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This study seeks a low-rank representation of turbulent flow data obtained from multiple
sources. To uncover such a representation, we consider finding a finite-dimensional
manifold that captures underlying turbulent flow structures and characteristics. While
nonlinear machine-learning techniques can be considered to seek a low-order manifold
from flow field data, there exists an infinite number of transformations between data-
driven low-order representations, causing difficulty in understanding turbulent flows on
a manifold. Finding a manifold that captures turbulence characteristics becomes further
challenging when considering multi-source data together due to the presence of inherent
noise or uncertainties and the difference in the spatiotemporal length scale resolved in
flow snapshots, which depends on approaches in collecting data. With an example of
numerical and experimental data sets of transitional turbulent boundary layers, this study
considers an observable-augmented nonlinear autoencoder-based compression, enabling
data-driven feature extraction with prior knowledge of turbulence. We show that it is
possible to find a low-rank subspace that not only captures structural features of flows
across the Reynolds number but also distinguishes the data source. Along with machine-
learning-based super-resolution, we further argue that the present manifold can be used
to validate the outcome of modern data-driven techniques when training and evaluating
across data sets collected through different techniques. The current approach could serve
as a foundation for a range of analyses including reduced-complexity modelling and state
estimation with multi-source turbulent flow data.

Key words: machine learning, low-dimensional models, turbulent boundary layers

© The Author(s), 2025. Published by Cambridge University Press. This is an Open Access article,
distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/
licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original
article is properly cited. 1010 R4-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

38
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://orcid.org/0000-0002-1381-7322
https://orcid.org/0000-0002-3762-8075
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2025.383&domain=pdf
https://doi.org/10.1017/jfm.2025.383


K. Fukami and K. Taira

1. Introduction
Fluid mechanicians have developed approaches to measure turbulent flows in a high-
fidelity manner. High-fidelity data sets collected from numerical simulations and
experiments have been shared in the community (Li et al. 2008; Towne et al. 2023),
supporting the development of approaches for fluid flow modelling and control. Such
high-fidelity turbulent flow data involve their rich physics such as vortex dynamics, energy
cascade processes, and anisotropic structures that evolve across a range of spatiotemporal
length scales. While modern machine-learning techniques analyse high-fidelity turbulent
flow data, it is challenging to evaluate data-driven models with data sets collected through
different approaches since data characteristics such as measurement uncertainties and
spatiotemporal length scales covered by each data source are different. Aiming to perform
data-driven assessments of turbulent flows across different sources and scales, this paper
proposes a nonlinear machine-learning technique that seeks a low-order representation of
multi-source turbulent flow data.

To find such a low-rank representation, this study considers the concept of a manifold
of turbulent flows. The long-term dynamics of infinite-dimensional turbulence systems
often converge to a low-order manifold surface (Graham & Floryan 2021). This low-rank
nature can be used to facilitate understanding and modelling of turbulent flows (Noack
et al. 2003; Luchtenburg et al. 2009). Proper orthogonal decomposition (POD; Lumley
1967) has been considered in estimating a low-order manifold from turbulent flow data.
However, finding a minimal representation of turbulence with such a linear technique
becomes challenging as the variance of data increases because it linearly projects data
onto a flat manifold. Increasing the Reynolds number of flows of interest falls under such
a case since the difference between the minimum and maximum length scales is enlarged
(Alfonsi & Primavera 2007). In dealing with multi-source turbulent flow data, including
sensor readings, numerically simulated data, and experimental measurements, extracting
features from data is further demanding due to measurement noise, uncertainties, the
difference in degree of freedom and length scales captured by each data source.

In response, we consider a nonlinear autoencoder-based compression (Hinton &
Salakhutdinov 2006) to seek a manifold capturing turbulence characteristics from various
data sources. This technique achieves greater order reduction of turbulence compared
with linear techniques, demonstrated with channel flow (Yousif et al. 2022), Kolmogorov
turbulence (Racca et al. 2023) and a flow through an urban environment (Eivazi et al.
2022). In a reduced-order space, there often exists a submanifold forming a geometrical
structure that compactly represents the characteristics and patterns underlying the flow
data (Graham & Floryan 2021). Furthermore, such low-order representations can be
used for modelling (Constante-Amores & Graham 2024) and controlling unsteady flows
(Fukami et al. 2024b).

