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Measure Convex and Measure Extremal

Sets

Petr Dostál, Jaroslav Lukeš, and Jiřı́ Spurný

Abstract. We prove that convex sets are measure convex and extremal sets are measure extremal pro-

vided they are of low Borel complexity. We also present examples showing that the positive results

cannot be strengthened.

1 Introduction

Let X be a nonempty compact convex subset of a locally convex space. The aim of the

paper is to show under what topological conditions imposed on a convex subset F of

X the set F is measure convex. (We recall that a Borel subset F of X is said to be mea-

sure convex if F contains the barycenter r(µ) of every probability Radon measure µ
on X supported by F.) Namely, we are interested in whether a convex set of low Borel

complexity is measure convex. Since there are examples of convex Gδ-sets or Fσ-sets

which are not measure convex (see Propositions 4.1, 4.3 and Theorem 4.8), we must

restrict ourselves to the case of convex sets which are closed, open or ambivalent.

The affirmative answer to our question for closed sets easily follows from the Hahn–

Banach separation theorem, the case of open sets was solved by H. von Weizsäcker

[10] and the case of ambivalent sets is answered in Theorem 3.5. (We recall that a

subset A of a metrizable space X is called ambivalent if A is both an Fσ-set and a Gδ-

set in X. We refer the reader to Section 2 where we define ambivalent sets in general

topological spaces.)

An analogous question to the one above can be stated for extremal subsets of X.

We recall that a set F ⊂ X is extremal if x, y ∈ F whenever x, y ∈ X, α ∈ (0, 1)

and αx + (1 − α)y ∈ F. We investigate whether an extremal subset of X is measure

extremal. A Borel set F ⊂ X is called measure extremal if every probability Radon

measure µ on X is supported by F whenever r(µ) ∈ F. As Propositions 4.5, 4.7 and

Theorem 4.9 show, extremal Fσ- or Gδ-sets need not be measure extremal. But it is

not difficult to verify that closed or ambivalent extremal sets are measure extremal

(see Corollary 3.8).

One of the main tools we use is a characterization of measure convex sets which is

due to D. H. Fremlin and J. D. Pryce (see Theorem 2.2). This theorem enables us to

characterize measure convex sets.
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Counterexamples contained in Proposition 4.5 and Theorem 4.8 are suitable mod-

ifications of the example by G. Choquet [3] (cf. [1, Example I.2.10], [8, Example,

p. 91] or [7, Remark 1]). We remark that in Proposition 4.4 we present a simplified

version of the proof of [1, Proposition I.2.8]. The examples of Proposition 4.7 and

Theorem 4.9 partially use a construction of H. von Weiszäcker (see [10]).

We refer the reader to [11, §1.2] where a thorough investigation of measure convex

sets is given.

2 Preliminaries

All topological spaces will be considered as Hausdorff. If K is a compact space, we

denote by C(K) the space of all continuous functions on K. We identify the dual of

C(K) with the space M(K) of all signed finite Radon measures on K and consider

M(K) endowed with the w∗-topology.

By a measure µ on K we always understand a positive Radon measure on K. Let

M1(K) denote the set of all probability Radon measures on K and M+(K) the set of

all positive Radon measures on K. Let εx stand for the Dirac measure at x ∈ K. For a

measure µ ∈ M+(K) we write sptµ for the support of µ.

We recall that a measure µ ∈ M+(K) on K is said to be atomic if there exists a

set S ⊂ K such that µ(K \ S) = 0 and µ({x}) > 0 for every x ∈ S. A measure

µ is continuous if µ({x}) = 0 for every x ∈ K. Every measure µ can be uniquely

expressed in the form µ = µa + µc, where µa is atomic and µc is continuous.

Given a couple of measures µ and ν in M+(K), we say that µ and ν are singular,

which is denoted by µ ⊥ ν, if there exists a Borel set B ⊂ K such that µ(B) =

ν(K \ B) = 0. A measure ν is absolutely continuous with respect to µ, denoted by

ν ≪ µ, if ν(E) = 0 whenever E is a Borel set and µ(E) = 0. If ν and µ are measures

on K, the measure ν can be uniquely expressed as ν = νs + νac, where νs ⊥ µ and

νac ≪ µ.

