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Abstract It is proved in this paper that for any non-elementary subgroup G of PSL(2, Γn), which has
no elliptic element, to be not strict, there is a minimal generating system of G consisting of loxodromic
elements, and that if G is a non-elementary subgroup of PSL(2, Γn) of which each loxodromic element
is hyperbolic, then G is conjugate to a subgroup of PSL(2, R).
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1. Introduction

Doyle and James proved in [5] that every non-elementary subgroup G of SL(2, R) has
a generating system consisting only of hyperbolic elements. Rosenberger proved further
in [11] that such a system of generators can be chosen to be minimal. Isachenko [8] and
Rosenberger [12] generalized some results in [11] and [10] to the case of PSL(2,C).

In this paper we study the corresponding problem for the case of PSL(2, Γn). The main
result to be proved in this paper is that if a non-elementary subgroup G of PSL(2, Γn)
has no elliptic element which is not strict, then G has a minimal generating system
consisting of loxodromic elements (Theorem 3.9). And it is proved that if G is a non-
elementary subgroup of PSL(2, Γn) of which each loxodromic element is hyperbolic, then
G is conjugate to a subgroup of PSL(2, R) (Theorem 4.1).

2. Preliminary material

We need the following preliminary material (see [1,2] for the details).
Let An denote the associative algebra over the real numbers generated by 1, e1, e2, . . . ,

en−1 subject to the relations

e2
i = −1, eiej = −ejei (i �= j), i, j = 1, 2, . . . , n − 1. (2.1)
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For all a ∈ An there is a unique representation of the form

a = a0 +
∑

avEv, (2.2)

where a0 and av are real, the summation is over all multi-indices v = (v1, v2, . . . , vp) with
0 < v1 < v2 < · · · < vp � n − 1, and Ev = ev1ev2 . . . evp

. a0 is said to be the real part of
a denoted by a0 = Re(a). The modulus of a is defined by

|a| =
(

a2
0 +

∑
a2

v

)1/2

. (2.3)

Let a′ be the element obtained from a by replacing every ei in (2.2) by −ei, a∗ be the
element obtained from a by reversing the order of the factors in each Ev = ev1ev2 . . . evp

,
and ā = (a′)∗ = (a∗)′. Obviously, (a + b)′ = a′ + b′, (ab)′ = a′b′, and (ab)∗ = b∗a∗.

All the elements x = x0 + x1e1 + · · · + xn−1en−1 (xk ∈ R, k = 0, 1, . . . , n − 1) are said
to be the vectorial elements in An, denoted by x ∈ R

n. Let Γn be the set of all elements
in An which can be expressed as a finite product of non-zero vectors of An. It is said to
be the n-dimensional Clifford group.

A =

(
a b

c d

)

is said to be an n-dimensional Clifford matrix if

(i) a, b, c, d ∈ Γn ∪ {0};

(ii) det(A) = ad∗ − bc∗ = 1; and

(iii) ab∗, b∗d, a∗c, cd∗ ∈ R
n.

Let SL(2, Γn) denote the group of all n-dimensional Clifford matrices with the matrix
product operation. Set

PSL(2, Γn) = SL(2, Γn)/{±I},

where I is the unit matrix.
Let

A =

(
a b

c d

)
∈ PSL(2, Γn)

correspond to the mapping in R̄
n

x �→ Ax = (ax + b)(cx + d)−1. (2.4)

This is an isomorphic correspondence between PSL(2, Γn) and M(R̄n) (the full sense
preserving Möbius group acting in R̄

n), and which are not distinguished.
Let f̃ denote the Poincaré extension of f (see [4]). Write

fix(f) = {x ∈ R̄
n : f(x) = x},

fix(f̃) = {z = x + ten ∈ Hn+1 : f̃(z) = z}.

For a non-trivial element f ∈ M(R̄n), we say that
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(i) f is parabolic if card(fix(f)) = 1 and card(fix(f̃)) = 0;

(ii) f is loxodromic if card(fix(f)) = 2 and card(fix(f̃)) = 0; and

(iii) f is elliptic if card(fix(f̃)) > 0,

where card(M) is the number of the elements of the set M .
The following corollary results.

Corollary 2.1. Let

f =

(
a b

c d

)
∈ PSL(2, Γn).