While a nonlinear autoencoder achieves significant order reduction of turbulent flows,
the mapping from the input high-dimensional space to the latent subspace can involve
various transformations even if their decoding leads to the same flow reconstruction. This
study discusses the importance of incorporating prior knowledge of turbulent flow physics
in the learning formulation of a nonlinear autoencoder to identify a submanifold that best
describes the multi-source turbulent flow data in a low-order manner. As an example,
the data sets of the transitional turbulent boundary layer collected by direct numerical
simulations and particle image velocimetry are considered. We find that a nonlinear
autoencoder with physics embedding provides a manifold that captures structural features
of flows across the Reynolds number while distinguishing the data source. With machine-
learning-based super-resolution, we further discuss that the present manifold can facilitate
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Figure 1. Transitional turbulent boundarylayer data sets. (a) Direct numerical simulation: part of the x−y
sectional domain and subdomains (i − iii) are shown. (b) Particle image velocimetry: three different Reynolds
numbers are considered.

analysis, comparison and interpretation of turbulent flow data measured through different
approaches.

This paper is organised as follows. The approach is described in § 2. Results of the
manifold discovery for the transitional turbulent boundary-layer data sets are presented in
§ 3. Conclusions are offered in § 4.

2. Approach
This study develops a machine-learning approach for identifying a low-order submanifold
that presents geometric structures capturing the essential features of turbulent flows, in
hopes of facilitating data-driven analyses performed across different data sources. We
consider the numerical and experimental data sets of a transitional turbulent boundary
layer made available by the database of Towne et al. (2023). These data sets include
time-resolved snapshots of a high-fidelity direct numerical simulation (DNS) across
a wide domain in the streamwise direction and planar particle image velocimetry
(PIV) measurements at different Reynolds numbers. As there is a variation of noise,
measurement uncertainties, resolved length scales and Reynolds number across the data
sets, the present set of DNS and PIV measurements calls for a comprehensive analysis for
manifold discovery of multi-source turbulent flow data.

For the DNS, the zero-pressure-gradient flat-plate turbulent boundary layer is simulated
by numerically solving the incompressible Navier–Stokes equations. The streamwise
velocity field u is visualised in figure 1(a). The size of the computational domain is
(Lx , L y, Lz)/θavg = (469, 53, 79), where θavg is the streamwise-averaged momentum
thickness, and Lx . L y , and L y are the streamwise, wall-normal, and spanwise extent of
the computational domain. The recycling scheme by Lund et al. (1998) is used to generate
the turbulence fluctuations at the inlet in which the recycling plane xref/θavg is set to
375, where xref is the location of the recycling plane for the inflow boundary condition.
The friction Reynolds number Reτ = uτ δ/ν spans from 481 to 1024 between the inlet and
outlet, covering a range of turbulence characteristics such as nonlinear interactions and
momentum exchange across the flow. All the variables are normalised by the kinematic
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Figure 2. Observable-augmented autoencoder composed of convolutional neural network (CNN) and
multi-layer perceptron (MLP) (Fukami & Taira 2023).

viscosity ν, the boundary-layer thickness δ at 99 % of the free-stream velocity, and the
friction velocity at the wall y = 0, uτ = (ν∂uz,t/∂y|y=0)

1/2, where (·)z,t
represents the

average over the spanwise direction and time. Details of the simulation set-up are provided
in Towne et al. (2023).

Time-resolved planar velocity fields measured by PIV in a wind tunnel are collected at
three different Reynolds numbers of Reτ = 605, 987 and 1373, as shown in figure 1(b).
The friction velocity for the PIV cases is computed by the Clauser method (Clauser 1956).
The free-stream turbulence intensity is approximately 0.5 % and the boundary layer is
developed in a nominally zero-pressure-gradient environment. Details on camera set-ups
and test sections are available in Towne et al. (2023).

