle over CP1 − {z1, . . . , zn}. Also, η j extends meromorphically over infinity
with a simple pole at infinity.

Next we extend the flat line bundle Lχ to a holomorphic line bundle Lhol on CP1

so that (ξ − z j)λ j ⊗ σ is a local basis around z j . Then (ξ − z1)λ1 · · · (ξ − zn)λn ⊗ σ is
a holomorphic section of Lhol which has no zeroes or poles.

We can now prove the lemma. We have a flat line bundle Lχ over M (with triv-
ial monodromy around ∞). The argument of [DM, Section 2.7] proves that we
can compute the group H1(M, Lχ) as the 1-st cohomology group of the complex(
Ω•(CP1, ∗D, Lχ), d

)
of holomorphic Lχ-valued forms on M which have at worst

poles at z1, . . . , zn,∞. Here the (additive) divisor D is defined by D = z1+· · ·+zn+∞.
Now η j ∈ Ω1(CP1, ∗D, Lχ) and

Ω0(CP1, ∗D, Lχ) = { fΦ⊗ σ : so that f has at worst poles at D}.

First note that Span(η1, . . . , ηn) ⊂ Ω1(CP1, ∗D, Lχ) has dimension n since the forms
η j have singularities at distinct points of C.

Suppose that there exists fΦ⊗ σ ∈ Ω0(CP1, ∗D, Lχ) and c1, . . . , cn such that

d( fΦ⊗ σ) = c1η1 + · · · + cnηn.
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We claim that f cannot have any poles. Indeed, assume f has a pole of order k ≥ 1
at zi . Then

f (ξ) =
c

(ξ − zi)k
+ · · ·

We are assuming

d fΦ + f dΦ =
n∑

i=1

ciηi

or

d fΦ +
(

f
n∑

i=1

λi

ξ − zi
dξ
)
Φ =

n∑
i=1

ciηi .(3)

Equating the coefficients of (ξ− zi)−k−1 in the equation (3) from each side we obtain
−kc + λic = 0, or λi = k. This contradicts the assumption that each λi is pure
imaginary. It remains to check that f is not a polynomial. Assume f has a pole of
order k ≥ 1 at∞, whence f (ξ) = a0 + a1ξ + · · · + akξ

k. We equate the coefficients
at ξk−1dξ on each side of (3) to obtain kak + (

∑n
i=1 λi)ak = 0 or kak = 0. This

contradiction proves the claim. Hence f ≡ c and hence

d f = c
n∑

i=1

ηi

which means that the dimension of the subspace of coboundaries in Span(η1, . . . , ηn)
is 1.

In the group cohomology computations that follow γ1, . . . , γn will be a generating
set of Fn and b1, . . . , bn will be its image under abelianization in Zn. Here the loop
representing γi is obtained by connecting the small circle ai going around zi to the
base-point ∗ ∈ C−{z1, . . . , zn}. We recall that Pn acts on Fn preserving the conjugacy
classes of the generators γ j . Hence the induced action on Zn is trivial and Pn fixes any
character χ : Fn → C∗. Hence Pn acts on H1(Fn,Cχ). Here we let Cχ denote the
1-dimensional space on which Fn acts via χ. We next need

Lemma 9.2 Suppose that χ : Fn → C∗ satisfies χ(γi) �= 1 for all i. Then
dimC H1(Fn,Cχ) = n− 1.

Proof The Euler characteristic E(Fn,C1) = 1− n. Hence E(Fn,Cχ) = 1− n. On the
other hand, H0(Fn,Cχ) = 0.

Corollary 9.3 dimC H1(M, Lχ−1 ) = n − 1 and the classes [η1], . . . , [ηn−1] form a
basis for H1(M, Lχ)

We can construct an explicit basis w1, . . . ,wn−1 for H1(M,L−1) following [DM,
Section 2] as follows. We write wi = γi ⊗ σi + γi+1 ⊗ σi+1, where σi , σi+1 are multi-
valued flat sections along γi, γi+1 respectively and the jump experienced by σi (at the
base-point) after parallel translating along γi cancels that of σi+1 along γi+1.
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Define flat sections Si , 1 ≤ i ≤ n− 1, of C̃n
∗ × Cn

0 by

Si := (Si1, . . . , Sin), where Si j = λ j

∫
w̃i

η j .

We see then that S1, . . . , Sn−1 are multivalued parallel sections of Cn
∗ × Cn

0.
The desired representation ρ : Pn → Aut(Cn

0) is obtained by parallel translation of
S1, . . . , Sn−1 along loops in Cn

∗. The resulting automorphisms leave invariant the line
Cλ where λ = (λ1, . . . , λn).

