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A COMPLETE CONVERGENCE THEOREM
FOR ATTRACTIVE REVERSIBLE
NEAREST PARTICLE SYSTEMS

T. S. MOUNTFORD

ABsTRACT.  In this paper we prove a complete convergence theorem for attractive,
reversible, super-critical nearest particle systems satisfying a natural regularity condi-
tion. In particular this implies that under these conditions there exist precisely two ex-
tremal invariant measures. The result we prove is relevant to question seven of Liggett
(1985), Chapter V1.

Introduction. In this paper we study aclass of Nearest Particle Systems (NPS) on
the state space {0, 1}4. As apreludeto providing our main result, we introduce prelimi-
nary definitions and the necessary results of earlier work.

A pointy € {0,1} is caled a configuration and may be viewed as a function from
Z 10 {0,1}. We say asite x is occupied if Y(x) equals 1; otherwise we say it is vacant.
A configuration ¥ may also be identified with the Z-subset of occupied sites. In this
paper, we will use both interpretations of v. We say v isfiniteif it hasonly finitely many
occupied sites; otherwise it will be termed infinite.

A NPSisaspinsystem {v : t > 0} on {0, 1}* with flip rates of the following form:

1 if () = 1;
o) = {mx, 6y 109 =0,

wherely = x—sup{y < x:7¥(y) = 1} andry = inf{y > x: Y(y) = 1} — x. Itiseasy to
seethat if Z(ﬂ(n, 00) + (00, n)) < 00, then as. v; will be afinite configuration for all t
whenever “?o isfinite. Equally, if 7o isinfinite then so must v; be for all later t. Thus we
may speak of finite and of infinite processes.

A finite processcan be thought of asacontinuoustime Markov chain on the countable
state space of finite subsets of Z. For such a chain, the state 0 (which can be thought of
asthe empty subset) isatrap. We say afinite NPS survivesif there is some (finite) initial
configuration vo so that this trap stateis not hit a.s.. Most usual systems considered (in-
cluding all those treated by this paper) havefinite systemswhich areirreducible Markov
chains. Therefore, for this paper afinite NPSwill surviveif

P'[r < oo] <1,
wherey isa(any) configuration with only one occupied site and 7 isthe hitting time of 0.
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An infinite process is said to survive if there exists a nontrivial invariant measure.
That is, there exists a probability measure v on {0, 1} so that for al continuous f and
all positivet, Jf(w)v(dw) = S Py f(w)v(dw), where P isthe semigroup for the process.

Wewritey > 7y’ for two configurationsif v(x) > 7/(x) for each x. We also expressthis
relation by 7' C 7. A function f: {0, 1}* — Risincreasingif 71 > 72 = f(y1) > f(7?).
If exactly one of theinequalitiesis reversed, then f is decreasing. Given two probability
measures v1,v, on {0, 1}4 we write v > v, if [f(w)vi(dw) > Jf(w)rz(dw) for every
increasing function f. Henceforth we will write ff(w)u(dw) as (u, ) for any function f
and measure p.

A processon {0, 1}4 is said to be attractive if the function c(x, ) isincreasing when
restricted to configurationsy with ¥(x) = 0 and decreasing when restricted to v with
Y(xX) = 1, foreachxin Z

A useful consequence of attractiveness is that if 7o > 75, then we can couple the
processes Y and 7}, so that for all t, v¢ > {. Thusif f is an increasing function, then
P{(f) is also an increasing function of . Another consequence of attractivenessis that
there exists a (unique) upper invariant measure v such that v > v/ for every invariant
measure . If 7 isthe NPSwith 7§ = 1, then7{ tendsto v in distribution ast tends to
infinity. See Liggett (1985) for a more general and fuller account of this property.

It is easy to seethat a NPSis attractive if and only if the function §(l,r) is decreas-
ing in both | and r. If the function 3(-, -) has this property, then it is clear that for any
family of finite NPS 7} starting from non-zero initial configurations and with flip rate
determined by function AG(:,-), A > 0, there exists a critical A\l so that for A > AL, 7}
has a positive chance of surviving while for A < Al v} must die. Similarly, there exists
a2 corresponding to survival of infinite systems.

In this paper we will be considering reversible, attractive NPS. A NPSisreversibleif
the flip-rate determining function 3(- , -) is of the form

_ 8080 e —
80,0 = Sy B.o0) = 8o, = 500

for some strictly positive function 3:Z — R, satisfying > 3(n) < oo. It is shown in

Liggett (1985) that afinite NPSisareversible countablestat?e space Markov chainif and
only if theflip functions are of thisform. (See Theorem 1.2, p. 318 of Liggett (1985).)