In the present analysis, we consider the streamwise velocity u for both DNS and PIV data
sets. This is intended to examine whether the dominant feature of the turbulent boundary
layer mainly driven by the streamwise velocity can be extracted across the different data
sources by machine learning. While the DNS is performed in a three-dimensional domain,
subdomains sampled from an x−y sectional field are used to align the data set-up with the
PIV data, as shown in figure 1(a). The subdomain set-up will be explained later.

To seek a manifold that captures the physical features from these numerical and
experimental data of the turbulent boundary layer, a nonlinear autoencoder-based data
compression (Hinton & Salakhutdinov 2006) is performed. An autoencoder is trained to
replicate the data between the input and output while possessing the bottleneck in the
model architecture, as illustrated in figure 2. The data dimension at the bottleneck referred
to as a latent vector ξ is generally much smaller than that of the input or output data.
Hence, the latent vector ξ can be regarded as a compressed representation of the given
data q if the autoencoder FAE successfully reconstructs the data. With an encoder Fe and
a decoder Fd , the aforementioned process is expressed as

q ≈FAE(q) =Fd(Fe(q)), ξ =Fe(q), q ≈ q̂ =Fd(ξ), (2.1)

where ̂(·) denotes a reconstructed variable.
To promote the manifold identification capturing the development of turbulent boundary

layers, we consider a friction Reynolds-number-based augmentation in performing the
present nonlinear autoencoder-based compression, as illustrated in figure 2. In the
formulation of a variable-based augmentation (Fukami & Taira 2023), an autoencoder
is constructed to estimate an observable variable (Reτ in the present study) from the latent
vector ξ through a subnetwork depicted with a pink box in figure 2 while compressing the
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data such that

w∗ = argminw[||q − q̂||2 + β||Reτ − ̂Reτ ||2], (2.2)

where w denotes the weights inside the autoencoder and β balances the flow field
and Reynolds number loss terms. Here, the weights inside the main autoencoder and
the subnetwork are simultaneously optimised. As an observable variable needs to be
accurately estimated to minimise the above cost function, the optimal weights w∗ are
found to capture the coherent relationship between the given data q and an observable in
the latent space, which has been used in a range of aerodynamic examples (Fukami & Taira
2023; Liu et al. 2024; Tran et al. 2024; Mousavi & Eldredge 2025; Eldredge & Mousavi
2025). This study uses β = 0.05 based on the L-curve analysis (Hansen & O’Leary 1993),
which finds an appropriate regularisation parameter of the cost function. The case with
β = 0.01 is also considered to observe how the latent description is modified through the
observable augmentation. The current formulation can take not only an observable but
also parameters derived from observables for variable-based augmentation, as performed
in this study that uses Reτ measured from the friction velocity uτ .

Choosing the friction Reynolds number Reτ is natural in our case as it characterises
flow features in the wall-normal direction such as the balance between the near-wall
region dominated by viscous effects and the outer region where turbulence is fully
developed across the boundary layer. In other words, the primary features of the turbulent
boundary layer in both the x and y directions can be incorporated in identifying a
manifold that represents the flow characteristics across multiple data sources. Although
not considered in this study, the momentum thickness Reynolds number Reθ may also
provide a similar result in the manifold identification for the present case as it increases
across the streamwise direction with the friction Reynolds number.

For the present data-driven analyses, both DNS and PIV data are sampled such that the
subdomain size in the streamwise and wall-normal directions becomes Lx,ML/δ ∈ [1, 3]
and L y,ML/δ ≈ 1, respectively. The DNS data are uniformly interpolated in the wall-
normal direction to align the set-up of the PIV data. These collected data are then resized
to be N 2

ML = 1282, where NML is the number of grid points for the resized data used
in the data-driven analysis. As the current study aims to find a manifold assessing the
data similarities across different sources, the present observable-augmented autoencoder
is trained with both DNS and PIV snapshots together. We consider 19 000 snapshots for
the present analysis, including 10 000 DNS samples composed of 10 subdomains per
snapshot across 1000 time-resolved frames and 3000 PIV snapshots for each of three
Reynolds numbers. We use 70 % of the snapshots for training and the remaining 30 %
for validation with random splitting of the data set. The encoder and decoder parts of the
autoencoder are constructed by convolutional neural networks (LeCun et al. 1998) while
the subnetwork is composed of multi-layer perceptrons (Rumelhart et al. 1986), analogous
to the original observable autoencoder network in Fukami & Taira (2023). A sample code
(https://github.com/kfukami/Observable-CNN-AE) can be referred to for further details
on the present autoencoder model.