If X is a compact convex subset of a locally convex space E and µ is a probability

measure on X, a point x ∈ X is said to be the barycenter of µ if µ(ϕ) = ϕ(x) for every

continuous functional ϕ ∈ E∗. It is well known that every µ ∈ M1(X) has a unique

barycenter (see [8, Proposition 1.1]) which we denote by r(µ).

It is easy to see that any measure convex set is also convex and that any measure

extremal set is extremal. A singleton {x} is an extremal subset of X if and only if x is

an extreme point of X. We write ext(X) for the set of all extreme points of X.

A set F ⊂ X is called a face of X if F is convex and extremal. If x is a point of

X, the smallest face, face(x), containing x consists of all points y ∈ X for which the

line segment joining x and y extends in X beyond x. We say that face(x) is generated

by x. It easily follows from the definition that face(x) is of type Fσ (see [1, Proposition

II.5.22]).

For a compact space K, let ε denote the homeomorphic embedding of K into

M
1(K), i.e., ε assigns to x ∈ K the Dirac measure εx ∈ M

1(K). As is well known,

ε(K) = ext(M1(K)).

If λ is a probability measure on K, we define the measure ελ as the image of λ
under the mapping ε, i.e., ελ(B) := λ(ε−1(B)) for any Borel set B ⊂ M1(K).
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Proposition 2.1 The measure ελ is supported by the (closed) set ε(sptλ) and its

barycenter equals λ.

Proof Let Λ := ελ. Since

Λ(ε(sptλ)) = λ(ε−1(ε(sptλ))) = λ(sptλ) = 1,

we see that Λ is supported by ε(sptλ).

Pick ϕ ∈ (M(K),w∗)∗. By duality theory, there is f ∈ C(K) such that

ϕ(µ) = µ( f ) for any µ ∈ M(K).

Then

Λ(ϕ) = (ελ)(ϕ) = λ(ϕ ◦ ε) =

∫

K

ϕ(εx) dλ(x) =

∫

K

f (x) dλ(x)

= λ( f ) = ϕ(λ).

In order to obtain results on measure convex and measure extremal sets also in

nonmetrizable compact spaces, we use a class of ambivalent sets which is larger than

the usual family of both Fσ- and Gδ-sets. Namely, for a topological space K we de-

note by alg(F) the smallest algebra containing the family of all closed sets in K. Let

(alg(F))σ stand for the family of all countable unions of sets from alg(F) and let

(alg(F))δ stand for the family of all countable intersections of sets from alg(F). These

families are suitable substitutes for the families of Fσ-sets and Gδ-sets since (alg(F))σ
coincides with the system of Fσ-sets and (alg(F))δ with the system of Gδ-sets if K is

metrizable.

Sets belonging to (alg(F))σ ∩ (alg(F))δ are called ambivalent. We refer the reader

to [9, Definition 1.1], [6, §3] or [5, §1] for further information on the Borel hierarchy

in topological spaces.

Later on we will need some useful properties of sets defined above. First, we realize

that any (alg(F))δ set F dense in K is even residual in K, i.e., the complement of F in

K is of the first category in K. This assertion easily follows from the observation that

F =

∞
⋂

n=1

(Gn ∪ Fn),

where each Gn is open and each Fn is closed in K (see [6, §3]). Supposing that F

is dense in K, it is easy to verify that every Gn ∪ Int Fn is a dense set in K. Thus F

contains a dense Gδ-subset of K.

From this observation we easily get the assertion that a dense ambivalent subset F

of a nonempty compact space K has a nonempty interior. Indeed, assuming the

contrary, we would obtain that F and K \ F form a couple of residual sets in a Baire

space K, which is impossible. (We recall that a topological space is a Baire space if the

intersection of a sequence of dense open sets is dense.)

Now we quote the aforementioned theorem of D. H. Fremlin and J. D. Pryce [4,

Theorem 2E; Proposition 2G].
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Theorem 2.2 (Fremlin–Pryce) Let A be a Borel subset of a compact set X. Then A

is measure convex if and only if the closed convex hull coK ⊂ A for any compact set

K ⊂ A.