Reversible processes are of intrinsic interest, but reversible NPS are also studied be-
cause so much can be said of them. A key result, essential for this paper, is due to Grif-
feath and Liggett (1982):

THEOREM A. A finite reversible nearest particle system with flip rates determined
by 38 survivesif and only if - 3(n) > 1.
n

DEFINITION. A reversible NPS is called supercritical if the underlying 8 satisfies
> B(n) > 1.
" Given areversible NPS with rate defining function 3(-) satisfying either >~ 8(n) > 1
or both znjﬂ(n) = land % nB(n) < oo, thenwe canfind § € (0, 1] so that g(nri = 3(n)6"
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isa probability on Z*. So under the survival condition of Theorem A on 3, we define the
measure Ren(3) to be the measure on {0, 1}# where 1's are distributed according to the
stationary renewal process corresponding to the probability law on the integers, {g(n)}.
This measure is reversible for the process. It isimportant to realize that if 3y(1) = 6'3(1)
for 6 € (0, 1), then Ren(3y) = Ren(8). Thisis becausefor | and r finite

BB _ Ba)Ba(r) _
pl+r) Byl +1)
while the rates 3(1, 00) > B4(l, 00) are irrelevant for configurationsy where 3~ v(x) =
x<0
ZO"/(X) = o0. In fact, the condition that either > 3(n) > 1 or both > 3(n) = 1 and

Bl.r) = Bo(l,r),

> B(N)n < oo is necessary and sufficient for the survival of infinite systems. Therefore,

the family of attractive NPS corresponding to A ”[S'(}fg) has critical value for infinite sur-

vival, A2, equal to that for finite survival ). For this paper another crucial result comes
from Liggett (1983):

THEOREM B. For an attractive, reversible NPS satisfying

SO0 _
D R

and either >~ 3(n) > 1 or both X 3(n) = 1 and Y ngB(n) < oo, the renewal measure
n n n

Ren(3) is the unique non-trivial, translation invariant, stationary probability measure.
Here, a measureisnon-trivial if it puts no mass on the configuration 0. A consequenceis
that under the conditions of Theorem B, the unique upper invariant measure v is equal
to Ren(p).

This paper is devoted to proving

THEOREM. Let v beafinite or infinite reversible, attractive supercritical NPS such
that >~ 3(n,n) < oo, and let 7 be the stopping timeinf{t > 0 : 7, = 0}. Then ast tends
n

to infinity, v; tendsin distribution to
P7°[r < 0] + (1 — P°[r < oo]) Ren(3),

for all initial o.

If the initial configuration is infinite then P[r < oo] must be zero, so the Theorem
shows that for any infinite 7o, 7: tends to Ren(3) in distribution as t tends to infinity.
It also extends Theorem B by showing that Ren(3) is the unique non-trivial invariant
measure under suitable conditions. The Theorem is similar to the complete convergence
theorem for the contact process (see Liggett (1985) or Durrett (1988)), but the path of
the proof is different. We are unable to make use of any kind of duality and the (difficult)
Theorem B is essential to the proof. For the contact processthe result analogousto The-
orem B is a simple consequence of the contact process complete convergence theorem.
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We describe out result as a complete convergencetheorem rather than the complete con-
vergencetheorem as significant open questionsremain: can the condition > 8(n, n) < oo

n
be loosened? What can be said of the infinite NPS where 3 8(n) = 1, > ng(n) < co?
n n
The latter question is essentially question 17, p. 360 of Liggett (1985).
For areversible NPS, attractivenessis equivalent to
Bn)
Bn+1)
It should be noted here that as 3° 3(n) < oo, the limit of the above sequence must be
n

is non-increasingin n.

greater than or equal to one.
Our proof can be broken down as follows:
1. We consider the case lim e > 1 and show that if the process is supercriti-
cal, then the process can be renormalized and compared to supercritical oriented
percolation.
2. We usethe results of Step 1 to prove the Theorem for 3(-) of Step 1.
3. We extend our result to all 5(-) satisfying the conditions of the Theorem.
The case wherelim 72y > 1is easier to deal with than the general because such NPS
have the property that if the interval [0, co) is vacant, then the distribution of the site of
the first subsequent birth on this semi-infinite interval is tight over all configurations of
the NPS prior to the birth. Thisis not true in general.
The paper is planned as follows. In the first section, we recall some results from ori-
ented percolation. In Section 2 we use the ideas of Bezuidenhout and Grimmett (1990)

to show that for processeswith lim -2 = C > 1, survival implies “block” survival.
N— L

o0

This completes Step 1 above. Thisimpliesin particular that on the event that the system
survives, the position of the occupied site nearest the origin will be tight over time. In
the succeeding section this result will be used, in conjunction with an approach intro-
duced in Mountford (1993) to show the complete convergence theorem for the class of
NPS considered in Section 2. In Section 4 we employ the ideas mentioned in the above
paragraph to finish the proof of the Theorem.

From now on, we assume that any (3(-) we are dealing with satisfies 3~ 3(n, n) < oo.

This condition holds for most systems of interest. In particular, it holds i?

