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LURIA–DELBRÜCK DISTRIBUTION
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Abstract

We provide a scaling for compound Poisson distributions that leads (under certain
conditions on the Fourier transform) to a weak convergence result as the parameter of the
distribution tends to infinity. We show that the limiting probability measure belongs to
the class of stable Cauchy laws with Fourier transform t �→ exp(−c|t | − iat log |t |). We
apply this convergence result to the standard discrete Luria–Delbrück distribution and
derive an integral representation for the corresponding limiting density, as an alternative
to that found in a closely related paper of Kepler and Oprea. Moreover, we verify local
convergence and we derive an integral representation for the distribution function of the
limiting continuous Luria–Delbrück distribution.
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1. Introduction

One way to define the standard Luria–Delbrück (LD) distribution with parameter m > 0 is
via its generating function

∞∑
n=0

pns
n := (1 − s)m(1−s)/s . (1.1)

The probabilities pn = pn(m) depend on m. Models in population biology that lead to the
standard LD distribution are described in [6] and [9], for example. The name of this distribution
goes back to the original work of Salvadore Luria and Max Delbrück [11]. The LD distribution
is of interest in biological applications, as it provides a basis for procedures that estimate
mutation rates [1], [2]. Unfortunately, the probabilities pn, n ∈ N0 := {0, 1, 2, . . . }, of the
LD distribution are not simple to compute, in particular for large parameter m. Ma et al. [12]
found the recursion

p0 := e−m, pn = m

n

n∑
i=1

pn−i
i + 1

for n ∈ N := {1, 2, . . . }.

Based on this recursion, properties of the LD distribution can be derived. For example, it
was shown that, for fixed parameter m, the asymptotics limn→∞ n(n + 1)pn(m) = m holds.
For more details of the tail behavior we refer the reader to [6] and [14].
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Convergence results for compound Poisson distributions 621

In contrast to the situation in which m is fixed and n is large, we are interested in the
asymptotic behavior of the LD distribution for large parameter m. An important question is
whether the LD distribution, properly scaled, converges to some limiting distribution as the
parameter m tends to infinity. The papers of Pakes [13] and Angerer [2] show that such a
scaling exists. For another paper on matters closely related to this question, see [7].

As the LD distribution is a special compound Poisson distribution, it is natural to ask
whether such scalings and convergence results can be extended to more general classes of
compound Poisson distribution. In Section 2, such convergence results are presented. The main
convergence theorem (Theorem 2.2) provides the appropriate scaling and characterizes the
limiting distribution via its Fourier transform. In Sections 3 and 4, these convergence results
are applied to the LD distribution and further properties of the LD distribution are derived.
The paper concludes with a discussion in Section 5.

2. Convergence of compound Poisson distributions

Compound-Poisson-distributed random variables are (by definition) of the form

Ym :=
K∑
k=1

Xk, (2.1)

where (Xk)k∈N is a sequence of independent, identically distributed random variables andK is
a Poisson random variable, with parameter m > 0, independent of the sequence (Xk)k∈N. The
Fourier transform ϕm : R → C of Ym is

ϕm(t) := E(eitYm) = exp(m(ϕ(t)− 1)),

where ϕ denotes the Fourier transform of X := X1. Compound Poisson distributions appear
in many fields, for example those of compound Poisson approximations and large deviation
principles, and have been the subject of intense research. In this paper, we are simply interested
in the behavior of Ym for large parameterm. The following convergence theorem (Theorem 2.1)
is the analog of the classical law of large numbers and the classical central limit theorem.
It states, in particular, that Ym is asymptotically normal provided that X has a finite and
nonvanishing second moment. Although the result is well known from the literature, we present
a simple proof based on Fourier analysis, as this technique will be used again later in the paper.

Theorem 2.1. (a) If E(|X|) < ∞ then Ym/m converges in probability to E(X).

(b) If 0 < E(X2) < ∞ then Ym is asymptotically normal, i.e.

Ym −mE(X)√
mE(X2)

converges in distribution to the standard normal distribution.