We also recall the following well-known facts.

Proposition 2.3

(a) If K is a compact set in a finite dimensional space, then its convex hull co K is com-

pact.

(b) The convex hull of finitely many convex compact sets is compact.

3 Positive Results

In what follows we will assume that X is a compact convex set in a locally convex

space E.

3.1 Measure Convex Sets

Proposition 3.1 Every closed convex subset of X is measure convex.

Proof Let F be a closed convex subset of X and µ be a probability measure sup-

ported by F. Supposing that r(µ) /∈ F, the Hahn–Banach separation theorem asserts

the existence of an affine continuous function f on X such that sup f (F) < f (r(µ)).

Obviously, µ( f ) 6= f (r(µ)), a contradiction.

Proposition 3.2 Any open convex subset of X is measure convex.

Proof Let G ⊂ X be an open convex set. According to Theorem 2.2, it is enough to

show that co K ⊂ G whenever K ⊂ G is a compact set. Given a compact set K ⊂ G,

for every x ∈ K there exists a closed convex neighbourhood Vx of x such that Vx ⊂ G.

By compactness of K, the set K can be covered by finitely many compact convex sets

Vx1
, . . . ,Vxn

. By Proposition 2.3(b),

coK ⊂ co(Vx1
∪ · · · ∪Vxn

) = co(Vx1
∪ · · · ∪Vxn

) ⊂ G,

which is the required inclusion.

Lemma 3.3 Let λ be a probability measure on X. If

T := {µ ∈ M
+(X) : µ ≤ λ, µ 6= 0}

and

S :=
{

r
( µ

‖µ‖

)

: µ ∈ T

}

,

then the closure of S equals co sptλ.
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Proof It is easy to see that

S = {r(µ) : µ ∈ M
1(X), there exists c ∈ R so that µ ≤ cλ},

from which it follows that S is convex.

Set L := co sptλ. To show that S ⊂ L, let µ be a nontrivial measure on X with

µ ≤ λ. Then µ is supported by L and thus r
(

µ
‖µ‖

)

∈ L because L is a closed convex

set. Thus S ⊂ L and consequently S ⊂ L.

Conversely, assuming that λ(S) < 1, we can find a compact set K ⊂ X \ S such

that λ(K) > 0. For every x ∈ K we choose its closed convex neighbourhood Vx

not intersecting S. Using a compactness argument we select finitely many points

x1, . . . , xn of K so that Vx1
∪ · · · ∪Vxn

covers K. As λ(K) > 0, there is i ∈ {1, . . . , n}
so that λ(Vxi

) > 0. We set V := Vxi
and µ := λ ↾V . Then µ is nontrivial and µ ≤ λ.

Hence the barycenter of µ
‖µ‖ belongs to S. On the other hand, r

(

µ
‖µ‖

)

∈ V because

V is a closed convex set. This contradiction shows that λ(S) = 1. Thus sptλ ⊂ S

which gives L ⊂ S.

Lemma 3.4 Let F ⊂ X be an ambivalent convex set and let λ ∈ M1(X) be supported

by F. Then there exists a nonempty set G ⊂ F ∩ co sptλ which is open in co sptλ.

Proof Let L := co sptλ. In order to find the required set G we note that L =

F ∩ L because the latter set is a closed convex set containing the support of λ. In

particular, F∩L is a dense ambivalent set in L. Due to the preliminary considerations

in Section 2, F∩L has a nonempty interior (relative to L). Hence, the interior of F∩L

is the sought set G.

Theorem 3.5 Any ambivalent convex subset of X is measure convex.

Proof Let F be an ambivalent convex subset of X and let λ be a probability measure

on X supported by F. We set λ0 := λ and let L0 := co sptλ0. Let S0, T0 and G0 be

sets obtained from Lemmas 3.3 and 3.4 when applied to the measure λ0. Since S0 is

dense in L0 and G0 is nonempty and open in L0, there is a measure µ0 ∈ T0 with

r
( µ0

‖µ0‖

)

∈ G0 ⊂ F.