Before stating the main result of this section we need to define a special class w∞
in H1(M, L−1

χ ). Let a∞ ⊂ C be a circle whose interior contains all the punctures
z1, . . . , zn. Since λ1 + · · ·λn = 0, the monodromy of L−1

χ around a∞ is trivial. Hence
there is a nonzero parallel section σ∨ of L−1

χ |a∞. We let w∞ be the homology class
represented by a∞ ⊗ σ∨.

Let τ : Pn → Aut H1(M, L−1
χ ) be the homomorphism induced by the inclusion

Pn ⊂ Aut(Fn) (recall that Pn acts trivially on the sheaf of parallel sections of L−1
χ ).

Lemma 9.4

(1)
∫

w∞
ηi = −λi , in particular w∞ �= 0.

(2) The class w∞ is fixed by Pn.

Proof To prove (1) we apply the residue theorem and note that

Φ(ξ, z)|ξ=∞ = 1

and the residue of (ξ − zi)−1dξ at ξ = ∞ is −1. To verify (2) we identify Pn with a
subgroup of the mapping class group of M. Then we choose representatives for the
elements of Pn so that they act by the identity on the closure of the exterior of the
circle a∞.

We now have

Theorem 9.5

(i) The monodromy representation of the flat bundle Cn
∗ × Cn

0 is equivalent to τ .
(ii) Under the above equivalence the invariant line Vλ ⊂ Cn

0 corresponds to the line
Cw∞ ⊂ H1(M,L−1

χ ).
(iii) We obtain an induced equivalence of the monodromy representation of Cn

∗×Cn
0/Vλ

and the induced action of Pn on H1(CP1 − {z1, . . . , zn}, L−1
χ ).

Proof We have an isomorphism Ψ from H1(M, L−1
χ ) onto the space of parallel sec-

tions on C̃n
∗ × Cn

0 given byΨ(w) = Sw where

Sw =
(∫

w̃
η1, . . . ,

∫
w̃
ηn

)
= (〈[η1], w̃〉, . . . , 〈[ηn], w̃〉).
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We claim that Ψ intertwines the representations τ and ρ (see above) of Pn. The
monodromy representation ρ : Pn → Aut(Cn

0) is defined by

Sw(g−1z) = Sw(z)ρ(g).

In order to go further we will need to lift the Pn action on C̃n
∗ to the total space of

π̃ : E → C̃n
∗. We note that from the fiber bundle π : Cn+1

∗ → Cn
∗ we get an exact

sequence Fn → Pn+1 → Pn. We may split this sequence by mapping Pn to the sub-
group of Pn+1 which consists of those elements that do not involve the first string of
a braid—recall that π forgets the first point. Let C̃n+1

∗ be the universal cover of Cn+1
∗ .

Then Pn+1 acts on C̃n+1
∗ . But E = C̃n+1

∗ /Fn, whence Pn = Pn+1/Fn acts on E as the
group of deck transformations of the cover E → Cn+1

∗ , and we obtain the required
lift g̃ of elements g ∈ Pn to Aut(E). We now can give a formula for the monodromy
representation τ , namely

w̃(gz) = g̃∗τ (g)−1w̃(z)

or
w̃(g−1z) = g̃−1

∗ τ (g)w̃(z).

We can now prove the claim. Observe that since ηi is an invariantly defined 1-form
with values in Lχ on Cn+1

∗ we have

ηi(gz) = (g̃−1)∗ηi(z)

or
ηi(g−1z) = (g̃)∗ηi(z).

Hence

Sw(z)ρ(g) = Sw(g−1z) =
(∫

w̃(g−1z)
η1(g−1z), . . . ,

∫
w̃(g−1z)

ηn(g−1z)
)

=
(∫

g−1
∗ τ (g)w̃(z)

g̃∗η1(z), . . . ,

∫
g−1
∗ τ (g)w̃(z)

g̃∗ηn(z)
)

=
(∫

τ (g)w̃(z)
η1(z), . . . ,

∫
τ (g)w̃(z)

ηn(z)
)

and the claim is proved. Hence (i) follows.
To verify (ii) it suffices to observe that Sw∞ = (−λ1, . . . ,−λn), which follows

from Lemma 9.4. From (i) and (ii) we deduce that the monodromy representation
of∇ on Cn/Vλ is equivalent to the action of Pn on H1(M,L−1

χ )/Cw∞. But it is clear
from the exact sequence of the pair (M,CP1 − {z1, . . . , zn}) that we have a natural
isomorphism H1(M,L−1

χ )/Cw∞ ∼= H1(CP1 − {z1, . . . , zn},L−1
χ ).