3. Results
We apply the current autoencoder with the friction Reynolds-number-based augmentation
to the DNS and PIV data sets of the turbulent boundary layer. The reconstructed fields
through the observable-augmented autoencoder with β = 0.05 across different numbers of
the latent dimension nξ are presented in figure 3. As representative cases, a DNS snapshot
at Reτ = 897 and a PIV snapshot at Reτ = 605 are shown. The L2 reconstruction error
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Figure 3. Representative reconstructed fields through nonlinear autoencoder compression across the latent
dimension nξ . The DNS (Reτ = 897) and PIV (Reτ = 605) fields are shown. The L2 reconstruction error ε is
reported underneath each field.

ε = ||q −FAE(q)||2/||q||2 is reported under each of the reconstructed velocity fields. The
error decreases as the latent dimension increases, corresponding to the low compression
of velocity data. While large-scale structures can be represented only with nξ � 256, fine-
scale features are captured well across the field with nξ � 512.

As a reference, we note that the linear POD requires more than 3000 modes to achieve
the same reconstruction level as the present nonlinear autoencoder with nξ = 512. In other
words, the use of nonlinear activation functions inside the model improves compression
in seeking low-order representations of the turbulent boundary-layer data sets. Based on
the L2 error norm and the reconstruction of fine-scale structures, we hereafter choose the
latent dimension of 512 for the discussions.

Next, we are interested in what can be captured through the present nonlinear
compression of multi-source turbulent boundary-layer data. Let us perform POD on
the compressed representation ξ to examine the primary features extracted from the
turbulent flows with the autoencoder. The coordinate composed of three dominant POD
coefficients a1 − a2 − a3 is shown in figure 4. In addition to the cases of the observable
autoencoder with β = 0.01 and 0.05, a regular autoencoder without the Reynolds-number
augmentation, i.e. β = 0, is also presented for comparison.
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Figure 4. Cross-source manifold identified through the observable-augmented nonlinear autoencoder (AE).
The coefficient space composed of the three dominant POD modes is shown. The L2 error ε averaged over the
samples is reported underneath each coefficient space.

All three spaces learn the friction Reynolds-number dependence for the DNS data. The
clear trend with respect to Reτ is observed in the a1 axis with β � 0.01 and the diagonal
direction on the a1 − a2 plane with β = 0.05. The main difference between the cases with
and without the Reynolds-number augmentation is their low-order expression about the
data source. In the space of a regular autoencoder, the PIV cases generally overlay the
centre region of the DNS cases. In contrast, there is a clear distinction between the DNS
and PIV cases by introducing the Reynolds-number-based augmentation. The a3 axis with
β = 0.01 and 0.05 captures the difference in the data source.

Noteworthy here is that the reconstruction performance over the three cases is almost
the same, presenting the L2 error of 14 % as reported in figure 4. In other words, while
all nonlinear autoencoders achieve similar compression of the turbulent flows, what they
learn in the latent space from the data becomes different from each other. With the friction
Reynolds-number-based augmentation, the current submanifold compactly represents the
Reynolds number and the difference in the data source as their characteristics of given
data sets. In addition, the latent expression with β = 0.05 provides a continuous transition
between the data sources of DNS and PIV, forming a V-shape submanifold of the DNS
data. Since this submanifold extracts structural characteristics from high-resolution flow
fields in addition to the Reynolds-number dependence, there are some variations of Reτ at
−10 < a1 < 0 in the latent space with β = 0.05.