We set λ1 := λ0 − µ0 and construct by transfinite induction a sequence {λα} of

positive measures on X such that, for every ordinal number α ≥ 1,

(i) λα+1 ≤ λα;

(ii) either λα = 0 or ‖λα+1‖ < ‖λα‖;

(iii) if λα − λα+1 6= 0, then

r
( λα − λα+1

‖λα − λα+1‖

)

∈ F.
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Suppose that the construction has been completed up to an ordinal α. If λα = 0,

we set λα+1 = 0. If λα is nontrivial, we apply Lemmas 3.3 and 3.4 to the measure λα
‖λα‖

(which is carried by F) and get relevant sets Lα,Tα, Sα and Gα with the properties

described there. In particular, we have Gα ⊂ F ∩ L0. As in the first step of the proof,

we choose a nontrivial measure ν ∈ Tα such that

r
( ν

‖ν‖

)

∈ Gα.

By setting λα+1 := λα−ν we finish the inductive step for an isolated ordinal number.

Letα be a limit ordinal number. Assume that λβ has been defined for every β < α.

Since {λβ}β<α is a decreasing sequence of positive measures, by the Riesz represen-

tation theorem, the mapping

λα : g 7−→ inf
β<α

λβ(g), g ∈ C(X), g ≥ 0,

defines the measure λα. This step finishes the inductive construction.

Let γ be the first ordinal number for which λγ = 0. Since {‖λα‖ : α < γ}
is a strictly decreasing transfinite sequence, the ordinal number γ is countable. We

enumerate {λα− λα+1}1≤α<γ into a (possibly finite) sequence {µn}, and obtain that

λ = µ0 +
∑

n≥1 µn and ‖λ‖ = ‖µ0‖ +
∑

n≥1 ‖µn‖. If the sequence {µn} is finite, the

equality

λ = ‖µ0‖ ·
µ0

‖µ0‖
+

∑

n≥1

‖µn‖ ·
µn

‖µn‖

yields that λ is a finite convex combination of probability measures having their

barycenters in F. Thus, in this case, r(λ) ∈ F.

Now, assume that the sequence {µn}is infinite. For every k ∈ N we set

c0 := ‖µ0‖, ck :=
∑

n≥k

‖µn‖

and

ωk :=
c0

c0 + ck

·
µ0

c0

+
ck

c0 + ck

·

∑

n≥k
µn

ck

.

Then {ωk} is a sequence of probability measures tending to µ0

c0

. Moreover, µ0 +
∑

n≥k
µn is obviously an element of T0, and thus the barycenter r(ωk) of ωk is con-

tained in L0. As r(µ0

c0

) ∈ G0, which is a relatively open subset of L0, we can find a

sufficiently large k ∈ N such that r(ωk) ∈ G0 ⊂ F. Then

λ = c0

µ0

c0

+

k−1
∑

n=1

‖µn‖
µn

‖µn‖
+

∑

n≥k

‖µn‖
µn

‖µn‖

=

k−1
∑

n=1

‖µn‖
µn

‖µn‖
+ (c0 + ck) · ωk,

and the last formula shows that λ is a finite convex combination of measures which

have their barycenters in F. Since F is convex, the barycenter of λ belongs to F as well.

https://doi.org/10.4153/CMB-2006-051-1 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2006-051-1


542 P. Dostál, J. Lukeš and J. Spurný

Proposition 3.6 Let X be a compact convex subset of a finite dimensional space. Then

any Borel convex set A ⊂ X is measure convex.

Proof We use again Theorem 2.2. If K ⊂ X is a compact set, then

coK = co K ⊂ A

according to Proposition 2.3(a).

3.2 Measure Extremal Sets

The following simple proposition enables one to derive results on measure extremal

sets using the assertions of the previous section.

Proposition 3.7 Let F be a Borel extremal subset of X. Then F is measure extremal if

and only if X \ F is measure convex.

Proof Assume that F is measure extremal and µ ∈ M1(X) is supported by X \ F.

According to the hypothesis, r(µ) ∈ X \ F which gives that X \ F is measure convex.