Remark 2.1. Owing to the fact that Ym is a random sum of independent, identically distributed
variables, the scaling variance var(Ym) = mE(X2) in part (b) of the theorem is larger than
the value m var(X), which one would expect from the classical central limit theorem for a
deterministic sum of independent, identically distributed variables.
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622 M. MÖHLE

Proof of Theorem 2.1. (a) Fix t ∈ R and consider the Fourier transform of Ym/m.
Obviously, E(eitYm/m) = em(ϕ(x)−1), with x = x(m) := t/m. From ẋ := dx/dm = −t/m2

and l’Hôpital’s rule, we conclude that

m(ϕ(x)− 1) = ϕ(x)− 1

1/m
∼ − ẋϕ

′(x)
1/m2 = tϕ′(x) ∼ tϕ′(0) = it E(X),

where ϕ′(x) = dϕ(x)/dx. Thus, E(eitYm/m) converges to eit E(X) asm tends to infinity, for each
t ∈ R. This pointwise convergence of the Fourier transforms is equivalent to the convergence
of Ym/m, in distribution, to E(X). As the limiting random variable is constant, this is equivalent
to the convergence in probability.

(b) Fix t ∈ R and define µm := mE(X) and σ 2
m := mE(X2) for convenience. Obviously,

E(eit (Ym−µm)/σm) = exp

(
−µm
σm

it +m

(
ϕ

(
t

σm

)
− 1

))
.

The Taylor expansion of ϕ, together with ϕ′(0) = i E(X) and ϕ′′(0) = −E(X2), yields

− µm

σm
it +m

(
ϕ

(
t

σm

)
− 1

)

= −µm
σm

it +m

(
ϕ′(0) t

σm
+ ϕ′′(0)

2

t2

σ 2
m

+ o(σ−2
m )

)

= it
mE(X)− µm

σm
− t2

2

mE(X2)

σ 2
m

+ o(1)

= − 1
2 t

2 + o(1).

Thus, E(eit (Ym−µm)/σm) converges to e−t2/2 as m tends to infinity. This pointwise convergence
of the Fourier transforms implies the convergence in distribution.

If the first moment of X does not exist, then the behavior of Ym for large m can be quite
different. For example, if X has Fourier transform ϕ(t) = e−c|t | (the Cauchy distribution with
parameter c > 0), then limm→∞m(ϕ(t/m) − 1) = −c|t | for all t ∈ R, i.e. Ym/m converges
in distribution to a Cauchy distribution with the same parameter c. In particular, in this case
Ym/m no longer converges to a constant. There even exist examples in which Ym/m no longer
converges at all. The following lemma illustrates this.

Lemma 2.1. If the Fourier transform ϕ of X satisfies limt→0 |ϕ′(t)| = ∞, and if there exists
some constant a ∈ R such that

lim
t→0

tϕ′′(t) = −ia, (2.2)

then the scaled random variable Ym/(m logm) converges in probability to a as m tends to
infinity, i.e. limm→∞ P(|Ym/(m logm)− a| ≥ ε) = 0 for all ε > 0.

Proof. It is sufficient to verify the pointwise convergence of the corresponding Fourier
transforms. Thus, for t ∈ R, consider

E(eitYm/(m logm)) = exp(m(ϕ(x)− 1)),
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with x ≡ x(m) := t/(m logm). Note that m tends to infinity if and only if x tends to 0.
Moreover,

ẋ := dx

dm
= − t (1 + logm)

(m logm)2
∼ − t

m2 logm
= − x

m
.

L’Hôpital’s rule implies that

m(ϕ(x)− 1) = −1 − ϕ(x)

1/m
∼ −ẋϕ′(x)

1/m2 = −m2ẋϕ′(x) ∼ tϕ′(x)
logm

.

Applying l’Hôpital’s rule once more yields

m(ϕ(x)− 1) ∼ t ẋϕ′′(x)
1/m

∼ −txϕ′′(x) ∼ ita,

where, in the last step, condition (2.2) has been used.

If the conditions of Lemma 2.1 are satisfied, then l’Hôpital’s rule implies that

lim
t→0

ϕ′(t)
log |t | = lim

t→0
tϕ′′(t) = −ia.

Therefore, for t close to 0, ϕ′(t) behaves asymptotically like −ia log |t |. Under a stronger
condition, namely that the function ϕ′(t) + ia log |t | has certain limits from the left and from
the right, the following stronger convergence result holds. Let B denote the Borel σ -field on R.