To further examine how the present manifold can be used for assessing data-driven
techniques with multi-source turbulent flow data, we consider machine-learning-based
super-resolution analysis of turbulent flows (Fukami et al. 2019). Super-resolution
aims to reconstruct high-resolution data from the corresponding low-resolution signal,
which has been examined for turbulent flow reconstruction (Fukami et al. 2023). The
process of super-resolution reconstruction in the context of fluid flows is expressed as
qHR =FSR(qLR), where the high-resolution flow field qHR is reconstructed from the
low-resolution flow data qLR with a machine-learning model FSR.

To recognise turbulent flow structures that have been learned as the difference between
the DNS and PIV data sets on the manifold, we use the machine-learning-based super-
resolution reconstruction in the following manner. The present super-resolution model is
first trained with the DNS data only and then evaluated with the PIV data. We then examine
how the super-resolved flow fields from PIV data are described on the identified manifold
through the nonlinear autoencoder.
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Figure 5. Machine-learning-based super-resolution reconstruction for DNS data of turbulent boundary layers.
The L2 reconstruction error ε is reported underneath each field.

For successful super-resolution reconstruction of turbulent flows, the machine-learning
model FSR should be carefully constructed to accommodate a range of spatial length
scales while accounting for scale invariance of turbulent flow structures (Fukami et al.
2024a). We use the interconnected hybrid downsampled skip-connection/multi-scale
(DSC/MS) model (Fukami et al. 2023) based on CNN (LeCun et al. 1998). This model is
aimed at capturing rotational and translational invariance while incorporating multi-size
filter operations that greatly assist in learning the correlation across a range of length
scales in turbulent flows. We refer to Fukami et al. (2023) and a sample code
(http://www.seas.ucla.edu/fluidflow/codes.html) for further details on the present super-
resolution model. In this study, the model is trained to reconstruct the high-resolution
velocity field of size 1282 from the corresponding low-resolution data of size 82 generated
by average pooling (Fukami et al. 2019).

Let us assess the present super-resolution model with the DNS data, as shown in
figure 5. The super-resolution model FSR is trained with 25 000 samples composed of
10 subdomains per snapshot across 2500 time-resolved DNS frames. The DSC/MS model
accurately produces the fine-scale structures in the flow fields across the Reynolds number.
The super-resolution model FSR with the DNS data is then tested with the PIV data,
as presented in figure 6. Here, the PIV fields are downsampled to be the size 82, and
then these low-resolution PIV input data qLR,PIV are given to the model FSR. While
the reconstructed fields are generally similar to the reference PIV field qPIV across the
Reynolds number, their velocity profiles exhibit slight differences near the wall. This is
further evident from the root mean square of streamwise velocity fluctuation urms across
the wall-normal direction shown in figure 6. Here, the urms profile is plotted across
y+ = yuτ /ν obtained from the PIV data set-up. The profile of the PIV data presents
overestimation near the wall due to the reflection of the laser sheet on the surface in
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Figure 6. Application of machine-learning-based super-resolution model FSR trained with the DNS data to
the PIV data sets. The reconstructed fields, the L1 difference field between the reconstructed and original PIV
|εL1 | = |qPIV −FSR(qLR,PIV)|, and the root mean square of streamwise velocity fluctuation urms across the
wall-normal direction are shown.

measuring the data (Towne et al. 2023). This overestimation is corrected by the super-
resolution model trained with the DNS data possessing a finer spatial resolution near the
wall. The PIV cases of Reτ = 987 and 1373 do not resolve the near-wall region of y+ ≈ 15,
where the inner peak of urms resides, even at the first grid point from the wall. In other
words, the super-resolution model performs some nonlinear stretching of data in the wall-
normal direction such that the inner peak at y+ ≈ 15 can be captured, despite not being
resolved with PIV.

At last, we provide these super-resolved PIV data to the encoder Fe of the observable
autoencoder with β = 0.05 to examine the behaviour on the identified low-rank coordinate
such that ξSRPIV =Fe(FSR(qLR,PIV)). The coefficient space composed of the three
dominant POD modes for the latent vector ξSRPIV is shown in figure 7. Due to the
correction near the wall, the super-resolved PIV data are projected between the DNS and
PIV data points in the coefficient space. This suggests that the nonlinear autoencoder
FAE learns the difference in the resolved length scales near the wall across the a3
direction to distinguish the data sources. Although the decoder does not receive Reτ
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Figure 7. Assessment of super-resolved PIV fields on the identified coordinate. The coefficient space
composed of the three dominant POD modes is shown.

as an input, the latent space of the observable-augmented autoencoder includes the
information of Reτ as presented in figure 4, thereby reflecting the reconstructed inner
peak from the data in the latent space as the projection between DNS and PIV. In other
words, the identified manifold gains the feature of given turbulence data in a compact
manner, enabling standardised evaluation of machine-learning analysis when considering
multi-source turbulent flow data together.