Conversely, let X \ F be measure convex. Pick µ ∈ M
1(X) with r(µ) ∈ F. Note

that µ(F) > 0 since otherwise r(µ) would be contained both in F and in X \ F. If

µ(X \ F) > 0, set

µ1 :=
1

µ(F)
µ ↾F and µ2 :=

1

µ(X \ F)
µ ↾X\F .

Then

r(µ2) ∈ X \ F

and

r(µ) = µ(F) · r(µ1) + µ(X \ F) · r(µ2).

This is a contradiction since F is assumed to be extremal. Hence µ(X \ F) = 0 and F

is measure extremal.

Since X \ F is convex if F is extremal, the results from the previous section along

with Proposition 3.7 yield the following two corollaries.

Corollary 3.8 Every closed, open or ambivalent extremal subset of X is measure ex-

tremal.

Corollary 3.9 If A is a Borel extremal subset of a compact convex set in a finite di-

mensional space, then A is measure extremal.

Proposition 3.11 below may be of some interest. It shows that ambivalent faces

are necessarily closed.

Lemma 3.10 Any proper extremal subset of X has an empty interior in X.
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Proof Let F be a proper extremal subset of X. Assume that the interior of F relative

to X contains a point z. Let x be any point of X \F. Thanks to the continuity of vector

operations in E, there is α ∈ (0, 1) so that αx + (1 −α)z lies in the interior of F in X.

Since F is extremal, x ∈ F likewise. Thus F = X which contradicts our assumption

that F is proper.

Proposition 3.11 Any ambivalent face is closed and, consequently, it is measure con-

vex.

Proof Let F be a nonempty ambivalent face such that F \ F 6= ∅. Notice that F

is a nonempty convex compact set. By Lemma 3.10, the interior of F relative to F is

empty. Thus F and F \ F are disjoint dense (alg(F))δ-subsets of a compact space F,

which is impossible since F is a Baire space.

4 Counterexamples

4.1 Measure Convex Sets

Proposition 4.1 Let

F :=

∞
⋃

n=2

{

µ ∈ M
1([0, 1]) : sptµ ⊂

[ 1

n
, 1

]}

.

Then F is an Fσ-face of M
1([0, 1]) which is not measure convex.

Proof Clearly, F is a convex set. As each set

{

µ ∈ M
1([0, 1]) : sptµ ⊂

[ 1

n
, 1

]}

, n ∈ N,

is obviously a closed face and the union of extremal sets is again extremal, F is ex-

tremal and of type Fσ .

Define a measure ω on [0, 1] as

ω :=

∞
∑

n=1

1

2n
ε 1

n

and denote by Ω the image εω of ω (recall that ε is a homeomorphic embedding of

[0, 1] into M1([0, 1])). Then Ω is a probability measure on M1([0, 1]), Ω(F) = 1

and r(Ω) = ω /∈ F. This shows that F is not measure convex.

Proposition 4.2 Let λ be a probability measure on a compact space K and

ψ : µ 7−→ µs(K), µ ∈ M
1(K),

(µs is a singular part of µ with respect to λ). Then ψ is a limit of a decreasing sequence

of lower semicontinuous functions on M1(K).
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Proof For n ∈ N, set

ψn(µ) := sup
{

µ(G) : G ⊂ K open and λ(G) <
1

n

}

, µ ∈ M
1(K).

Obviously, {ψn} is a decreasing sequence of lower semicontinuous functions. Ac-

cording to the portmanteau theorem [2, Theorem 30.10], the function

µ 7−→ µ(G), µ ∈ M
1(K),

is lower semicontinuous on M1(K) for any open set G ⊂ K.

Pick n ∈ N and µ ∈ M
1(K). There exists a Borel set B ⊂ K such that

µs(B) = µs(K) = ψ(µ) and λ(B) = 0.

Let G ⊂ K be an open set containing B for which λ(G) < 1
n

. Then

ψ(µ) = µs(B) ≤ µs(G) ≤ µ(G) ≤ ψn(µ).

Hence, ψ ≤ ψn for any n ∈ N.

It remains to show that limn ψn = ψ. To this end, pick µ ∈ M
1(K) and c > ψ(µ).