Theorem 2.2. If there exist constants a ∈ R and c > 0 such that

lim
t↘0

(ϕ′(t)+ ia log |t |) = −ia − c

and
lim
t↗0

(ϕ′(t)+ ia log |t |) = −ia + c,

then, as m tends to infinity, the normalized random variable

Zm := Ym − am logm

m
= Ym

m
− a logm

converges in distribution to a stable limiting probability measure Q on (R,B) uniquely deter-
mined via its Fourier transform,

ϕQ(t) :=
∫

R

eitx Q(dx) = exp(−c|t | − iat log |t |), t ∈ R.

Remark 2.2. The probability measure Q thus belongs to the well-known class of stable
Cauchy laws with parameters c > 0 and β ∈ [−1, 1] (and exponent α = 1) having Fourier
transform

ϕ(t) = exp(−c|t |(1 + iβ(2/π) sgn(t) log |t |)).
Define µm := am logm and σm := m for convenience. Theorem 2.2 ensures that

lim
m→∞ sup

x∈R

| P(Ym ≤ σmx + µm)− F(x)| = 0,
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where F denotes the distribution function of Q. Thus, uniformly in k, the approximation
P(Ym ≤ k) ≈ F(k/m − logm) holds for large m. The probability measure Q is hence very
useful in approximating the distribution of Ym.

Obviously, under the conditions of Theorem 2.2, the first moment of Ym does not exist.
Hence, the normalizing sequences µm = am logm and σm = m differ quite dramatically from
the ‘usual’ sequences (µm = mE(X) and σm = [mE(X2)]1/2) known from Theorem 2.1(b).
From

Ym

m logm
= 1

logm

Ym − am logm

m
+ a,

we conclude, by an application of Slutsky’s theorem, that the convergence in Theorem 2.2 is
stronger than the convergence Ym/(m logm) → a in probability (see Lemma 2.1).

Proof of Theorem 2.2. Fix t ∈ R and define x := t/m for convenience. Note that

ẋ := dx

dm
= − t

m2 = − x

m
.

The Fourier transform of Zm is

E(eitZm) = exp(−ita logm+m(ϕ(t/m)− 1)).

Thus, we must verify that

lim
m→∞(−ita logm+m(ϕ(t/m)− 1)) = −c|t | − ita log |t |.

Multiplying by 1/t shows that this equation is equivalent to

lim
m→∞

ϕ(x)− 1 − iax logm

x
= −c sgn(t)− ia log |t |.

L’Hôpital’s rule implies that

ϕ(x)− 1 − iax logm

x
∼ ẋϕ′(x)− ia(ẋ logm+ x/m)

ẋ

= ϕ′(x)− ia logm+ ia

= ϕ′(x)+ ia log |x| − ia log |t | + ia

∼ −c sgn(t)− ia log |t |,
by assumption. Thus, as m tends to infinity, the Fourier transform of Zm converges pointwise
to the continuous function t �→ exp(−c|t | − iat log |t |). The continuity theorem for Fourier
transforms ensures that this function is a Fourier transform of a certain probability measure
Q on (R,B), and that Zm converges in distribution to Q. Standard results for characteristic
functions (for example [10, Theorem 5.7.3]) ensure that Q is a stable distribution with exponent
α = 1.

The most simple example is probably the Cauchy distribution (ϕ(t) = e−c|t |). In this case,
the conditions of Theorem 2.2 are obviously satisfied with a = 0, and the limiting distribution
Q coincides with the distribution of X (ϕQ(t) = e−c|t |).

In the following sections, we focus on a special random variable X that satisfies
condition (2.2) of Lemma 2.1 and the conditions of Theorem 2.2 with a = 1 and c = 1

2π .
The corresponding compound Poisson distribution is the LD distribution.
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3. The Luria–Delbrück distribution

The LD distribution with parameterm > 0 is the distribution of a special compound-Poisson-
distributed random variable Ym of the form (2.1), where the random variable X := X1 takes
the integer value k ∈ N with probability

αk := P(X = k) = 1

k(k + 1)
= 1

k
− 1

k + 1
. (3.1)

In order to see this, note that X has the generating function

h(s) :=
∞∑
k=1

αks
k =

∞∑
k=1

sk

k(k + 1)
= 1 + (1 − s) log(1 − s)

s
.