B(n)
B(2n)
which holdsfor 3(n) = A /nP withp > 1.

sup < 09,
n

Section 1. In this paper, a 1-dependent oriented percolation system (of probability
1—¢) {WAlacoz isasfollows:
a) Let G = (V, E) bethe directed graph with

V={(mn)eZxZ :n+m= 0mod(2)},
E= {((m, n), (m+ 1,n+1)),((m,n),(m— 1,n+1)) :(mn) EV}-
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b) Forevery (m,n) € V, we havetwo random variables I+ and | n— Which are 1
with probability 1 — e, 0 with probability «.
) The random variable Imn+ is independent of all I . except Imn— and Imwzn,—.
Imn— isindependent of al I;; . except Iyn+ and Im—on+.
We say abond ((m,n),(m= 1,n+ 1)) is open if Iy = 1; otherwiseit is closed. We
define WA(m, n) to be 1 if there is a directed path of open bonds from a point (0, X) to
(m, n) for somex € A; otherwise WA(m, n) is 0. We say WA survivesif for every n, there
exists some mwith WA(m, n) = 1. For afull, detailed account of oriented percolation the
reader is referred to Durrett (1984). We require the following result.

THEOREM C. (i) Givenn > 0, there exists g > 0 such that for W a 1-dependent
oriented percolation system of probability 1 — ¢, ¢ < ¢, and any singleton x € 27,
P[W™ survives) > 1 — 1.

(i) GivenA,n > O0andR, thereexistsa positiveinteger K sothat for all nsufficiently

large,

K
P[Z WAG,n) > R, WA dies| < 1.
=0

Sm|larlyfor Z WA(j, n).

(iii) Givenn > 0, thereexwis g0 > 0, sothat if W is a 1-dependent oriented percola-
tion system of probability 1 — & (with ¢ < &), then for all eveny and all evenn
sufficiently large, P[Wi% (y,n) = 1] > 1 — 1.

(iv) For fixedy the events {WA survives} and the event {WA(y,n) = 1 for infinitely
many n} areidentical a.s..

All parts of Theorem C follow from the contour arguments of Durrett (1984).

Section 2. In this section we wish to establish that under the conditions
A) Thedecreasing limit asntendsto infinity of 3?;22)1) isequal to C, anumber strictly
greater than 1, and

B) > 3(n,n) < oo,
survivalnof thefinite particle systemisequivalent to survival in a“ block argument sense”
Wewill follow closely the proof of Bezuidenhout and Grimmett (1990). Wewishto show
that survival implies “block survival”, since survival in the sense of non-extinction does
not preclude a limit measure of the NPS being the trivial null measure. On the other
hand (see Theorem C above), block survival does ensure that any limit measure must be
non-trivial.

It isimportant to realize that Condition B aboveimplies

C) M= sup > B(,r) < oo, and in particular that Zﬁ(l) <M.

I+r=n

Thlsfollowssmcebythewmmetryofthefuncﬂonﬁ( ) 2 B8(,r) <2 2 ﬂ(l n—I),
=n

and by attractiveness, this last expression is less than 2 Z B, ).
I1<n/2
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Our argumentswill rely on various couplings. We will assume that all NPS we shall
consider, with various starting configurations and various constraints, are derived from
the same Harris system of independent Poisson processes. See Durrett (1988) for greater
details. We assume we are given independent rate one Poisson processes Dy, x € Z and
independent rate 5(1, 1) Poisson processes Ay, S0 that associated with points tf, 3, . ..
in Ay, there are uniform [0,1] random variables U}, U3, ..., where as x and i vary, the
random variables U are independent. From these Poisson processes and i.i.d. uniform
random variables we construct a NPS starting at A C Z asfollows:

a) A particleat x diesat timet, if v;—(X) = 1 andt € Dy.

b) A particleis created at sitex at time't if 7 (x) = 0,t = t € A and UX < 262
Herel isthe distanceto the |eft from x to the nearest occupied site at timet, r the
distanceto theright.

€) Yo(X) = lxea.

If Aisinfinite, the processis defined as the increasing limit of this procedure for finite
setsincreasing to A. Given aninterval | and a subset A of |, we define a process ' by
taking 75" (X) = Ixea and suppressing al births of particles outside I. If the interval is
equal to [—N, N], we write YN for the process. 7' will always denote a NPSwith births
outside | suppressed. If we are given an unrestricted NPS 7y then ' will denote the NPS
with all births and particles outside | suppressed and such that Y5(X) = Yo(X) for x € I.
Thetimer' will always denote this hitting time for an unrestricted process.

Restrictions of aprocessmay extend to time dependent regionsaswell. Givenaregion
RinZ x Ry, the process, YR, restricted to R, isthe process such that at time 0 all points x
for which (x, 0) isoutside Rarekilled and every birth point (x, t) outside Ris suppressed.

Given the Harris construction of processes, events can be thought of as subsets of the
space of Poisson processrealizations Q. We say an event Aisincreasingif w € Aand o/
is obtained from w by either

a) deleting some points of the Poisson processes Dy,

b) adding some points to the Poisson processes \y, or

¢) decreasing some ul,

then / € A also. We similarly define decreasing events. As our process is attractive
we have the FKG inequality: if A and B are both increasing (decreasing) events then
P[ANB] > P[A]P[B].