Since µac ≪ λ, there exists n ∈ N so that

µac(B) < c − ψ(µ) = c − µs(K)

whenever B is a Borel set, λ(B) < 1
n

. Now, if G ⊂ K is an open set, λ(G) < 1
n

, then

µ(G) = µs(G) + µac(G) ≤ µs(K) + c − µs(K) = c.

Thus, ψn(µ) ≤ c, and therefore ψn → ψ.

Proposition 4.3 If λ denotes the Lebesgue measure on [0, 1] and

G := {µ ∈ M
1([0, 1]) : µ ⊥ λ},

then G is a Gδ-face of M1([0, 1]) which is not measure convex.

Proof It is easy to check that G is convex and extremal.

In the next step we show that G is a Gδ-set. Let {ψn} be a sequence of functions

as in the proof of Proposition 4.2. Since the functions are lower semicontinuous, the

assertion follows from the following equalities

G = {µ ∈ M
1([0, 1]) : µs([0, 1]) = 1} =

∞
⋂

n=1

{µ ∈ M
1([0, 1]) : ψn(µ) = 1}

=

∞
⋂

n=1

∞
⋂

k=1

{

µ ∈ M
1([0, 1]) : ψn(µ) > 1 −

1

k

}

.

To show that G is not measure convex, let Λ := ελ denote the image of the

Lebesgue measure λ. Then Λ is a probability measure on M
1([0, 1]) and r(Λ) =

λ /∈ G. Since

ε([0, 1]) = {εx : x ∈ [0, 1]} ⊂ G,

Λ(G) = 1. Hence, the set G is not measure convex.
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4.2 Measure Extremal Sets

Proposition 4.4 Let K be a compact space. Then the function

ϕ : µ 7−→ µa(K), µ ∈ M
1(K),

is a limit of an increasing sequence of upper semicontinuous functions on M1(K).

Proof First of all, note that

µa(K) =

∑

x∈K

µ({x})

for every µ ∈ M1(K).

Pick b > 0 and define the function

ϕb : µ 7−→ µ
(

{x ∈ K : µ({x}) ≥ b}
)

, µ ∈ M
1(K).

We claim that ϕb is an upper semicontinuous function on M1(K).

Indeed, let c > 0 and

G := {ν ∈ M
1(K) : ϕb(ν) < c}.

We have to show that G is open. To this end, pick µ ∈ G and set

L := {x ∈ K : µ({x}) ≥ b}.

Note that L is a finite set in K. Let U be an open subset of K such that L ⊂ U and

µ(U ) < c. For every x ∈ K \ U there is an open neighbourhood Vx of x such that

µ(V x) < b. By compactness there must exist finitely many points x1, . . . , xn in K \U

so that

K \U ⊂ Vx1
∪ · · · ∪Vxn

.

Since the function ν 7−→ ν(H), ν ∈ M
1(K), is upper semicontinuous on M

1(K) for

every closed set H ⊂ K due to the portmanteau theorem [2, Theorem 30.10], the set

W := {ν ∈ M
1(K) : ν(U ) < c, ν(V xi

) < b, i = 1 · · · n}

is open and contains µ. It remains to prove that W ⊂ G.

To verify this, pick ν ∈ W and set Lν := {x ∈ K : ν({x}) ≥ b}. Since Lν ⊂ U ,

ϕb(ν) = ν(Lν) ≤ ν(U ) ≤ ν(U ) < c.

Since the functions ϕ 1

n

, n ∈ N, form an increasing sequence converging to ϕ, the

proof is finished.
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Proposition 4.5 Let K be a compact space which admits a continuous probability

measure. Then the set

G := {µ : µ ∈ M
1(K), µ = µc}

is a Gδ-face of M1(K) which is not measure extremal.

Proof Let ϕ : µ 7−→ µa(K), µ ∈ M
1(K). According to the proof of Proposition 4.4,

the functions

ϕn : µ 7−→ µ
({

x ∈ K : µ
(

{x}
)

≥
1

n

})

, µ ∈ M
1(K),

form a sequence of positive upper semicontinuous functions such that ϕn ր ϕ on

M1(K). Since

G = {µ ∈ M
1(K) : ϕ(µ) = 0} =

∞
⋂

n=1

∞
⋂

k=1

{

µ ∈ M
1(K) : ϕn(µ) <

1

k

}

,

G is a Gδ-set which is obviously a face.

