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A COMPLETE CONVERGENCE THEOREM
FOR ATTRACTIVE REVERSIBLE
NEAREST PARTICLE SYSTEMS

T. S. MOUNTFORD

ABSTRACT. In this paper we prove a complete convergence theorem for attractive,
reversible, super-critical nearest particle systems satisfying a natural regularity condi-
tion. In particular this implies that under these conditions there exist precisely two ex-
tremal invariant measures. The result we prove is relevant to question seven of Liggett
(1985), Chapter VII.

Introduction. In this paper we study a class of Nearest Particle Systems (NPS) on
the state space f0, 1gZ. As a prelude to providing our main result, we introduce prelimi-
nary definitions and the necessary results of earlier work.

A point ç 2 f0, 1gZ is called a configuration and may be viewed as a function from
Z to f0, 1g. We say a site x is occupied if ç(x) equals 1; otherwise we say it is vacant.
A configuration ç may also be identified with the Z-subset of occupied sites. In this
paper, we will use both interpretations of ç. We say ç is finite if it has only finitely many
occupied sites; otherwise it will be termed infinite.

A NPS is a spin system fç : t ½ 0g on f0, 1gZ with flip rates of the following form:

c(x, ç) ≥
(

1 if ç(x) ≥ 1;
å(lx, rx) if ç(x) ≥ 0,

where lx ≥ x � supfy Ú x : ç(y) ≥ 1g and rx ≥ inffy Ù x : ç(y) ≥ 1g � x. It is easy to
see that if

P
n

�
å(n,1) + å(1, n)

�
Ú 1, then a.s. çt will be a finite configuration for all t

whenever ç0 is finite. Equally, if ç0 is infinite then so must çt be for all later t. Thus we
may speak of finite and of infinite processes.

A finite process can be thought of as a continuous time Markov chain on the countable
state space of finite subsets of Z. For such a chain, the state 0 (which can be thought of
as the empty subset) is a trap. We say a finite NPS survives if there is some (finite) initial
configuration ç0 so that this trap state is not hit a.s.. Most usual systems considered (in-
cluding all those treated by this paper) have finite systems which are irreducible Markov
chains. Therefore, for this paper a finite NPS will survive if

Pç[ú Ú 1] Ú 1,

where ç is a (any) configuration with only one occupied site and ú is the hitting time of 0.
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An infinite process is said to survive if there exists a nontrivial invariant measure.
That is, there exists a probability measure ó on f0, 1gZ so that for all continuous f and
all positive t,

R
f (°)ó(d°) ≥

R
Pt f (°)ó(d°), where P. is the semigroup for the process.

We write ç ½ ç0 for two configurations if ç(x) ½ ç0(x) for each x. We also express this
relation by ç0 ² ç. A function f : f0, 1gZ ! R is increasing if ç1 ½ ç2 ) f (ç1) ½ f (ç2).
If exactly one of the inequalities is reversed, then f is decreasing. Given two probability
measures ó1, ó2 on f0, 1gZ we write ó1 ½ ó2 if

R
f (°)ó1(d°) ½

R
f (°)ó2(d°) for every

increasing function f . Henceforth we will write
R

f (°)ñ(d°) as hñ, f i for any function f
and measure ñ.

A process on f0, 1gZ is said to be attractive if the function c(x, ç) is increasing when
restricted to configurations ç with ç(x) ≥ 0 and decreasing when restricted to ç with
ç(x) ≥ 1, for each x in Z.

A useful consequence of attractiveness is that if ç0 ½ ç00, then we can couple the
processes çt and ç0t , so that for all t, çt ½ ç0t . Thus if f is an increasing function, then
Pçt (f ) is also an increasing function of ç. Another consequence of attractiveness is that
there exists a (unique) upper invariant measure ó such that ó ½ ó0 for every invariant
measure ó0. If ç1

t is the NPS with ç1
0 � 1, then ç1

t tends to ó in distribution as t tends to
infinity. See Liggett (1985) for a more general and fuller account of this property.

It is easy to see that a NPS is attractive if and only if the function å(l, r) is decreas-
ing in both l and r. If the function å(Ð , Ð) has this property, then it is clear that for any
family of finite NPS çït starting from non-zero initial configurations and with flip rate
determined by function ïå(Ð , Ð), ï ½ 0, there exists a critical ï1

c so that for ï Ù ï1
c , çït

has a positive chance of surviving while for ï Ú ï1
c ç

ï
t must die. Similarly, there exists

a ï2
c corresponding to survival of infinite systems.
In this paper we will be considering reversible, attractive NPS. A NPS is reversible if

the flip-rate determining function å(Ð , Ð) is of the form

å(l, r) ≥
å(l)å(r)
å(l + r)

, å(l,1) ≥ å(1, l) ≥ å(l)

for some strictly positive function å: Z ! R, satisfying
P
n
å(n) Ú 1. It is shown in

Liggett (1985) that a finite NPS is a reversible countable state space Markov chain if and
only if the flip functions are of this form. (See Theorem 1.2, p. 318 of Liggett (1985).)

Reversible processes are of intrinsic interest, but reversible NPS are also studied be-
cause so much can be said of them. A key result, essential for this paper, is due to Grif-
feath and Liggett (1982):

THEOREM A. A finite reversible nearest particle system with flip rates determined
by å survives if and only if

P
n
å(n) Ù 1.