From E(sYm) = exp(m(h(s)− 1)), it follows that Ym has the generating function (1.1).
The compound Poisson structure of the LD distribution has consequences helpful in applica-

tions. For example, it leads to efficient pseudorandom number generators. Let U be uniformly
distributed on the open unit interval (0, 1). Define X := �1/U�, where �x� denotes the largest
integer less than or equal to x. ThenX has distribution (3.1) and, hence, the following algorithm
is applicable. Sample a pseudorandom number n ∈ N0 from the Poisson distribution with
parameter m, and then independently sample n pseudorandom numbers u1, . . . , un from the
uniform distribution on the open unit interval. Then �1/u1�+ · · ·+ �1/un� is a pseudorandom
number sampled from the LD distribution with parameter m.

For our purposes, it is necessary to study the Fourier transform ϕ of X. Obviously,

ϕ(t) := E(eitX) =
∞∑
k=1

αke
itk

=
∞∑
k=1

eitk

k(k + 1)
=

∞∑
k=1

cos(tk)

k(k + 1)
+ i

∞∑
k=1

sin(tk)

k(k + 1)
, t ∈ R.

Using the principal branch of the complex logarithm log z := log(|z|)+ i arg z, where the log
on the right-hand side of the equation denotes the usual real logarithm and −π < arg z < π , it
follows that

ϕ(t) = 1 + (1 − eit ) log(1 − eit )

eit

for all t ∈ R, with the convention 0 log 0 := 0 for t = 0. After some algebraic manipulation,
the derivatives turn out to be

ϕ′(t) = −i

(
1 + log(1 − eit )

eit

)
(3.2)

and

ϕ′′(t) = − 1

1 − eit − log(1 − eit )

eit = −eit /(1 − eit )+ log(1 − eit )

eit ,

where t ∈ R \ {0}. Obviously, ϕ′ and ϕ′′ have singularities at t = 0. L’Hôpital’s rule implies
that

lim
t→0

teit

1 − eit = i and lim
t→0

t log(1 − eit ) = 0.

Thus, the second derivative of the Fourier transform ofX satisfies the condition limt→0 tϕ
′′(t) =

−i and, hence, Lemma 2.1 is applicable with a = 1. Therefore, Ym/(m logm) converges in
probability to 1.
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4. Convergence to the continuous Luria–Delbrück distribution

An elementary calculation based on (3.2) shows that the conditions of Theorem 2.2 are
satisfied with a = 1 and c = 1

2π . The following result is hence a special case of Theorem 2.2.
It can also be found in [2, Equation (15)] and goes back to [13, p. 993].

Theorem 4.1. (Asymptotics of the LD distribution.) As m tends to infinity, the normalized
random variable

Ym −m logm

m
= Ym

m
− logm

converges in distribution to a stable limiting probability measure Q on (R,B) uniquely deter-
mined via its Fourier transform,

ϕQ(t) :=
∫

R

eitx Q(dx) = (−it)−it = exp(− 1
2π |t | − it log |t |), t ∈ R. (4.1)

Remark 4.1. The integral calculations of [10, pp. 135–136] show that the Khinchin represen-
tation of ϕQ has the form

logϕQ(t) = iβt +
∫
(0,∞)

(
eitu − 1 − itu

1 + u2

)
1 + u2

u2 ν(du),

where ν is Cauchy distributed with density u �→ 1/(1 + u2) and

β :=
∫
(0,∞)

(
1

u(1 + u2)
− sin u

u2

)
du.

Note that β = C − 1, where C ≈ 0.577 22 denotes the Euler constant (see [5, p. 441,
Equations 3.783.2 and 3.784.4]). Therefore, the Lévy representation of ϕQ is

logϕQ(t) =
∫
(0,∞)

eitu − 1 − t sin u

u2 λ(du),

i.e. the canonical measure is the Lebesgue measure λ restricted to (0,∞). It is shown in the
following corollary that Q has a density with respect to the Lebesgue measure. Therefore, it is
natural to call Q the standard continuous Luria–Delbrück distribution. For completeness, we
now present an independent proof of Theorem 4.1 that does not use the derivatives of ϕ.