Givenintegersk, L, S we define

(i) w(p,q) = (pkL, 29kS), for (p,q) € Z' x Z, p+q= 0(mod 2),

(i) VE={(xt) €Zx R :0<t<(2k+2)S —5L+Lt/2S<x < 5L +Lt/2S},

(iii) V(p,q) = [—2L,2L] x[0, 25 +(pkL, 20kS), for (p, q) € Z* x Z, p+q = 0(mod 2).

This section is devoted to proving

PrROPOSITION 2.1. Given a supercritical NPSwhose corresponding 3 satisfies con-
ditions A and B above, and £ > 0, we may choose integersr,k,L and Sso that if Tisa
stopping time for the NPS; and

a) T€[0,29,
b) vt =1on[x—r,x+r] for somex € [-2L,2L],
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V(-1,1) V(L1

=

1
V(0,0)

then there exists a stopping time T’ > T, with respect to the natural filtration of the NPS
restricted to V*(V ™), so that with probability at least 1 — &, T isin [2kS, 2kS+ 29 and
thereexistsy € [-2L,2L] + kL(—KkL) sothat v = 1 on[y —r,y+r]. In particular the
NPS may be coupled with a 1-dependent oriented percolation system W of parameter
1 — e sothat
WA(p,q) = 1impliesthere exists (x,t) in V(p,g) sothat vy = Lon[x —r, X +1],
where A = {meven: there exists x in [(m — 2)L, (m + 2)L] such that o = 1 on
[x=r, x+r]}.

Asall processes(with or without suppressions) are attractive and are derived from the
same Poisson process, the following lemmais immediate.

LEMMA 2.1. If] C J,then} C 73 impliesthaty! C 7] for all t. If | and J are
disjoint intervals of Z, then conditional on the initial configuration o, the processes”'
and Y’ areindependent.

We state some simple preliminary lemmas before beginning our Proof of Proposi-
tion 2.1. The following is a simple consequence of attractiveness and supercriticality
and echoes equation (6) of Bezuidenhout and Grimmett (1990).

LEMMA 2.2. Givene > O, there existsan integer r sothat [x — r, X +r] C "¢ for
some x impliesthat P°[r = oo] > 1 — 1%,

The lemma below is an analogue of equation (11) of Bezuidenhout and Grimmett
(1990).
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LEMMA 2.3. If vo,r and e are connected as in Lemma 2.2, then for any N, there
existsa T so that P"[|7¢| < N for somet > T] < 3.

DEFINITION.  Given aprocess | restricted to interval |, we define Ry = sup{x € | :
WX = 1}, L = inf{x € | : 7}(x) = 1}. We say that ' triesto give birth to the right
at time t if 7} is non-empty and for some x € I° and to theright of I, t = t* € A\ and
Ur < S8R we similarly usethe term 7! triesto give birth to the left. If ' tries to give
birth to either the left or right we simply say it triesto give birth.

Given a NPS 7}, we define a blocked point process W" = {t;,t3,...} where t; =
inf{t : 7! triesto givebirth, totheright of R at timet}, fori > 1,t" = inf{t > t" ;+1: 7'
tries to give birth, to the right of R, at time t}. We define the blocked point process
W~ similarly. We write W, for W* N [0,t], W, for W— N [0,t] and W;" for W UW,".
Throughout the paper F; will denote o{7s : s < t}. Given that the NPS y[=NN tries to
givebirth totheright at timet, the conditional chancethat the unrestricted processwould
have given birth at site N + 1 at timet (from the same configuration) is equal to

BIN+1—-R)
> B0)
I>N+1—-R,

It is important to notice that under assumption A, made at the start of this section, this
probability isat least 1 — 1/ C irrespective of N and the random R;. Without this assump-
tion we cannot bound this conditional probability away from zero without the restricting
NorR.

The lemma below is our equivalent of Equation 17 of Bezuidenhout and Grimmett
(1990).

LEMMA 2.4. Let Y be an unrestricted NPSwith 7o C [—L,L] and let v be a re-
stricted NPS such that 7o = 7§. Thereis a constant ¢ > 0, not dependingon L or t so
that P[T < oo | F] > Wil Here FE = o{7L,s <t, W)

PrOOF.  Given condition C on our NPS, it is clear that P[r < oo | F] > c,
for some constant ¢, e.g., we could take c = 1/(2M + 1) where M is the constant in
Condition C of our restrictions on the function 3. Therefore, the Lemma will be proven
if we can show that

PIe — el < 2| R > e

for some strictly positive c. In the following, we will treat the case where v+ # 0. The
casewhereV- = 0 is essentially the same but requires more notation.

In the following r A s denotesthe minimum of r and s.