DEFINITION. A reversible NPS is called supercritical if the underlying å satisfiesP
n
å(n) Ù 1.

Given a reversible NPS with rate defining function å(Ð) satisfying either
P
n
å(n) Ù 1

or both
P
n
å(n) ≥ 1 and

P
n

nå(n) Ú 1, then we can find í 2 (0, 1] so that g(n) ≥ å(n)ín
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is a probability on Z+. So under the survival condition of Theorem A on å, we define the
measure Ren(å) to be the measure on f0, 1gZ where 1’s are distributed according to the
stationary renewal process corresponding to the probability law on the integers, fg(n)g.
This measure is reversible for the process. It is important to realize that if åí(l) ≥ ílå(l)
for í 2 (0, 1), then Ren(åí) ≥ Ren(å). This is because for l and r finite

å(l, r) ≥
å(l)å(r)
å(l + r)

≥
åí(l)åí(r)
åí(l + r)

≥ åí(l, r),

while the rates å(l,1) ½ åí(l,1) are irrelevant for configurations ç where
P

x�0
ç(x) ≥P

x½0
ç(x) ≥ 1. In fact, the condition that either

P
å(n) Ù 1 or both

P
å(n) ≥ 1 andP

å(n)n Ú 1 is necessary and sufficient for the survival of infinite systems. Therefore,
the family of attractive NPS corresponding to ï å(l)å(r)

å(l+r) has critical value for infinite sur-

vival, ï2
c , equal to that for finite survival ïl

c. For this paper another crucial result comes
from Liggett (1983):

THEOREM B. For an attractive, reversible NPS satisfying

X
n

å(n)å(n)
å(2n)

≥
X

n
å(n, n) Ú 1,

and either
P
n
å(n) Ù 1 or both

P
n
å(n) ≥ 1 and

P
n

nå(n) Ú 1, the renewal measure

Ren(å) is the unique non-trivial, translation invariant, stationary probability measure.
Here, a measure is non-trivial if it puts no mass on the configuration 0. A consequence is
that under the conditions of Theorem B, the unique upper invariant measure ó is equal
to Ren(å).

This paper is devoted to proving

THEOREM. Let çt be a finite or infinite reversible, attractive supercritical NPS such
that

P
n
å(n, n) Ú 1, and let ú be the stopping time infft Ù 0 : çt ≥ 0g. Then as t tends

to infinity, çt tends in distribution to

Pç0 [ú Ú 1]é0 + (1 � Pç0 [ú Ú 1]) Ren(å),

for all initial ç0.

If the initial configuration is infinite then P[ú Ú 1] must be zero, so the Theorem
shows that for any infinite ç0, çt tends to Ren(å) in distribution as t tends to infinity.
It also extends Theorem B by showing that Ren(å) is the unique non-trivial invariant
measure under suitable conditions. The Theorem is similar to the complete convergence
theorem for the contact process (see Liggett (1985) or Durrett (1988)), but the path of
the proof is different. We are unable to make use of any kind of duality and the (difficult)
Theorem B is essential to the proof. For the contact process the result analogous to The-
orem B is a simple consequence of the contact process complete convergence theorem.
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We describe out result as a complete convergence theorem rather than the complete con-
vergence theorem as significant open questions remain: can the condition

P
n
å(n, n) Ú 1

be loosened? What can be said of the infinite NPS where
P
n
å(n) ≥ 1,

P
n

nå(n) Ú 1?

The latter question is essentially question 17, p. 360 of Liggett (1985).
For a reversible NPS, attractiveness is equivalent to

å(n)
å(n + 1)

is non-increasing in n.

It should be noted here that as
P
n
å(n) Ú 1, the limit of the above sequence must be

greater than or equal to one.
Our proof can be broken down as follows:

1. We consider the case lim
n

å(n)
å(n+1) Ù 1 and show that if the process is supercriti-

cal, then the process can be renormalized and compared to supercritical oriented
percolation.

2. We use the results of Step 1 to prove the Theorem for å(Ð) of Step 1.
3. We extend our result to all å(Ð) satisfying the conditions of the Theorem.

The case where lim
n

å(n)
å(n+1) Ù 1 is easier to deal with than the general because such NPS

have the property that if the interval [0,1) is vacant, then the distribution of the site of
the first subsequent birth on this semi-infinite interval is tight over all configurations of
the NPS prior to the birth. This is not true in general.

The paper is planned as follows. In the first section, we recall some results from ori-
ented percolation. In Section 2 we use the ideas of Bezuidenhout and Grimmett (1990)
to show that for processes with lim

n!1

å(n)
å(n+1) ≥ C Ù 1, survival implies “block” survival.

This completes Step 1 above. This implies in particular that on the event that the system
survives, the position of the occupied site nearest the origin will be tight over time. In
the succeeding section this result will be used, in conjunction with an approach intro-
duced in Mountford (1993) to show the complete convergence theorem for the class of
NPS considered in Section 2. In Section 4 we employ the ideas mentioned in the above
paragraph to finish the proof of the Theorem.