Proof of Theorem 4.1. Fix t ∈ R and define z := eit/m for convenience. The Fourier
transform of Ym/m− logm is

E(eit (Ym/m−logm)) = exp(−it logm+m(ϕ(t/m)− 1))

= exp

(
−it logm+m

1 − z

z
log(1 − z)

)
.

Note that z = 1 +O(1/m) and m(1 − z) = −it +O(1/m). Thus,

−it logm+m
1 − z

z
log(1 − z) ∼ −it logm− it log(1 − z)

→ −it log(−it).
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Obviously, arg(−it) = − 1
2π sgn t and, hence,

−it log(−it) = −it (log |t | + i arg(−it)) = −it log |t | − 1
2π |t |.

Now proceed as in the proof of Theorem 2.2.

Remark 4.2. (Laplace transform of the standard continuous LD distribution.) An argument
similar to that in the previous proof shows that the continuous LD distribution Q has the Laplace
transform

ψQ(λ) :=
∫

R

e−λx Q(dx) = eλ log λ = λλ, λ ≥ 0,

in agreement with the formal substitution of −it for λ in the Fourier transform (4.1).

Corollary 4.1. (Density of the standard continuous LD distribution.) The continuous LD
distribution is absolutely continuous with density

f (x) = 1

π

∫ ∞

0
e−(π/2)t cos(xt + t log t) dt (4.2)

= 1

π

∫ ∞

0
e−xt−t log t sin(πt) dt, x ∈ R. (4.3)

In particular, supx∈R f (x) ≤ 2/π2 ≈ 0.2026. Moreover, limx→∞ x2f (x) = 1.

Proof. Obviously, |ϕQ(t)| = exp(− 1
2π |t |) and, hence,

∫
R

|ϕQ(t)|λ(dt) = 4/π < ∞.
Therefore, the Fourier inversion theorem ensures that

f (x) = 1

2π

∫
R

e−ixtϕQ(t)λ(dt), x ∈ R,

is a density of Q. Substituting the expression for ϕQ, splitting the integral into the two integrals
over the negative and positive parts of the real axis, and substituting −t for t in the second
integral yields

f (x) = 1

2π

∫ ∞

0
e−ixte−(π/2)te−it log t dt + 1

2π

∫ ∞

0
eixte−(π/2)teit log t dt

= 1

π

∫ ∞

0
e−(π/2)t cos(xt + t log t) dt.

In particular, f (x) ≤ π−1
∫ ∞

0 e−(π/2)t dt = 2/π2 for all x ∈ R. The second integral
representation for f follows from standard theory of characteristic functions, for example
from Equation (5.8.15) of [10] with β = 1 and c = 1

2π .
To prove that limx→∞ x2f (x) = 1, we use classical asymptotics for integrals. One

formulation is in [4, Theorem 4.1.6]. Consider the kernel k : (0,∞) → R, k(t) := te−t ,
and its Mellin transform

ǩ(z) :=
∫
(0,∞)

t−zk(t)dt

t
=

∫
(0,∞)

t−ze−t dt = 
(1 − z),

which converges for at least all z ∈ C with −∞ < Re z < 1. Furthermore, define the help
function h : (0,∞) → R via

h(t) := 1

π
exp

(
log t

t

)
sin

(
π

t

)
,
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628 M. MÖHLE

such that the Mellin convolution, k ∗M h, of k and h satisfies

(k ∗M h)(x) :=
∫
(0,∞)

k

(
x

u

)
h(u)

du

u

=
∫
(0,∞)

k(xt)h

(
1

t

)
dt

t
= xf (x) for x > 0.

Obviously, t2h(t) is bounded on every interval (0, a] and h(t) ∼ 1/t as t → ∞. Thus, we
can apply Theorem 4.1.6 of [4] (with σ = −2, τ = 0, ρ = −1, l = 1, c = 1, and f = h) to
conclude that

xf (x) = (k ∗M h)(x) ∼ ǩ(−1)

x
= 
(2)

x
= 1

x
as x → ∞.

Corollary 4.2. (Local asymptotics of the LD distribution.) The discrete LD distribution con-
verges locally to the continuous LD distribution, i.e.

lim
m→∞ sup

k∈Z

∣∣∣∣mP(Ym = k)− f

(
k

m
− logm

)∣∣∣∣ = 0.