Let ω be a continuous probability measure on K and Ω := εω. Then r(Ω) = ω ∈
G whereas Ω(G) = 0 since Ω is supported by ε(K). Thus G is not measure extremal.

Remark 4.6 We recall a well-known fact that a metrizable compact space K admits a

continuous measure if and only if K contains a nonempty perfect subset, i.e., a closed set

without isolated points, and this is the case if and only if K is uncountable.

Proposition 4.7 Let F be the face of M1([0, 1]) generated by the Lebesgue measure λ.

Then F is an Fσ-face which is not measure extremal.

Proof As was mentioned in Section 2, F is an Fσ-set. Assume that µ ∈ F∩ε([0, 1]).

Hence, µ = εx for some x ∈ [0, 1] and by the definition of F, there exist ν ∈
M1([0, 1]) and α ∈ [0, 1) so that

λ = αν + (1 − α)εx.

Then

0 = λ({x}) = αν({x}) + (1 − α),

which implies that α = 1, a contradiction. Therefore, F ∩ ε([0, 1]) = ∅. We see that

Λ(F) = 0 whereas r(Λ) = λ ∈ F. Thus the face F is not measure extremal.
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4.3 Combined Examples

Theorem 4.8 There exists a Gδ-face in M1([0, 1]) which is neither measure convex

nor measure extremal.

Proof We combine examples of Propositions 4.3 and 4.5. Let λ denote again the

Lebesgue measure on [0, 1] and C the Cantor ternary set. Set G := G1 ∩ G2 where

G1 := {µ ∈ M
1([0, 1]) : µ ⊥ λ}

and

G2 := {µ ∈ M
1([0, 1]) : µ ↾C is continuous }.

It follows from Proposition 4.3 and the proof of Proposition 4.4 that both sets G1 and

G2 are Gδ-faces in M
1([0, 1]). Thus G is a Gδ-face as well.

Let Λ denote the image ελ. Then r(Λ) = λ by Proposition 2.1 and the barycenter

r(Λ) is not in G although

Λ(G) = λ(ε−1(G)) = λ([0, 1] \C) = 1.

Thus G is not measure convex.

Let Ω := εν, where ν is a continuous probability measure supported by C . Then

Ω is supported by ε(C), and consequently Ω(G) = 0. On the other hand, r(Ω) =

ν ∈ G, and thus G is not measure extremal.

Theorem 4.9 There exists an Fσ-face F in M
1([0, 1]) which is neither measure convex

nor measure extremal.

Proof We combine examples of Propositions 4.1 and 4.7. Set F := F1 ∩ F2 where

F1 := face(λ) and

F2 :=

∞
⋃

n=2

{

µ ∈ M
1([0, 1]) : sptµ ⊂

[ 1

n
, 1

]}

(here λ is again the Lebesgue measure on [0, 1] and face(λ) denotes the face generated

by λ). According to the aforementioned examples, F is an Fσ-face in M1([0, 1]). Let

ω := 2λ ↾[ 1

2
,1] and Ω := εω.

Then spt Ω = ε([ 1
2
, 1]), thus spt Ω ∩ F = ∅. Hence Ω(F) = 0, but r(Ω) = ω is

contained in F which implies that F is not measure extremal.

To show that F is not measure convex, set for n ∈ N

λn :=
n

n − 1
λ ↾[ 1

n
,1], and Ω :=

∞
∑

n=1

1

2n
ελn
.

Since λn ∈ F for every n ∈ N, Ω(F) = 1. On the other hand,

r(Ω) =

∞
∑

n=1

1

2n
λn

is not contained in F. Thus F is not measure convex and the proof is finished.
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186 75 Praha 8

Czech Republic

e-mail: dostal@karlin.mff.cuni.cz

lukes@karlin.mff.cuni.cz

spurny@karlin.mff.cuni.cz

https://doi.org/10.4153/CMB-2006-051-1 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2006-051-1