From now on, we assume that any å(Ð) we are dealing with satisfies
P
n
å(n, n) Ú 1.

This condition holds for most systems of interest. In particular, it holds if

sup
n

å(n)
å(2n)

Ú 1,

which holds for å(n) ≥ ïÛnp with p Ù 1.

Section 1. In this paper, a 1-dependent oriented percolation system (of probability
1 � ¢) fΨAgA²2Z is as follows:

a) Let G ≥ (V, E) be the directed graph with

V ≥ f(m, n) 2 Z ð Z+ : n + m � 0 mod(2)g,

E ≥
n�

(m, n), (m + 1, n + 1)
�
,
�
(m, n), (m � 1, n + 1)

�
: (m, n) 2 V

o
.
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b) For every (m, n) 2 V, we have two random variables Im,n,+ and Im,n,� which are 1
with probability 1 � ¢, 0 with probability ¢.

c) The random variable Im,n,+ is independent of all Ii,j,š except Im,n,� and Im+2,n,�.
Im,n,� is independent of all Ii,j,š except Im,n,+ and Im�2,n,+.

We say a bond
�
(m, n), (m š 1, n + 1)

�
is open if Im,n,š ≥ 1; otherwise it is closed. We

define ΨA(m, n) to be 1 if there is a directed path of open bonds from a point (0, x) to
(m, n) for some x 2 A; otherwise ΨA(m, n) is 0. We say ΨA survives if for every n, there
exists some m with ΨA(m, n) ≥ 1. For a full, detailed account of oriented percolation the
reader is referred to Durrett (1984). We require the following result.

THEOREM C. (i) Given ë Ù 0, there exists ¢0 Ù 0 such that for Ψ a 1-dependent
oriented percolation system of probability 1 � ¢, ¢ Ú ¢0, and any singleton x 2 2Z,
P[Ψfxg survives] Ù 1 � ë.

(ii) Given A, ë Ù 0 and R, there exists a positive integer K so that for all n sufficiently
large,

P
� KX

j≥0
ΨA(j, n) Ù R, ΨA dies

i
Ú ë.

Similarly for
0P

j≥�K
ΨA(j, n).

(iii) Given ë Ù 0, there exists ¢0 Ù 0, so that if Ψ is a 1-dependent oriented percola-
tion system of probability 1 � ¢ (with ¢ Ú ¢0), then for all even y and all even n
sufficiently large, P[Ψf0g(y, n) ≥ 1] ½ 1 � ë.

(iv) For fixed y the events fΨA survivesg and the event fΨA(y, n) ≥ 1 for infinitely
many ng are identical a.s..

All parts of Theorem C follow from the contour arguments of Durrett (1984).

Section 2. In this section we wish to establish that under the conditions
A) The decreasing limit as n tends to infinity of å(n)

å(n+1) is equal to C, a number strictly
greater than 1, and

B)
P
n
å(n, n) Ú 1,

survival of the finite particle system is equivalent to survival in a “block argument sense”.
We will follow closely the proof of Bezuidenhout and Grimmett (1990). We wish to show
that survival implies “block survival”, since survival in the sense of non-extinction does
not preclude a limit measure of the NPS being the trivial null measure. On the other
hand (see Theorem C above), block survival does ensure that any limit measure must be
non-trivial.

It is important to realize that Condition B above implies
C) M ≥ sup

n

P
l+r≥n

å(l, r) Ú 1, and in particular that
P
l
å(l) � M.

This follows since by the symmetry of the function å(Ð , Ð),
P

l+r≥n
å(l, r) � 2

P
l�nÛ2

å(l, n�l),

and by attractiveness, this last expression is less than 2
P

l�nÛ2
å(l, l).
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Our arguments will rely on various couplings. We will assume that all NPS we shall
consider, with various starting configurations and various constraints, are derived from
the same Harris system of independent Poisson processes. See Durrett (1988) for greater
details. We assume we are given independent rate one Poisson processes Dx, x 2 Z and
independent rate å(1, 1) Poisson processes ïx, so that associated with points tx

l , tx
2, . . .

in ïx, there are uniform [0,1] random variables Ux
1, Ux

2, . . . , where as x and i vary, the
random variables Ux

i are independent. From these Poisson processes and i.i.d. uniform
random variables we construct a NPS starting at A ² Z as follows:

a) A particle at x dies at time t, if çt�(x) ≥ 1 and t 2 Dx.
b) A particle is created at site x at time t if çt�(x) ≥ 0, t ≥ txj 2 ïx and Ux

j �
å(l,r)
å(1,1) .

Here l is the distance to the left from x to the nearest occupied site at time t, r the
distance to the right.

c) ç0(x) ≥ Ix2A.
If A is infinite, the process is defined as the increasing limit of this procedure for finite
sets increasing to A. Given an interval I and a subset A of I, we define a process çI,A by
taking çI,A

0 (x) ≥ Ix2A and suppressing all births of particles outside I. If the interval is
equal to [�N, N], we write çN,A for the process. çI will always denote a NPS with births
outside I suppressed. If we are given an unrestricted NPS ç then çI will denote the NPS
with all births and particles outside I suppressed and such that çI

0(x) ≥ ç0(x) for x 2 I.
The time úI will always denote this hitting time for an unrestricted process.