Remark 9.6 Since we have seen that Te(M̃r) contains an invariant line, the corre-
sponding representation of Pn must be on H1(M,L−1), not on H1(M,L) (the latter
has an invariant hyperplane).
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10 The Gassner Representation

We will follow [Bi] and [Mo] for our treatment of the Gassner representation. We
begin with a quick review of the Fox calculus.

Let G be a finitely generated group and M a G-module. Let C[G] be the group
ring.

Definition 10.1 A derivation D : C[G]→ M is a C-linear map satisfying

D( f h) =
(

D( f )
)
ε(h) + f D(h)

where ε : C[G] → C is the augmentation. We let Der(G,M) denote the space of
derivations.

Remark 10.2 The restriction of each derivation D to G is a 1-cocycle δ ∈ Z1(G,M).
Conversely, given a 1-cocycle δ ∈ Z1(G,M) we define a derivation D by

D
( n∑

i=1

cigi

)
=

n∑
i=1

ciδ(gi).

Thus Der(G,M) and Z1(G,M) are canonically isomorphic. We will identify them
henceforth.

In the case G is the free group Fn on the generators {x1, . . . , xn} there is a unique
derivation ∂

∂xi
∈ Der(Fn,C[Fn]) given by

∂

∂xi
(x j) = δi j , 1 ≤ i, j ≤ n.

Then Der(Fn,C[Fn]) is free over C[Fn] with the basis ∂
∂x1
, . . . , ∂

∂xn
. Note that the

projection p : Fn → H1(Fn) ∼= Zn induces a ring-homomorphism p : C[Fn] →
C[H1(Fn)] and a push-forward map on derivations

p∗ : Der(Fn,C[Fn])→ Der
(

Fn,C[H1(Fn)]
)
.

We may identify C[H1(Fn)] with the C-algebra L of Laurent polynomials in t1, . . . , tn.
The space Der(Fn,L) is free over L with the basis p∗

∂
∂x1
, . . . , p∗

∂
∂xn

. We will drop p∗
henceforth.

The main point in the construction of the Gassner representation is that there is
a homomorphism σ : Pn ↪→ Aut(Fn). This homomorphism is described in terms of
formulas in [Bi, Corollary 1.8.3]. There is an elementary description of σ in terms of
“pushing a loop along the braid”, see [Mo, page 87]. In both cases the action of Pn on
Fn is a right action, i.e. there is σ̄ such that σ̄(p1 p2) = σ̄(p2)σ̄(p1). Therefore, the
homomorphism σ is actually given by σ(p) := σ̄(p−1). Next we note that we have
an action of Pn on Der(Fn,L):

g · D(x) = D
(
σ(g)−1x

)
.

Since Pn acts trivially on L, g · D is still a derivation and the operator g· is L-linear.
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Remark 10.3 In [Bi] and [Mo] the action of Pn on Der(Fn,L) is defined by g ∗
D(x) = D

(
σ̄(g)x

)
. But σ̄(g) = σ(g)−1 and hence g ·D = g ∗D. The composition of

two right actions is a homomorphism!

We can now define the Gassner representation.

Definition 10.4 The Gassner representation ρ : Pn → AutL

(
Der(Fn,L)

)
assigns

to each g ∈ Pn the operator g· on Der(Fn,L), where Der(Fn,L) is considered as a
free L-module of rank n.

It is traditional to represent ρ(g) as an element (ai j) of GLn(L) using the basis
∂
∂x1
, . . . , ∂

∂xn
, see [Bi, page 119], [Mo, page 194]:

ai j =
∂

∂x j
σ̄(g)xi |xi=ti .

The Gassner representation is reducible. We will see shortly that Der(Fn,L) con-
tains the Pn-fixed line B1(Fn,L) and the Pn-invariant hyperplane Der(Γn,L). The
line does not intersect the hyperplane, nor it is complementary to it (L is not a field).
We begin by describing the line.

We have seen that Der(Fn,L) ∼= Z1(Fn,L). Consequently, Der(Fn,L) contains
B1(Fn,L), the Eilenberg-MacLane 1-coboundaries. Since C0(Fn,L) ∼= L and Pn acts
trivially on L, Pn will also act trivially on B1(Fn,L).

Lemma 10.5 B1(Fn,L) is a free rank 1 submodule of Z1(Fn,L) with the basis∑n
i=1(1− ti)

∂
∂xi

.

Proof Recall that the coboundary δ : C0(Fn,L)→ C1(Fn,L) is given by

δ�(xi) = �− xi� = �− ti� = (1− ti)�

But (1 − ti)� = �δ1(xi), thus δ is L-linear and B1(Fn,L) = L(δ1). We conclude by
observing that

δ1 =
n∑

i=1

(1− ti)
∂

∂xi
.