Then

(i) f is loxodromic if f is conjugate to(
rλ 0
0 r−1λ′

)
,

where r > 0, r �= 1, λ ∈ Γn and |λ| = 1, in particular we say that f is hyperbolic if
λ = ±1;

(ii) f is parabolic if f is conjugate to (
λ u

0 λ′

)
,

where λ, u ∈ Γn, |λ| = 1, u �= 0, and λu = uλ′, in particular we say that f is strictly
parabolic if λ = ±1; and

(iii) f is elliptic if f is conjugate to (
λ 0
0 λ′

)
,

where λ ∈ Γn+1, |λ| = 1 and λ �= ±1, in particular we say that f is strictly elliptic
if λ ∈ Γ2.

For a non-trivial element

f =

(
a b

c d

)
∈ PSL(2, Γn),

we say that f is vectorial if b, c ∈ R
n and a+d∗ ∈ R. We then have the following corollary

(see [1]).

Corollary 2.2.

(i) f is hyperbolic if and only if f is vectorial and (a + d∗)2 > 4;
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(ii) f is strictly parabolic if and only if f is vectorial and (a + d∗)2 = 4; and

(iii) f is strictly elliptic if and only if f is vectorial and (a + d∗)2 < 4.

For

f =

(
a b

c d

)
∈ PSL(2, Γn)

with ∞ �∈ fix(f), we define the isometric sphere as follows:

S(f) = {x ∈ R̄
n : |x + c−1d| = |c|−1}.

We then have the following corollary (see [1] or [13]).

Corollary 2.3. If S(f) ∩ S(f−1) = ∅, then f is loxodromic.

3. Generating systems of subgroups of PSL(2, Γn)

Let G be a subgroup of PSL(2, Γn). G is said to be elementary if there is a finite G-orbit
in H

n+1 ∪ R̄
n. Otherwise, G is said to be non-elementary. The following lemma is well

known (see [14]).

Lemma 3.1. If G is non-elementary, then there exist loxodromic elements in G.

The cardinal number r(G) is the rank of the group G if G can be generated by a system
of generators of cardinality r(G), but not by a system of smaller cardinality. A system
of generators of G which has cardinality r(G) is said to be a minimal generating system
of G.

From [14], we have the following lemma.

Lemma 3.2. Any non-elementary subgroup G of PSL(2, Γn) has a generating system
consisting of loxodromic elements.

In order to prove our main result we need to prove the following lemmas.

Lemma 3.3. Let f be loxodromic. For g ∈ PSL(2, Γn), if g does not interchange the
two fixed points of f , then there is n0 ∈ N such that fmg or fmg−1 are loxodromic for
all m � n0.

Proof. We may assume that

f =

(
rλ 0
0 r−1λ′

)
and g =

(
a b

c d

)
,

where r > 1, λ ∈ Γn and |λ| = 1.
If the group 〈f, g〉 generated by f and g is elementary, then ad �= 0. Obviously, fmg is

loxodromic for large enough m.
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If 〈f, g〉 is non-elementary, then bc �= 0 and max{|a|, |d|} > 0. To replace g by g−1 if
needed we may assume that a �= 0. Thus, we obtain that

S(fmg) = {x ∈ R̄
n : |x + c−1d| = rm|c|−1},

S(g−1f−m) = {x ∈ R̄
n : |x − r2mλmac−1(λ∗)m| = rm|c|−1},

and then S(fmg) ∩ S(g−1f−m) = ∅ for large m. It follows from Corollary 2.3 that fmg

are loxodromic for all m � n0. �

Lemma 3.4. Suppose that f , g and fg are strictly elliptic, and

f =

(
u 0
0 u′

)
, g =

(
a b

c d

)
,

where u ∈ Γ2, |u| = 1 and bc �= 0. Then there is t ∈ R such that c = tb′ ∈ Γ2 and d = a′.

Proof. The conclusion follows from

b, c ∈ R
n, ub, u′c ∈ R

n,

a + d∗ ∈ R, ua + (u′d)∗ ∈ R,

and ab∗ ∈ R
n. �

Lemma 3.5. Under the assumptions of Lemma 3.4, if 〈f, g〉 is non-elementary, then
〈f, g〉 is conjugate to a non-elementary subgroup of PSL(2, Γ2) that is generated by two
elliptic elements.