Restrictions of a process may extend to time dependent regions as well. Given a region
R in ZðR+, the process, çR, restricted to R, is the process such that at time 0 all points x
for which (x, 0) is outside R are killed and every birth point (x, tx

i ) outside R is suppressed.
Given the Harris construction of processes, events can be thought of as subsets of the

space of Poisson process realizations Ω. We say an event A is increasing if ° 2 A and °0

is obtained from ° by either
a) deleting some points of the Poisson processes Dx,
b) adding some points to the Poisson processes ïx, or
c) decreasing some Uj

x,
then °0 2 A also. We similarly define decreasing events. As our process is attractive
we have the FKG inequality: if A and B are both increasing (decreasing) events then
P[A \ B] ½ P[A]P[B].

Given integers k, L, S, we define
(i) w(p, q) ≥ (pkL, 2qkS), for (p, q) 2 Z1 ð Z+ p + q � 0 (mod 2),

(ii) Vš ≥ f(x, t) 2 Z ð R+ : 0 � t � (2k + 2)S,�5L š LtÛ2S � x � 5L š LtÛ2Sg,
(iii) V(p, q) ≥ [�2L, 2L]ð[0, 2S]+(pkL, 2qkS), for (p, q) 2 Z1ðZ+ p+q � 0 (mod 2).
This section is devoted to proving

PROPOSITION 2.1. Given a supercritical NPS whose corresponding å satisfies con-
ditions A and B above, and ¢ Ù 0, we may choose integers r, k, L and S so that if T is a
stopping time for the NPS çt and

a) T 2 [0, 2S],
b) çT � 1 on [x � r, x + r] for some x 2 [�2L, 2L],

https://doi.org/10.4153/CJM-1997-016-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1997-016-7


A COMPLETE CONVERGENCE THEOREM 327

V(�1, 1)
#

V(1, 1)
#

V� V+

"
V(0, 0)

then there exists a stopping time T0 Ù T, with respect to the natural filtration of the NPS
restricted to V+(V�), so that with probability at least 1 � ¢, T0 is in [2kS, 2kS + 2S] and
there exists y 2 [�2L, 2L] + kL(�kL) so that çT0 � 1 on [y � r, y + r]. In particular the
NPS may be coupled with a 1-dependent oriented percolation system Ψ of parameter
1 � ¢ so that

ΨA(p, q) ≥ 1 implies there exists (x, t) in V(p, q) so that çt � 1 on [x � r, x + r],
where A ≥ fm even: there exists x in [(m � 2)L, (m + 2)L] such that ç0 � 1 on
[x � r, x + r]g.

As all processes (with or without suppressions) are attractive and are derived from the
same Poisson process, the following lemma is immediate.

LEMMA 2.1. If I ² J, then çI
0 ² çJ

0 implies that çI
t ² çJ

t for all t. If I and J are
disjoint intervals of Z, then conditional on the initial configuration ç0, the processes çI

and çJ are independent.

We state some simple preliminary lemmas before beginning our Proof of Proposi-
tion 2.1. The following is a simple consequence of attractiveness and supercriticality
and echoes equation (6) of Bezuidenhout and Grimmett (1990).

LEMMA 2.2. Given ¢ Ù 0, there exists an integer r so that [x � r, x + r] ² ç0 for
some x implies that Pç0 [ú ≥ 1] ½ 1 � 1

2¢
100.

The lemma below is an analogue of equation (11) of Bezuidenhout and Grimmett
(1990).
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LEMMA 2.3. If ç0, r and ¢ are connected as in Lemma 2.2, then for any N, there
exists a T so that Pç0 [jçtj Ú N for some t Ù T] Ú 3

4¢
100.

DEFINITION. Given a process çI
t restricted to interval I, we define Rt ≥ supfx 2 I :

çI
t(x) ≥ 1g, Lt ≥ inffx 2 I : çI

t (x) ≥ 1g. We say that çI tries to give birth to the right
at time t if çI

t is non-empty and for some x 2 Ic and to the right of I, t ≥ tx
i 2 ïx and

Ux
i �

å(x�Rt)
å(1,1) ; we similarly use the term çI tries to give birth to the left. If çI tries to give

birth to either the left or right we simply say it tries to give birth.
Given a NPS çI

t , we define a blocked point process W+ ≥ ft+
1 , t+

2 , . . .g where t+
1 ≥

infft : çI tries to give birth, to the right of Rt at time tg, for i Ù 1, t+
i ≥ infft Ù t+

i�1+1 : çI

tries to give birth, to the right of Rt at time tg. We define the blocked point process
W� similarly. We write W+

t for W+ \ [0, t], W�
t for W� \ [0, t] and Wš

t for Wš
t [ W�

t .
Throughout the paper Ft will denote õfçs : s � tg. Given that the NPS ç[�N,N] tries to
give birth to the right at time t, the conditional chance that the unrestricted process would
have given birth at site N + 1 at time t (from the same configuration) is equal to

å(N + 1 � Rt)P
l½N+1�Rt

å(l)
.

It is important to notice that under assumption A, made at the start of this section, this
probability is at least 1�1ÛC irrespective of N and the random Rt. Without this assump-
tion we cannot bound this conditional probability away from zero without the restricting
N or Rt.