We emphasise that the present finding of the manifold is achieved by the observable
augmentation with Reτ that characterises the balance of turbulent flow features between
the near-wall and outer regions while providing information on the development of
turbulent boundary layers. This selection of observable variables capturing the flow
features in both the x and y directions is based on our foundational understanding of
turbulent boundary-layer flows. Rather than naively applying data-science techniques
without consideration, appropriately incorporating prior knowledge into the model design
is essential to learn multi-source turbulent flow data with nonlinear machine learning.

4. Concluding remarks
This study considered nonlinear machine learning to seek a low-rank manifold that
captures the characteristics of multi-source turbulent flow data. With an example of
transitional turbulent boundary-layer data from both numerical and experimental sources,
we found that a low-order subspace is identified through nonlinear autoencoder-based
compression with an observable augmentation. In the identified space, the Reynolds-
number dependence and the difference in the resolved length scale in a flow snapshot
are compactly represented. The observable-augmented autoencoder provides a continuous
transition between numerical and experimental data in the latent subspace while extracting
structural features of turbulent flows in a low-order manner, which differs from what can
be achieved through a standard classifier. Furthermore, the present coordinate enables the
comparison of the data even with different spatial resolutions from multiple sources, which
is challenging with a traditional norm. We showed that the super-resolved experimental
flow fields that have no comparable solutions can be assessed in the identified subspace
through projection. The current findings further support the importance of considering
prior knowledge for data-driven studies in learning multi-source turbulent flow data.

The present manifold learning across multi-source turbulent flow data may be
considered for analysis at a range of Reynolds numbers by carefully preparing the data
sets with respect to their spatiotemporal resolution and Reynolds numbers. To make
the identified subspace more robust, multi-fidelity data at different Reynolds numbers
obtained from numerical simulations such as large-eddy simulations and detached eddy
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simulations could be incorporated. As experiments can typically achieve higher Reynolds
numbers compared with numerical simulations, one can consider manifold learning
with the data sets composed of DNS data at low Reynolds numbers and PIV data
at high Reynolds numbers. The resulting manifold with such data pairs would learn
the characteristics of spatially high-resolved DNS at low Reynolds numbers and that
of spatially low-resolved PIV at high Reynolds numbers. Leveraging such a latent
space, super-resolution reconstruction with respect to not only spatial resolution but
also Reynolds number could be performed through the decoder part of the observable-
augmented autoencoder.

While this study primarily used flow field data obtained by DNS and PIV, sensor
measurements could be further integrated into the coordinate identification process as
either input/output data or variables used for the subnetwork-based augmentation. The
denoising capability of autoencoder-based techniques also encourages multi-source data
analysis of turbulent flows in seeking low-rank representations (Smith et al. 2024).
Although the current analysis used POD to identify the primary characteristics in the latent
subspace, sensitivity analysis (Mo et al. 2024) and geometric analysis with magnification
factors (Kelshaw & Magri 2024) may also be helpful to examine the latent space
characteristics. Depending on the physics and flow of interest, a careful choice of turbulent
flow data given into nonlinear machine-learning models is necessary as well as preparing
appropriate learning formulations to embed prior knowledge of turbulence. With this in
mind, we can study multi-source turbulent flow data with nonlinear machine-learning
techniques. The proposed approach to seeking a manifold of multi-source turbulent
flow data offers guidance on how to examine turbulence characteristics across data sets
with varying spatiotemporal data resolutions, measurement techniques and length scales,
enhancing the reliability of cross-method comparisons and comprehensive data-fusion
analyses of turbulence.
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