Let t* be an element of W*, at which time Y tries to give birth to the right at site
x (necessarily greater than L). We say that t did not influence v if all of the following
events occur;
A(L,i): Fort" <t—1,theparticleat x diesintheinterval (t', " + 1].
A(2,i): Atnotime sin thetime interval (ti*, G+ A t} does "' try to give birth to the

right,
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A(3): Atnotimesinthetimeinterval (t, (t" + 1) At]isthereay > x, sothat s = t/

Y « B80=%
and U < Gagy»

A(4)): Atnotimesinthetimeinterval (' (t" + 1) At]isthereay € (Rs,x) sothat s =t/
for somej and ”é‘él lR)‘S) <U < W.
Thereason for the above definiti on isthat we areinterested in comparing an unrestricted
NPS, 7, with arestricted NPS, 7', generated by the same system of Poisson processes. If
V- = “YL and "' triesto give birth at site x at timet;" then (neglecting births to the left
of 1 “/t++1 will equal 7++1 provided
() intimeinterval [t+ t" + 1] the particle at x dies. This correspondsto event A(1, ).
(ii) During the above interval the process ' does not try to give birth to the right.
Obviously this correspondsto event A(2,i).
(iii) TheNPS~ doesnot haveaparticleborntotheright of xintimeinterval [t*, tF +1].
Thisevent is contained in the event A(3,i).
(iv) No particles are born for the process v but not for the process 7' in the interval
(Rs, X) becausethe site x isoccupied (event A(4,i)). Note thisincludes extrabirths
for v both at siteswithin | and to theright of 1.
We similarly define the event t~ did not influencey for t™ € W".
These events were introduced because of the following fact: On the event
N {t* doesnot influence v}, we havefor s € [t*, (t° + 1) A t], somet®, that [75]| >
tEewsE
V5| — 2; for other sin [0,1], ¥s = 75. So certainly on the event Ny, {t; does not
influence v}, it isthe casethat [YF| > || — 2 for al s € [0,1].
For fixed t*, the events A(2,i) and A(3,i) are precisely the eventsthat given Poisson
processes of rate at most Z B(n) have no points in the interval (t5,t° + 1]. The event

A(4, |) isequivalent tothe event that a Poisson process of inhomogeneousrate depending
on Y- and a most M (as in Condition C) has no points in the interval (t, t* + 1]. For
t* < t—1theeventA(L,i) issimply theevent that arate one Poisson process (independent
of Poisson processesabove) hasapoint in interval [t*, t* + 1]. Therefore the conditional
probability of {t* doesnot influence} is at least

25(“) =226
1- efl)( )(e n )e*’\".

The events {t* does not influence} are al conditionally independent with respect to
Ft on the event {7; # 0} so we have

P[ (N {t" doesnot influence} | FtL] > /W W

tEeWE
-3 B(n) ()]
for c equal to (1 — —1)(e n e n e™ "
Let{= P[Y] = lon[—r,r] | 75(X) = lx——]. Herer isasin Lemma2.2. Fix N and
Q so that
(+) (1-QN <™, P[BIN(Q1—-1/C) <N] <.
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Here Bin(Q,1 — 1/C) is a binomial random variable with parametersQand 1 — 1/C
and C isthe value defined in Condition A at the start of this section.

When considering the blocked processes of times when a NPS ' tries to give birth
to the right (left) and where L is not necessarily fixed, we will use superscriptsand refer
to the processes as W*-(W—1).

LEMMA 2.5. LetT; and L; be increasing sequences of times and lengths. Then for
any vo with vo(X) = 1 for |x| < r, (rasin Lemma 2.2)

PP [wa

L
+wg

Py

> 12Q| Fy|
is greater than 1 — ¢'® for n large.

PROOF.  On the event 7 < oo (for the unrestricted NPS %), P[r = oo | Fir| will
be zero for n large enough. This must imply that for any postive constants k; and ko,

P[P[r =o0 | Fp] >1- kl] > P%[r = o0] — k; for n large enough. We chose
r to ensure that P°[r = oo] > 1 — 3%, so if we take k; = c'2*2 where ¢ is the
constant of Lemma 2.4 and k, < %5100, we obtain the conclusion: For n large enough,
PIP[r=00|F|>1- cle“z] > 1— 1% ThelemmafollowsfromLemma24. =

Thefollowinglemmacorrespondsto Lemma7 of Bezuidenhoutand Grimmett (1990).

LEMMA 2.6. Thereexistt and L such that if o = 1 on[—r,r], (againrisasin
Lemma 2.5) then

P’YO[

el Wt

W, *| areall greater than Q] > 1 — .

’

PROOF. The event in question is an increasing event so we may take Yo(X) = ljx<
without loss of generality.

We first define increasing sequences T, and L, in order to apply Lemma 2.5.
Lemma 2.3 and our choice of r ensure that there exists T; such that

.\ 3
P[] > 12Q] > 1— 2.

Asthe unrestricted process? isthe limit of restricted NPS, we can choose Ll(: L(Tl)),
so that

Py >12Q] > 1 25100.

As the restricted process Y+ must die out, the function P*[|y¢*| > 6Q] tends con-
tinuously to zero ast tends to infinity. Therefore there exists atime s(Ty,L1) (> T1), SO
that

P > 6Q) = 1 -,

We now recursively choose Tnep = S(Tn, Ln) + 1, Lnea = max{L(Tn+1), Ln + 1}.
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Itisclear that T, and L, are sequencestending to infinity, so we can apply Lemma2.5
and concludethat for nlarge

Pl + [wg

Therefore, by the FKG inequality,

L
+ Wt

>12Q| > 1—£'°.