The lemma below is our equivalent of Equation 17 of Bezuidenhout and Grimmett
(1990).

LEMMA 2.4. Let ç be an unrestricted NPS with ç0 ² [�L, L] and let çL be a re-
stricted NPS such that ç0 ≥ çL

0 . There is a constant c Ù 0, not depending on L or t so
that P[ú Ú 1 j FL

t ] ½ c2+jWš

t j+jç
L
t j. Here FL

t ≥ õfçL
s , s � t, Wš

t g.

PROOF. Given condition C on our NPS, it is clear that P[ú Ú 1 j Ft] Ù cjçtj,
for some constant c, e.g., we could take c ≥ 1Û(2M + 1) where M is the constant in
Condition C of our restrictions on the function å. Therefore, the Lemma will be proven
if we can show that

P[jçtj � jçL
t j � 2 j FL

t ] Ù cjW
�

t j+jW
+
t j

for some strictly positive c. In the following, we will treat the case where çL
t Â≥ 0. The

case where çL
t ≥ 0 is essentially the same but requires more notation.

In the following r ^ s denotes the minimum of r and s.
Let t+

i be an element of W+, at which time çL tries to give birth to the right at site
x (necessarily greater than L). We say that t+

i did not influence ç if all of the following
events occur;
A(1,i): For t+

i Ú t � 1, the particle at x dies in the interval (t+i , t+
i + 1].

A(2,i): At no time s in the time interval
�
t+
i , (t+

i + 1) ^ t
i

does çI try to give birth to the
right,
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A(3,i): At no time s in the time interval
�
t+
i , (t+

i + 1) ^ t
i

is there a y Ù x, so that s ≥ tyj
and Uy

j �
å(y�x)
å(1,1) ,

A(4,i): At no time s in the time interval
�
t+
i (t+

i + 1)^ t
i

is there a y 2 (Rs, x) so that s ≥ ty
j

for some j and å(y�Rs)
å(1,1) � Uy

j �
å(y�Rs, x�y)

å(1,1) .
The reason for the above definition is that we are interested in comparing an unrestricted
NPS, ç, with a restricted NPS, çI, generated by the same system of Poisson processes. If
çt+i �

≥ çI
t+i �

and çI tries to give birth at site x at time t+
i then (neglecting births to the left

of I) çI
t+i +1 will equal çt+i +1 provided

(i) in time interval [t+
i , t+

i + 1] the particle at x dies. This corresponds to event A(1, i).
(ii) During the above interval the process çI does not try to give birth to the right.

Obviously this corresponds to event A(2,i).
(iii) The NPS ç does not have a particle born to the right of x in time interval [t+

i , t+
i +1].

This event is contained in the event A(3,i).
(iv) No particles are born for the process ç but not for the process çI in the interval

(Rs, x) because the site x is occupied (event A(4,i)). Note this includes extra births
for ç both at sites within I and to the right of I.

We similarly define the event t�i did not influence ç for t�i 2 W�
t .

These events were introduced because of the following fact: On the eventT
tši 2Wš

t

ftši does not influence çg, we have for s 2 [tši , (tši + 1) ^ t], some tši , that jçL
s j ½

jçsj � 2; for other s in [0, t], çs ≥ çL
s . So certainly on the event

T
tši 2Wš

t
ftši does not

influence çg, it is the case that jçL
t j ½ jçtj � 2 for all s 2 [0, t].

For fixed tši , the events A(2,i) and A(3,i) are precisely the events that given Poisson
processes of rate at most

P
n
å(n) have no points in the interval (tši , tši + 1]. The event

A(4,i) is equivalent to the event that a Poisson process of inhomogeneous rate depending
on çL

t and at most M (as in Condition C) has no points in the interval (tši , tši + 1]. For
tši Ú t�1 the event A(1,i) is simply the event that a rate one Poisson process (independent
of Poisson processes above) has a point in interval [tši , tši + 1]. Therefore the conditional
probability of ftši does not influence çg is at least

(1 � e�1)
 

e
�
P

n

å(n)! 
e
�
P

n

å(n)!
e�M.

The events ftši does not influence çg are all conditionally independent with respect to
FL

t on the event fçt Â≥ 0g so we have

P
� \

tši 2Wš

t

ftši does not influence çg j FL
t

½
Ù cjW

+
t j+jW

�

t j

for c equal to (1 � e�1)
 

e
�
P

n

å(n)! 
e
�
P

n

å(n)!
e�M.

Let ê ≥ P[çr
1 ≥ 1 on [�r, r] j çr

0(x) ≥ Ix≥�r]. Here r is as in Lemma 2.2. Fix N and
Q so that

(Ł) (1 � ê)N � ¢100, P[Bin(Q, 1 � 1ÛC) � N] Ú ¢100.
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Here Bin(Q, 1 � 1ÛC) is a binomial random variable with parameters Q and 1 � 1ÛC
and C is the value defined in Condition A at the start of this section.

When considering the blocked processes of times when a NPS çL tries to give birth
to the right (left) and where L is not necessarily fixed, we will use superscripts and refer
to the processes as W+,L(W�,L).