Proof. Since 〈f, g〉 is non-elementary, by Lemma 3.4, there is q1 ∈ PSL(2, R) such
that f1 = q1fq−1

1 and

g1 = q1gq−1
1 =

(
a b

b′ a′

)
.

This implies that there is q2 ∈ PSL(2, Γn) such that f2 = q2f1q
−1
2 , g2 = q2g1q

−1
2 ∈

PSL(2, Γn−1) and 〈f2, g2〉 is non-elementary.
Observe that f2, g2 and f2g2 are strictly elliptic. By repeating the above argument a

finite number of times, our result follows. �

Lemma 3.6. Suppose that f and g are strictly elliptic, and that 〈f, g〉 is non-ele-
mentary without elliptic elements that are non-strict. Then there are two loxodromic
elements f1 and g1 such that 〈f, g〉 = 〈f1, g1〉.

Proof. Let h = fg. Then 〈f, h〉 = 〈f, g〉 is non-elementary.

(i) If h is loxodromic, then f1 = hmf or hmf−1 is loxodromic for some large m by
Lemma 3.3 and 〈f1, h〉 = 〈f, h〉 = 〈f, g〉. It follows that g1 = fk

1 h or fk
1 h−1 is loxo-

dromic for large enough k and 〈f1, g1〉 = 〈f, g〉.
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(ii) If h is elliptic, then h is strictly elliptic. We may assume that

f =

(
u 0
0 u′

)
with u ∈ Γ2, |u| = 1 and g =

(
a b

c d

)
.

Since 〈f, g〉 is non-elementary, it follows from Lemma 3.5 that 〈f, g〉 is conjugate
to a non-elementary subgroup G1 in PSL(2, Γ2) which is generated by two elliptic
elements. The proof follows from [8,12] or [15].

(iii) If h is parabolic, then f1 = hmf is loxodromic for some large m. Take g1 = fk
1 h.

Then g1 is loxodromic for large enough k and 〈f1, g1〉 = 〈f, g〉.

�

The following lemma results from Lemma 3.6 and its proof.

Lemma 3.7. If a non-elementary two-generator subgroup G in PSL(2, Γn) has no
elliptic element which is not strict, then G can be generated by two loxodromic elements.

Lemma 3.8. Let G be a non-elementary subgroup of PSL(2, Γn). If G has no elliptic
element which is not strict, then G has a minimal generating system Y which contains
two elements f , g such that 〈f, g〉 is non-elementary.

Proof. Let X be a minimal generating system of G.
The case of r(G) = 2 is obvious. Hence, in the following, we suppose r(G) � 3.

(1) If X contains a non-elliptic element f or f, g such that fg is non-elliptic or f, g, h

such that fgh is non-elliptic, then there is a minimal generating system Y of G, which
contains two elements f1, f2 such that 〈f1, f2〉 is non-elementary.

(2) Suppose that all elements in X, including the compositions of any two and any
three elements of X, are strictly elliptic. Let f ∈ X and

f =

(
u 0
0 u′

)
(u ∈ Γ2, |u| = 1).

(A) If X contains g such that

g =

(
a b

0 d

)
(b �= 0),

then d = a′ and b ∈ Γ2, since fg are strictly elliptic. We know from ab ∈ R
n that a has

the following form

a = a0 +
n−1∑
i=2

aiei (a0, ai ∈ Γ2).
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Since G is non-elementary, we know that there exists h ∈ X such that

h =

(
m k

p q

)
,

where p �= 0.
Then k, p ∈ Γ2, m = m0 +

∑n−1
i=2 miei (m0, mi ∈ Γ2) and q = m′ + r for some r ∈ R.

Since all fh, gh and fgh are strictly elliptic, we know that r = 0 and a, m ∈ Γ2.
These imply that f, g, h ∈ PSL(2, Γ2). Hence, for every w ∈ X, w ∈ PSL(2, Γ2). This

shows that G is conjugate to a subgroup of PSL(2, Γ2). The proof follows from [8,12]
or [15].

(B) In the following, we need only consider the case: for any g ∈ X, either 0,∞ ∈ fix(g)
or fix(g) ∩ {0,∞} = ∅.

From the assumptions, by passing to a new minimal generating system if needed, there
exists

g =

(
a b

c d

)
∈ X

with abc �= 0. Lemma 3.4 implies that b, c ∈ Γ2 and d = a′. Under conjugation, we assume
that

f =

(
u 0
0 u′

)
, g =

(
a b

εb′ a′

)
(ε = ±1, b �= 0).