Proof. In order to apply Gnedenko’s local limit theorem (see, for instance, [4, Theorem
8.4.1]), we have to define the random variables Ym on a common probability space. Let (Xk)k∈N

be a sequence of independent, identically distributed random variables with distribution (3.1)
and let (K(t))t≥0 be a homogeneous Poisson process with unit rate, starting in K(0) = 0, that
is independent of the sequence (Xk)k∈N. Then, for m ∈ N,

Ym :=
K(m)∑
k=1

Xk

is LD distributed with parameter m. Moreover, we can write Ym = Z1 + · · · + Zm in terms of
the independent, identically distributed random variables

Zi :=
K(i)∑

k=K(i−1)+1

Xk,

i.e. (Ym)m∈N is a random walk on the lattice Z generated by Z1 = Y1. Theorem 4.1 proves that
the distribution function of Y1 is in the domain of attraction of the stable law Q. The distribution
of Y1 is not concentrated on some sublattice of the nonnegative integers, i.e. the maximal span
is 1. Therefore, the conditions of Gnedenko’s theorem are satisfied.

Remark 4.3. Theorem 4.1 also ensures that we are able to apply Corollary 8.4.3 of [4].
Therefore, in addition to the above local limit result, we have

lim
m→∞

∑
k∈Z

∣∣∣∣P(Ym = k)− 1

m
f

(
k

m
− logm

)∣∣∣∣ = 0.

In Corollary 4.1, we have found integral representations for the density f . Computing the
corresponding distribution function F would hence require us to integrate twice. The following
proposition presents a more useful representation forF , avoiding double integration. For further
useful integral representations we refer the reader to [15, p. 78, Remark 1].
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Proposition 4.1. (Distribution function of the continuous LD distribution.) The distribution
function F of the continuous LD distribution satisfies

F(a) = 1

2
+ 1

π

∫ ∞

0

e−(π/2)t

t
sin(at + t log t) dt, a ∈ R.

Moreover, limx→∞ x(1 − F(x)) = 1.

Proof. Let a, b ∈ R with a ≤ b. Integrating (4.2) from a to b and interchanging the integrals
(using Fubini’s theorem) leads to

F(b)− F(a) = 1

π

∫ ∞

0
e−(π/2)t

∫ b

a

cos(xt + t log t) dx dt

= 1

π

∫ ∞

0

e−(π/2)t

t
sin(bt + t log t) dt − 1

π

∫ ∞

0

e−(π/2)t

t
sin(at + t log t) dt.

Thus, as limb→∞ F(b) = 1, the proposition is established if we can verify that

lim
b→∞

∫ ∞

0

e−(π/2)t

t
sin(bt + t log t) dt = π

2
.

As sin(x + y) = sin x cos y + cos x sin y, it suffices to prove that

lim
b→∞

∫ ∞

0

e−(π/2)t

t
sin(bt) cos(t log t) dt = π

2
(4.4)

and that

lim
b→∞

∫ ∞

0

e−(π/2)t

t
cos(bt) sin(t log t) dt = 0. (4.5)

The integral on the left-hand side of (4.4) is the Mellin convolution

(k ∗M h)(b) :=
∫
(0,∞)

k(bt)h

(
1

t

)
dt

t

of the kernel k(t) := sin(t) and the function

h(t) := exp

(
− π

2t

)
cos

(
log(1/t)

t

)
, t > 0.

Obviously, |h(t)| ≤ 1 and limt→∞ h(t) → 1. It is well known (see, for instance, [4, p. 206,
Equation (4.3.1a)]) that the Mellin transform

ǩ(z) :=
∫
(0,∞)

t−zk(t)dt

t
=

∫
(0,∞)

t−z−1 sin(t) dt

of k converges for at least all z ∈ C with |Re (z)| < 1. Thus, we can apply Theorem 4.1.6 of [4]
(with σ = − 1

2 , τ = 1
2 , ρ = 0, l = 1, c = 1, and f = h) to conclude that (k ∗M h)(b) converges

to ǩ(0) = ∫
(0,∞)

t−1 sin(t) dt = 1
2π as b tends to infinity. Thus, we have verified (4.4).