LEMMA 2.5. Let Ti and Li be increasing sequences of times and lengths. Then for
any ç0 with ç0(x) ≥ 1 for jxj � r, (r as in Lemma 2.2)

Pç
0hþþþW+,Ln

Tn

þþþ +
þþþW�,Ln

Tn

þþþ +
þþþçLn

Tn

þþþ Ù 12Q j FLn
Tn

i

is greater than 1 � ¢100 for n large.

PROOF. On the event ú Ú 1 (for the unrestricted NPS ç), P
h
ú ≥ 1 j FLn

Tn

i
will

be zero for n large enough. This must imply that for any positive constants k1 and k2,

P
�
P
h
ú ≥ 1 j FLn

Tn

i
Ù 1 � k1

½
Ù Pç0 [ú ≥ 1] � k2 for n large enough. We chose

r to ensure that Pç0 [ú ≥ 1] Ù 1 � 1
2¢

100, so if we take k1 ≥ c12Q+2 where c is the
constant of Lemma 2.4 and k2 Ú 1

2¢
100, we obtain the conclusion: For n large enough,

P
�
P
h
ú ≥ 1 j FLn

tn

i
Ù 1 � c12Q+2

½
Ù 1 � ¢100. The lemma follows from Lemma 2.4.

The following lemma corresponds to Lemma 7 of Bezuidenhoutand Grimmett (1990).

LEMMA 2.6. There exist t and L such that if ç0 � 1 on [�r, r], (again r is as in
Lemma 2.5) then

Pç0
hþþþçL

t

þþþ, þþþW+,L
t

þþþ, þþþW�,L
t

þþþ are all greater than Q
i
Ù 1 � ¢24.

PROOF. The event in question is an increasing event so we may take ç0(x) ≥ Ijxj�r

without loss of generality.
We first define increasing sequences Tn and Ln, in order to apply Lemma 2.5.

Lemma 2.3 and our choice of r ensure that there exists T1 such that

Pç0 [jçT1 j Ù 12Q] Ù 1 �
3
4
¢100.

As the unrestricted process ç is the limit of restricted NPS, we can choose L1

�
≥ L(T1)

�
,

so that

Pç0
hþþþçL1

T1

þþþ Ù 12Q
i
Ù 1 �

3
4
¢100.

As the restricted process çL1 must die out, the function Pç0
hþþþçL1

t

þþþ Ù 6Q
i

tends con-
tinuously to zero as t tends to infinity. Therefore there exists a time s(T1, L1) (Ù T1), so
that

Pç0
hþþþçL1

s(T1,L1)

þþþ Ù 6Q
i
≥ 1 � ¢50.

We now recursively choose Tn+1 ≥ s(Tn, Ln) + 1, Ln+1 ≥ maxfL(Tn+1), Ln + 1g.
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It is clear that Tn and Ln are sequences tending to infinity, so we can apply Lemma 2.5
and conclude that for n large

Pç0
hþþþçLn

Tn

þþþ +
þþþW+,Ln

Tn

þþþ +
þþþW�,Ln

Tn

þþþ Ù 12Q
i
Ù 1 � ¢100.

Therefore, by the FKG inequality,

¢100 ½ Pç0
hþþþçLn

Tn

þþþ +
þþþW+,Ln

Tn

þþþ +
þþþW�,Ln

Tn

þþþ � 12Q
i

½ Pç0
hþþþçLn

Tn

þþþ � 6Q,
þþþW+,Ln

Tn

þþþ � 3Q,
þþþW�,Ln

Tn

þþþ � 3Q
i

½ ¢50Pç0
hþþþW+,Ln

Tn

þþþ � 3Q
i2

since all three events are decreasing. This inequality implies that Pç0
hþþþW+,Ln

Tn

þþþ Ù 3Q
i
Ù

1 � ¢25 and we are done.

COROLLARY 2.1. Let T, L and ç0 be as in Lemma 2.6. There exists a stopping time
ó � T so that with probability at least 1 � ¢10, çL+2r+1

ó � 1 on [L + 1, L + 2r + 1].

PROOF. Consider çL
t . By the Proof of Lemma 2.6, we have that outside a set of

probability ¢25, there are 3Q times at which çL tries to give birth at a point to the right
of L. Since å(n)

å(n+1) converges down to C Ù 1, at each of these times, independently of FL
T ,

çL+2r
úi

(L + 1) ≥ 1 with probability at least 1 � 1ÛC. By our choice of Q this implies that
there exist with probability at least (1 � ¢25)(1 � ¢100) stopping times (with respect to
natural filtration of çL+2r) s1, s2, . . . sN, all less than T and more than one time unit apart,
for which çL+2r

si
(L +1) ≥ 1. The (*) definition of N and ê and the Strong Markov property

ensure that with probability at least (1 � ¢25)(1 � ¢100)2, there will be a stopping time ó
for which çL+2r+1

v � 1 on [L + 1, L + 2r + 1].
We now take K ≥ L + 2r and T as before. Using exactly the same arguments as

Bezuidenhout and Grimmett (1990), we conclude

LEMMA 2.8 (≥ LEMMA 18 OF BEZUIDENHOUT AND GRIMMETT (1990)). If ç0(x) ≥
Ijxj�r, then

Pç0
h
there exists (x, t) 2 [K, 2K] ð [T, 2T]

i
such that ç2K

t (y) is 1 if jy � xj � r] is greater than 1 � ¢5.