195 Pl e+ |+ W | < 120
> P[] < 60, (Wit <30 [We | < 3]

> £50pYo HW;nLn < 3Q]2
since all three events are decreasing. This inequality implies that P [|Wy't| > 3Q] >
1 — ¢% and we are done. .

COROLLARY 2.1. LetT,L and g beasin Lemma 2.6. There exists a stopping time
v < T so that with probability at least 1 — £1°,75*2* = 1on[L + 1,L + 2r +1].

PROOF. Consider 7}. By the Proof of Lemma 2.6, we have that outside a set of
probability £25, there are 3Q times at which V" tries to give birth at a point to the right
of L. Since 1% convergesdownto C > 1, at each of thesetimes, independently of F¥,
“/';i"zr(L +1) = 1 with probability at least 1 — 1/C. By our choice of Q thisimplies that
there exist with probability at least (1 — £2°)(1 — £1%) stopping times (with respect to
natural filtration of Y-*2") 51,5, ... sy, al lessthan T and more than one time unit apart,
for whichy§*#(L+1) = 1. The(*) definition of N and ¢ and the Strong Markov property
ensure that with probability at least (1 — £2°)(1 — £1%)?, there will be a stopping time v
for which5*2*1 = 1on[L+1,L+2r +1]. .

We now take K = L + 2r and T as before. Using exactly the same arguments as
Bezuidenhout and Grimmett (1990), we conclude

LEMMA 2.8 (= LEMMA 18 OF BEZUIDENHOUT AND GRIMMETT (1990)). If vo(X) =
I\X|§r1 then
PY[there exists (x,t) € [K, 2K] x [T, 2T]|
suchthat Y2 (y) is 1if |y — x| < r] isgreater than 1 — 5.
Recall that given aregion R C Z x R;, we define a nearest particle system YR by

suppressing all particles and births which occur at (x,t) € R°. Lemma 2.8 is used again
precisely asin Bezuidenhout and Grimmett (1990) to show

k—1
LEMMA 2.9. LetR= (JjL+[—3L,4L] x [2T, (2j + 4)T]. Given that YR(y) = 1 for
j=0

ly — x| < R wherex € [-2L,2L] and t € [0, 2T]. Then with probability greater than
(1 — %), thereexists (y, ) € [(k— 2)L, (k+ 2)L] x [2KT, (2k + 2)T] so that YR(z) = 1if
lz—y| <r.

Given this lemma, Proposition 2.1 can be proved in a straightforward manner (see
Bezuidenhout and Grimmett (1990) for full details).
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COROLLARY 2.2. Consider a supercritical NPS. Let 7o be an initial configuration.
For eachn > 0, there existsK so that

inf P’ [there exists x with [x| < K andY(X) = 1] > P"’[r = 0] — 1.

PrROOF. Givenn pick e > 0, sothat ¢ < 1)/6. Clearly it issufficient to find aK that
works for al t sufficiently large and € < & for the e of Theorem C, Parts (i) and (iii)
appliedto /6. Giventhise, pick r, k, Sand L according to Proposition 2.1. Let V be the
stopping time inf{t > 0 : there exists X suchthat i = 1 on [X —r, X + r]}.

By the Markov property it is clear that the events {r = oo} and {V < oo} areas.
equal. Let us define VR to be the stopping time inf{t > 0 : thereexistsX® € [-R R]
such that v¢ = 1 on [XR —r, XR +r]}. We can find R and N so that P[VR < N] >
Plr = 00] — /6.

By the Strong Markov property and Proposition 2.1, thereis an oriented 1-dependent
percolation system W of probability 1 — ¢ such that W{%(q, p) = 1, impliesthat v, = 1
on[y— r, y+ r] for somey € V(p, q) + (X}, VR) on the event {VR < N}.

Theorem C, Part (iii) ensuresthat for all even n sufficiently large,

P[yi=1on[y—ry+r] for some(y,t) € V(0,n) + (X?,VF) | Fye| > 1—1/6
on the event {VR < N}. Therefore by Proposition 2.1 for n large and even
P[Vtin[2nkS+2S, 2(n +3)ks,
e [XR—(k+7)L, XZ+ (k+7)L] st.%(x) = 1| Fye]
>@1—1n/6)1—3)>1—2y/3

on the event {VR < N}. Since X® € [-R,R] on {VR < oo}, an event of probability at
least 1 — 1 /6, we have shown that for large t

P[“/t(x) = 1for somex € [—(k+7)L—R, (k+7)L+R]} > (1—2n/3)(P"°[r = o0] —11/6).

This compl etes the proof. ]
We prove similarly, using Theorem C, Part (iv),

COROLLARY 2.3. For anyy € Z and any initial configuration, the event {r = oo}
and the event {7(y) = 1 for unboundedt} area.s. equal.