To prove (4.5), consider the kernel k(t) := cos(t). Its Mellin transform,

ǩ(z) =
∫
(0,∞)

t−z−1 cos(t) dt,
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converges at least in the strip −1 < Re(z) < 0. Thus, Theorem 4.1.6 of [4], applied to the
function

h(t) := exp

(
− π

2t

)
sin

(
log(1/t)

t

)
, t > 0

(with σ = − 3
4 , τ = − 1

4 , ρ = − 1
2 , l(x) = log(x), and c = 1), yields

(k ∗M h)(b) ∼ ǩ(− 1
2 )b

−1/2 log(b) → 0 as b → ∞,

and (4.5) follows.
L’Hôpital’s rule implies that

lim
x→∞ x(1 − F(x)) = lim

x→∞ x
2f (x) = 1,

by Corollary 4.1.

Definition 4.1. Let a ∈ R and b > 0 and let F denote the distribution function of the standard
continuous LD distribution. The probability measure that corresponds to the linear transformed
distribution function Fa,b(x) := F((x − a)/b) is called the continuous LD distribution with
parameters a and b. We denote this probability measure by Qa,b.

Remark 4.4. From Theorem 4.1, it follows that the probability measure Qa,b has the Fourier
transform

ϕa,b(t) = eitaϕ0,1(bt) = exp(ita − 1
2πb|t | − ibt log(b|t |)).

As the standard continuous LD distribution is stable, it follows that, for all parameters a1, a2 ∈ R

and b1, b2 > 0, there exist two other parameters a ∈ R and b > 0 such that the convolution
property

Qa1,b1 
Qa2,b2 = Qa,b (4.6)

holds. The following corollary determines a and b explicitly.

Corollary 4.3. Let a1, a2 ∈ R and b1, b2 > 0. The continuous LD distribution satisfies the
convolution property (4.6) with b = b1 + b2 and

a = a1 + a2 + b log b − b1 log b1 − b2 log b2.

Proof. This follows from the equivalent equation ϕa1,b1(t)ϕa2,b2(t) = ϕa,b(t), t ∈ R, for
the corresponding Fourier transforms, which can be verified easily.

5. Final remarks and discussion

The density f of the continuous LD distribution is well known from the literature. Kepler
and Oprea [7, Equation (32)] discovered f using a different approach, starting with a class
of discrete LD distributions with characteristic functions originally derived by Bartlett [3].
Both integral representations for f ((4.2) and (4.3)) can be integrated numerically. We prefer
to use (4.2), as the integrand e−(π/2)t cos(xt + t log t) is bounded by the decreasing function
t �→ e−(π/2)t no matter how x is chosen. Applying [10, Equation (5.8.16)] shows that f has
the Taylor expansion f (x) = (1/π)

∑∞
k=0 akx

k , x ∈ R, with coefficients

ak := (−1)k

k!
∫ ∞

0
tk sin(πt)e−t log t dt.
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The new results of the present paper are the convergence results for compound Poisson distri-
butions presented in Section 2. Theorem 2.2, in particular, presents the normalizing sequences
µm = am logm and σm = m. We have applied these results to the discrete LD distribution
(Theorem 4.1), which leads to integral representations for the density and the distribution
function of the continuous LD distribution. Moreover, local convergence holds (Corollary 4.2).

The convergence results also differ from the limiting results of Angerer [1]. He considered
versions of the standard LD distribution having finite moments, which are more appropriate for
biological applications but which lead to discrete limiting distributions.

The density f , together with Theorem 4.1, is quite useful in deriving approximative results
for the discrete LD distribution with parameter m. For example, the median and the mode
are approximately given by [m(logm+ xmedian)] and [m(logm+ xmode)], respectively, where
xmedian and xmode denote the median and the mode of f . Note that the mode of f is uniquely
determined, as all stable distributions are unimodal (by Theorem 5.10.1 of [10], due to Ibragimov
and Czernin). Numerical analysis shows that xmedian ≈ 1.35 and xmode ≈ −0.23. These values
reflect the skewness of the continuous LD distribution.

Theorem 4.1 and Corollary 4.2 might also be helpful in estimating the parameter m of the
discrete LD distribution and in providing approximative confidence intervals for m, but we do
not want to go into detail here. In this context, we also refer the reader to [7] and [8].
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