Recall that given a region R ² Z ð R+, we define a nearest particle system çR by
suppressing all particles and births which occur at (x, t) 2 RC. Lemma 2.8 is used again
precisely as in Bezuidenhout and Grimmett (1990) to show

LEMMA 2.9. Let R ≥
k�1S
j≥0

jL + [�3L, 4L]ð [2jT, (2j + 4)T]. Given that çR
t (y) ≥ 1 for

jy � xj � R, where x 2 [�2L, 2L] and t 2 [0, 2T]. Then with probability greater than
(1 � ¢5)k, there exists (y, s) 2 [(k � 2)L, (k + 2)L]ð [2kT, (2k + 2)T] so that çR

s (z) ≥ 1 if
jz � yj � r.

Given this lemma, Proposition 2.1 can be proved in a straightforward manner (see
Bezuidenhout and Grimmett (1990) for full details).
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COROLLARY 2.2. Consider a supercritical NPS. Let ç0 be an initial configuration.
For each ë Ù 0, there exists K so that

inf
t

Pç
0
[there exists x with jxj � K and çt(x) ≥ 1] ½ Pç

0
[ú ≥ 1] � ë.

PROOF. Given ë pick ¢ Ù 0, so that ¢ Ú ëÛ6. Clearly it is sufficient to find a K that
works for all t sufficiently large and ¢ Ú ¢0 for the ¢0 of Theorem C, Parts (i) and (iii)
applied to ëÛ6. Given this ¢, pick r, k, S and L according to Proposition 2.1. Let V be the
stopping time infft Ù 0 : there exists X such that çt � 1 on [X � r, X + r]g.

By the Markov property it is clear that the events fú ≥ 1g and fV Ú 1g are a.s.
equal. Let us define VR to be the stopping time infft Ù 0 : there exists XR 2 [�R, R]
such that çt � 1 on [XR � r, XR + r]g. We can find R and N so that P[VR Ú N] Ù
P[ú ≥ 1] � ëÛ6.

By the Strong Markov property and Proposition 2.1, there is an oriented 1-dependent
percolation system Ψ of probability 1 � ¢ such that Ψf0g(q, p) ≥ 1, implies that çt � 1
on [y � r, y + r] for some y 2 V(p, q) + (XR, VR) on the event fVR Ú Ng.

Theorem C, Part (iii) ensures that for all even n sufficiently large,

P
h
çt � 1 on [y � r, y + r] for some (y, t) 2 V(0, n) + (XR, VR) j FVR

i
Ù 1 � ëÛ6

on the event fVR Ú Ng. Therefore by Proposition 2.1 for n large and even

P
h
8t in [2nkS + 2S, 2(n + 3)kS],

9x 2 [XR � (k + 7)L, XR + (k + 7)L] s.t. çt(x) ≥ 1 j FVR

i
Ù (1 � ëÛ6)(1 � 3¢) Ù 1� 2ëÛ3

on the event fVR Ú Ng. Since XR 2 [-R,R] on fVR Ú 1g, an event of probability at
least 1 � ëÛ6, we have shown that for large t

P
h
çt(x) ≥ 1 for some x 2 [�(k+7)L�R, (k+7)L+R]

i
½ (1�2ëÛ3)(Pç0 [ú ≥ 1]�ëÛ6).

This completes the proof.
We prove similarly, using Theorem C, Part (iv),

COROLLARY 2.3. For any y 2 Z and any initial configuration, the event fú ≥ 1g
and the event fçt(y) ≥ 1 for unbounded tg are a.s. equal.

We also see using Theorem C, Part (ii),

COROLLARY 2.4. For each n and ë Ù 0 and ç0, there exists a K so that for all
sufficiently large t

Pç
0
��(K+1)X

x≥�2K
çt(x) and

2KX
x≥K+1

çt(x) are both greater than n
½
½ Pç0 [ú ≥ 1] � ë.
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Section 3. This section is devoted to proving

PROPOSITION 3.1. The complete convergence theorem holds for supercritical NPS
which satisfy the condition of Section 2.

Again, we will make use of the technique of coupling. Given a process ç and a stop-
ping time T, such that çT(x) ≥ 1, we define çx,T to be the NPS derived from the under-
lying Poisson processes on s ½ T, defined for s ½ T and satisfying çx,T

T (y) ≥ éxy. Such a
process satisfies:

1) the process ç0t ≥ çx,T
t+T is a NPS with ç0(y) ≥ éxy which is independent of FT , and

2) for each s ½ T, çx,T
s ² çs.

The Proof of Proposition 3.1 is deferred as we require some further results for the proof.

THEOREM D. Let çt be a finite NPS corresponding to få(l)g where
P
l

lå(l) Ú 1. If

tn is an increasing sequence of times converging to infinity, then for any s, the distance
in absolute variation between the laws of çtn and çtn�s tends to zero.

Theorem D was proven as Proposition 2.1 in Mountford (1993). In that paper, Proposi-
tion 2.1 was stated for processes of finite range, but the proof given requires no alteration
to apply to the NPS of Theorem D, since what is really vital in the Proof of Proposition 2.1
is that the number of occupied sites of a finite particle system grows at most linearly with
time.