We now describe the hyperplane. The element x∞ = x1 · · · xn ∈ Fn is fixed by Pn.
We define

Der(Fn,L)∞ := {D ∈ Der(Fn,L) : Dx∞ = 0}

Lemma 10.6

(i) Der(Fn,L)∞ is a free summand of Der(Fn,L) of rank n− 1.
(ii) The quotient map Fn → Γn induces an isomorphism Der(Γn,L)→ Der(Fn,L)∞

of Pn-modules.
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Proof Let {y1, . . . , yn} be the basis for Fn given by yi = x1 · · · xi , 1 ≤ i ≤ n. Then
Der(Fn,L) is free on ∂

∂y1
, . . . , ∂

∂yn
and Der(Fn,L)∞ is free on ∂

∂y1
, . . . , ∂

∂yn−1
. The

statement (ii) is clear.

Definition 10.7 The reduced Gassner representation is the restriction of the action
of Pn from Der(Fn,L) to Der(Γn,L):

ρ : Pn → AutL

(
Der(Γn,L)

)
.

We may represent ρ(g), g ∈ Pn as elements of GLn−1(L) relative to the basis
∂
∂y1
, . . . , ∂

∂yn−1
. Observe that B1(Fn,L) does not intersect Der(Γn,L), indeed

�δ1(x∞) = �(1− t1 · · · tn) �= 0.

Remark 10.8 We will see below that there exist homomorphism images of
Der(Fn,L) such that the image of B1(Fn,L) is contained in the image of Der(Γn,L).
Hence B1(Fn,L) is not a complement to Der(Γn,L).

Note also that there is a representation of Pn on H1(Fn,L) = Z1(Fn,L)/B1(Fn,L).
We do not know whether or not H1(Fn,L) is a free L-module.

We now have

Definition 10.9 Let α = (α1, . . . , αn) with α j ∈ C∗, 1 ≤ j ≤ n and M be an L-
module. Then the specialization Mα of M at α is defined by Mα = M ⊗L Cα. Here
Cα is the complex line equipped with the L-module structure tiz = αiz, z ∈ C.

More concretely, Mα is the quotient of M by the submodule of elements
{(t j − α j)m, 1 ≤ j ≤ n,m ∈M}.

Suppose that T ∈ EndL(M). Then T induces an element Tα = T⊗1 of End(Mα).
Now assume that M is free on m1, . . . ,mn. Then m1⊗1, . . . ,mn⊗1 is a vector space
basis for Mα. The matrix of Tα relative to this basis is obtained from a matrix of T
relative to m1, . . . ,mn by substituting α j for t j , 1 ≤ j ≤ n.

Now we return to the case in hand. We have λ1, . . . , λn with λ1 + · · · + λn = 0.
Define α j := e2πiλ j , 1 ≤ j ≤ n; whence α1 · · ·αn = 1.

Lemma 10.10 Suppose that α = (α1, . . . , αn) satisfies α1 · · ·αn = 1. Then in the
specialization Der(Fn,L)α the image of the fixed line B1(Fn,L) is contained in the image
of the invariant hyperplane Der(Γn,L).

Proof δ1(x∞) = 1− α1 · · ·αn = 0.

Corollary 10.11 The specialization Der(Γn,L)α contains a Pn-fixed line B1(Fn,L)α.
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Now we observe that Z1(Fn,L)α = Z1(Fn,Cχ), the group of 1-cocycles with values
in the 1-dimensional module defined by χ(x j) = α j , 1 ≤ j ≤ n. Moreover

Z1(Γn,L)α = Z1(Γn,Cχ),

the group of Cχ-valued 1-cocycles that annihilate x∞ and

B1(Fn,L)α = B1(Γn,Cχ).

We obtain

Proposition 10.12 Suppose α = (α1, . . . , αn) satisfies α1 · · ·αn = 1. Then the spe-
cialization of the reduced Gassner representation at α contains a Pn-invariant line. The
quotient of the representation of Pn by this line is H1(Γn,Cχ).

Theorem C follows.

Added in Proof P. Deligne has pointed out to us that the Zariski tangent space
Te(Mr) to Mr at a degenerate n-gon e has dimension (n − 2)2 − 1. Furthermore
the second arrow in the sequence Ve → Te(M̃r) → Te(Mr) following Remark 5.1
is zero so the sequence is not exact as claimed. Thus we are not in fact computing
the linearization of the bending fields Bi j on Te(Mr) but rather the induced action
on the cokernel of the first arrow in the sequence. This space is the quotient of the
Zariski tangent space at e to M̃r , the space of closed n-gon linkages, divided by the
space of vertical vectors Ve (that is the tangent space at e to the orbit of SO(3) passing
through e).

We thank P. Deligne for his observations.
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