We also see using Theorem C, Part (ii),

COROLLARY 2.4. For eachnandn > 0 and 7o, there exists a K so that for all
sufficiently larget

—(K+1) 2K
P”'o[ > m(¥)and > 74(x) are both greater than n| > P™°[r = oo] — 1.
x=—2K x=K+1

https://doi.org/10.4153/CJM-1997-016-7 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1997-016-7

A COMPLETE CONVERGENCE THEOREM 333

Section 3. This section is devoted to proving

ProPOSITION 3.1. The complete convergence theorem holds for supercritical NPS
which satisfy the condition of Section 2.

Again, we will make use of the technique of coupling. Given a process” and a stop-
ping time T, such that Y1(X) = 1, we defineY*T to be the NPS derived from the under-
lying Poisson processeson s > T, defined for s > T and satisfying 75 (y) = &y, Sucha
process satisfies:

1) the processy| = “/;‘;TT isaNPSwith Yo(y) = dxy Which is independent of Fr, and
2) foreachs>T,7%T C 7s.
The Proof of Proposition 3.1 is deferred as we require some further results for the proof.

THEOREM D. Let"; bea finite NPS correspondingto {3(1)} where - 13(1) < oo. If
|

t, is an increasing sequence of times converging to infinity, then for any s, the distance
in absolute variation between the laws of v;, and V¢, tendsto zero.

Theorem D wasprovenasProposition 2.1 in Mountford (1993). In that paper, Proposi-
tion 2.1 was stated for processes of finite range, but the proof given requiresno alteration
to apply to the NPSof TheoremD, sincewhat isreally vital inthe Proof of Proposition 2.1
isthat the number of occupied sitesof afinite particle system grows at most linearly with

time.
Wewill be consideringNPSwhere lim /;/(152)1) = C > 1, soclearly TheoremD applies
n—oo
to such systems.
The following result is not a direct consequence of Theorem D as our processes are
non-Feller.

LEMMA 3.1. Lett, bea sequenceof timestending to infinity. If v, tendsin distribu-
tion to v then v must be stationary for the NPS.

ProoF. Itissufficient to show that for fixed s > 0 and fixed cylinder function f with
f(0) = 0, wehave (v,f) = (v, Psf).
Thefunction f is continuous so

(v.) = lim E[f(,)] = Jim E[f (v, )

where the last equality follows from Theorem D. Now E[f(Vt,)] = E[Psf (V1,—s)]- If Psf
were continuous, we could invoke Theorem D again to conclude that

(v,) = lim E[f ()] = Jim E[P (v, )] = (v, PS).

Unfortunately our processis non-Feller and we must modify this argument.
Define the function Pg(K, f) by

Py(K,f) = E'[f(7s); Ix € (K, 2K], Ty € [-2K, —K)
St.Yr(¥) = Ye(y) = 1vr €[0,9].

https://doi.org/10.4153/CJM-1997-016-7 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1997-016-7

334 T.S. MOUNTFORD

For K so large that [ —K, K] contains the support of f, the function Ps(K, f) is continuous
and so for all K large enough

(4 (v,Po(K, 1)) = lim E[P(K, D)(t,-9)].

Notealsothat Ps(K, f)(0) = f(0) = 0. Also observethat occupied pointsremain occupied
throughout [0, 5] independently with probability e~3, we conclude that

IPs(K, f)(7) — Psf(7)| < Gk (),

where Gk (0) = 0 and for non-identically zero ",

2K —(K+1)
V(X

> 9 PO
GO = [(1—e St +(A—e P x|

However, Corollary 2.4 guarantees that asK tendsto infinity, (u, Gk ) tendsto zero uni-
formly over y € {v,V,—s, N= 1,2, ...}. (Here we have abused notation and taken v, s
to be the law of 7¢,—s). Thusit follows that

(v, Psf) = Jim (v, Ps(K, )

= lim lim E[Ps(K, )(7t,—s)]

Jim lim E[P(K, f)(7t,-s)]

n|llfolo E[Psf (Vt,—-9)]

JerOL E[f(71,)]

= (v,f). .

The following lemmawill be used in this and the next section.

LEMMA 3.2. Letf bea continuous, increasing function and vo be any configuration,
finite or infinite. Then

TME"[f(0)] < (Ren(3), f).

ProOF. Theorem B impliesthat tIim ELNf ()] = (Ren(3),f). Attractivenessimplies
that
tIi—mE”O[f(“/t)] < tIim ENf ()] = (Ren(B), f). "

Wefirst consider processesy* such that v§(y) = dxy and we first prove complete conver-
gence for these processes.
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PROPOSITION 3.2.  Ast tends to infinity, the process v} convergesin distribution to
the probability measure PX[T < o0]bg + PX[T = oo] Ren(3).