For any

h =

(
m k

p q

)
∈ X,

we know that q = m′ and p = tk′ ∈ Γ2(t ∈ R).
It follows from gh being strictly elliptic that m ∈ Γ2 if and only if a ∈ Γ2, and t = ε if

and only if a �∈ Γ2.
If a ∈ Γ2, then, for every w ∈ X, w ∈ PSL(2, Γ2). Our result follows from [8, 12]

or [15].
If a �∈ Γ2, then t = ε. Since h is arbitrary and G is non-elementary, ε = 1. So G is

conjugate to a subgroup of PSL(2, Γn−1).

By repeating the above steps a finite number of times and by [8,12] or [15], the proof
follows. �

Theorem 3.9. Let G be a non-elementary subgroup of PSL(2, Γn). If G has no elliptic
element which is not strict, then there is a minimal generating system of G consisting of
loxodromic elements.

Proof. By Lemma 3.8, G has a minimal generating system X which contains two
elements f , g such that 〈f, g〉 is non-elementary. By Lemma 3.7, we can suppose that f

and g are loxodromic.
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For any h ∈ X − {f, g}, if h is not loxodromic, then fmhε or fmghε is loxodromic for
large m (here ε = 1 or −1). We replace f , h by f and fmhε or f , g, h by f , g and fmghε

in X.
By the arbitrariness of h, this shows that there is a minimal generating system of G

consisting of loxodromic elements. �

4. A class of subgroups of PSL(2, Γn)

In [7], Greenberg proved that if a subgroup G of PSL(2, Γn) is a hyperbolic group (i.e. each
non-trivial element is hyperbolic), then G has an invariant circle in R̄

n that contains all
fixed points of elements in G. Apanasov proved further in [3] that if G is a non-elementary
subgroup of PSL(2, Γn) of which each non-trivial element is either hyperbolic, strictly
elliptic or strictly parabolic, then G is conjugate to a subgroup of PSL(2, R).

We will prove the following theorem.

Theorem 4.1. Let G be a non-elementary subgroup of PSL(2, Γn). If each loxodromic
element of G is hyperbolic, then G is conjugate to a subgroup of PSL(2, R).

Proof. By Lemma 3.1, we may assume that there is a loxodromic element f in G of
the following form: (

r 0
0 r−1

)
(r > 1).

By Lemmas 3.2 and 3.3, there is a hyperbolic element

g =

(
a b

c d

)
∈ G

such that 〈f, g〉 is non-elementary. By Lemma 3.3, fmg or fmg−1 is hyperbolic for large
enough m. Then a, d ∈ R. Observe that 〈f, g2〉 is also non-elementary. Then there is
t ∈ R (t �= 0) such that c = tb′ ∈ R

n. Hence there is

h =

(
q 0
0 q′

)
(q ∈ R

n, |q| = 1)

such that

hfh−1 = f, hgh−1 =

(
a |b|

t|b| d

)
.

Therefore, we may assume that f, g ∈ PSL(2, R).
For any

p =

(
α β

γ δ

)
∈ G

non-trivial, we claim that α, δ ∈ R and β, γ ∈ R
n.

We will prove our claim in two cases.
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(1) |α|2 + |δ|2 > 0.

If fix(f) ∩ fix(p) �= ∅, then fmp is hyperbolic for large enough m. Hence α, δ ∈ R

and β, γ ∈ R
n.

If fix(f) ∩ fix(p) = ∅, then 〈f, p〉 is non-elementary. Similar argument as in the
beginning of the proof implies that α, δ ∈ R and β, γ ∈ R

n.

(2) |α|2 + |δ|2 = 0.

By replacing p by gp, our claim follows case (1).

Since gp ∈ G and

gp =

(
aα + bγ aβ + bδ

cα + dγ cβ + dδ

)
,

it follows from our claim that p ∈ PSL(2, R). The proof is completed.

�

From Theorem 4.1 and [6,9,15] we obtain the following corollary.

Corollary 4.2. Let G be a non-elementary subgroup of PSL(2, Γn). If each loxodromic
element of G is hyperbolic, then G is discrete if and only if each one-generator subgroup
of G is discrete if and only if each non-elementary subgroup generated by two loxodromic
elements of G is discrete.
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