PROCOF. Supposet, increasesto infinity and w?n convergesin distribution to v. Given
Corollary 2.1 and Lemma 3.1, it isimmediate that

v = Pt < 00]6 + P°[r = oo]U

where U is an invariant measure which concentrates on infinite configurations. In order
to apply Theorem B of Liggett we simply have to show that U is trandation invariant.
For any x, itis clear that 7§ must tend in distribution to U*, the translation of U by x. To
show U isinvariant we must show that, for arbitrary x, U = U*.

We prove that U > UX. It is elementary that, for any s > 0, the distribution of WPn_S
conditioned on 7 > t, — s convergesto U. We introduce the sequence of stopping times
Do, S1,D1,S, . .. defined by

1. Dp=0,

2. S =inf{t > Dy_1:79(x) = 1},

3. fork > 0, D = inf{t > S : 7S = p}.
It is important to realize that the events {7 = oo} and {Ir : § < oo, D; = o0}, are
as. equal by Corollary 2.2. Let f be an increasing function with f()) = 0. Then, since
YW>ySon{S <t<D},

EIfO)] = S EFOE s <i<o].

Asn tendsto infinity, the left hand side, by hypothesis, tendsto P[r = oo](U, f), while
the right hand side convergesto P[r = oo](U*,f). ThusU > UX, but the roles of U and
U* can be reversed in this argument and we conclude that U = U*. Thisimplies (by the
arbitrariness of x) that U is trandlation invariant. Theorem B implies that U must equal
Ren(f3). Because the space of measures on {0, 1} is compact and the sequence {t,} is
arbitrary we concludethat v? convergesin distribution to P[r < oo]ép+P[T = 00] Ren(p).
This completes the Proof of Proposition 3.2.
We now return to the Proof of Proposition 3.1.

PROOF OF PRoPOSITION 3.1.  We first consider a NPS with ¢ finite. It will be suf-
ficient to prove that for any continuous increasing function f with f(0) = 0, E°[f (V)]
converges ast tends to infinity to P[r = oo](Ren(8), ). First Lemma 3.2 states that for
any 7 (finite or not)

TmE*[f ()] < TIMEf ()] = (Ren(B).f).
Therefore, for any n,
TME[f(v)] = E"|[TME"[f()]] < Plr > nil(Ren(3),f).
Thetime n can be arbitrarily large, so we can conclude that

TME[f (1] < Plr = oo] (Ren(3)f ).
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It remains to show the reversed inequality. We do this by mimicking the proof of the
translation invariance of U in Proposition 3.1 and then using this result. Redefine the
stopping times

1. Do=0,

2. S =inf{t > Dy_; : 7(0) = 1},

3. fork > 0, Dy = inf{t > S : 7>% = 0}.
Again (by Corollary 2.2) we note that the events {r = oo} and the event {r
S < 00, Dy = 0o} areas. equal. As before

EC[f(0] = 3 Elf (2%l <t,<n,]-

Thislatter term convergesto P[r = oo](Ren(3), f) ast tendsto infinity, so Proposition 3.1
is proven for NPS with ¢ finite. To complete the proof for arbitrary v it remainsto treat
the case where v isinfinite.

If Yo isinfinite let v{ be the finite configuration given by

niy — | Yo) if |yl <n,
7o0) 0 otherwise.
Givenf, increasing, continuous and 0 on O, attractiveness of our NPSyields

TimE™[f(7)] > TME[f(7)] = P’8[r = co](Ren(d),f).

But P[r = oo] convergesto oneasn tendstoinfinity. We concludethat tli_mE’ o[f (V)] >
—00

(Ren(B), ). That the converse inequality holds is guaranteed by Lemma 3.2, and the
proof is complete. ]

Section4. Wehavesofar dealtwith attractive, reversibleNPSwith - decreasing

to some constant strictly greater than one. Throughout this section we assume that 5252)1)

decreasesto oneand 3~ 3() > 1. Let ¥ be acorresponding NPS. We may choosef < 1,
|

so that if B(1) = 6'3(l) for each |, then >~ 3(I) > 1. So the NPS, 7, corresponding to 3
|

satisfies the conclusions of Proposition 3.1. It should be noted that Ren(5) = Ren(3).
We define the process ! so that
1. WM =fort<n, 3
2. Y, isaNPScorresponding to 3, which is conditionally independent of F,, given
fYn-
3. Vs > s forall n.
We may assert the existence of ay" since our processesare attractive and given a config-
uration, the flip rates of vacant sites will be larger for they process than the Y™ process.
Asbeforeit is sufficient to show that for any f increasing, continuous and zero on 0,
we must havetinol E"[f (V)] > Plr = oo](Ren(B),f). Letf besuch afunction. Then for
anyn
lim E°[f(19)] > Jim E°[fO7)].
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Proposition 3.1 may be applied to E NPS. Therefore the right hand side of the above
inequality isequal to 5“[7 = oo](Ren(B3), ), where P" refersto the probability for events
defined by 7" and so in this context 7 is the hitting time of 0 by Y. However, P"[r = o]
convergesto P[r = oo] as ntendsto infinity, sinceif the process; never hits the empty
set, then | vp| tendsto infinity as n tendsto infinity. This completes the proof of our main
Theorem. ]
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