We will be considering NPS where lim
n!1

å(n)
å(n+1) ≥ C Ù 1, so clearly Theorem D applies

to such systems.
The following result is not a direct consequence of Theorem D as our processes are

non-Feller.

LEMMA 3.1. Let tn be a sequence of times tending to infinity. If çtn tends in distribu-
tion to ó then ó must be stationary for the NPS.

PROOF. It is sufficient to show that for fixed s Ù 0 and fixed cylinder function f with
f (0) ≥ 0, we have hó, f i ≥ hó, Psf i.

The function f is continuous so

hó, f i ≥ lim
n!1

E[f (çtn)] ≥ lim
n!1

E[f (çtn�s)]

where the last equality follows from Theorem D. Now E[f (çtn )] ≥ E[Psf (çtn�s)]. If Psf
were continuous, we could invoke Theorem D again to conclude that

hó, f i ≥ lim
n!1

E[f (çtn )] ≥ lim
n!1

E[Psf (çtn�s)] ≥ hó, Psf i.

Unfortunately our process is non-Feller and we must modify this argument.
Define the function Ps(K, f ) by

Ps(K, f ) ≥ Eç
h
f (çs); 9x 2 (K, 2K],9y 2 [�2K,�K)

s.t. çr(x) ≥ çr(y) ≥ 18r 2 [0, s]
i
.
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For K so large that [�K, K] contains the support of f , the function Ps(K, f ) is continuous
and so for all K large enough

(ŁŁ) hó, Ps(K, f )i ≥ lim
n!1

E[Ps(K, f )(çtn�s)].

Note also that Ps(K, f )(0) ≥ f (0) ≥ 0. Also observe that occupied points remain occupied
throughout [0, s] independently with probability e�s, we conclude that

jPs(K, f )(ç) � Psf (ç)j � GK(ç),

where GK(0) ≥ 0 and for non-identically zero ç,

G(ç) ≥

2
64(1 � e�S)

2KP
x≥K+1

ç(x)

+ (1 � e�s)

�(K+1)P
x≥�2K

ç(x)
3
75kfk1.

However, Corollary 2.4 guarantees that as K tends to infinity, hñ, GKi tends to zero uni-
formly over ñ 2 fó, çtn�s, n ≥ 1, 2, . . .g. (Here we have abused notation and taken çtn�s

to be the law of çtn�s). Thus it follows that

hó, Psf i ≥ lim
K!1

hó, Ps(K, f )i

≥ lim
K!1

lim
n!1

E[Ps(K, f )(çtn�s)]

≥ lim
n!1

lim
K!1

E[Ps(K, f )(çtn�s)]

≥ lim
n!1

E[Psf (çtn�s)]

≥ lim
n!1

E[f (çtn )]

≥ hó, f i.

The following lemma will be used in this and the next section.

LEMMA 3.2. Let f be a continuous, increasing function and ç0 be any configuration,
finite or infinite. Then

lim
t!1

Eç0 [f (çt)] � hRen(å), f i.

PROOF. Theorem B implies that lim
t!1

E1[f (çt)] ≥ hRen(å), f i. Attractiveness implies

that

lim
t!1

Eç0 [f (çt)] � lim
t!1

E1[f (çt)] ≥ hRen(å), f i.

We first consider processes çx such that çx
0(y) ≥ éxy and we first prove complete conver-

gence for these processes.
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PROPOSITION 3.2. As t tends to infinity, the process çx
t converges in distribution to

the probability measure Px[ú Ú 1]é0 + Px[ú ≥ 1] Ren(å).

PROOF. Suppose tn increases to infinity and ç0
tn converges in distribution to ó. Given

Corollary 2.1 and Lemma 3.1, it is immediate that

ó ≥ P0[ú Ú 1]é0 + P0[ú ≥ 1]U

where U is an invariant measure which concentrates on infinite configurations. In order
to apply Theorem B of Liggett we simply have to show that U is translation invariant.
For any x, it is clear that çx

tn must tend in distribution to Ux, the translation of U by x. To
show U is invariant we must show that, for arbitrary x, U ≥ Ux.

We prove that U ½ Ux. It is elementary that, for any s Ù 0, the distribution of ç0
tn�s

conditioned on ú Ù tn � s converges to U. We introduce the sequence of stopping times
D0, S1, D1, S2, . . . defined by

1. D0 ≥ 0,
2. Sk ≥ infft Ù Dk�1 : ç0

t (x) ≥ 1g,
3. for k Ù 0, Dk ≥ infft Ù Sk : çx,Sk

t ≥ ;g.
It is important to realize that the events fú ≥ 1g and f9r : Sr Ú 1, Dr ≥ 1g, are
a.s. equal by Corollary 2.2. Let f be an increasing function with f (;) ≥ 0. Then, since
ç0

t ½ çx,Sr
t on fSr Ú t Ú Drg,

E[f (ç0
tn)] ½

X
r

E[f (çx,Sr
tn )ISrÚtnÚDr].

As n tends to infinity, the left hand side, by hypothesis, tends to P[ú ≥ 1]hU, fi, while
the right hand side converges to P[ú ≥ 1]hUx, f i. Thus U ½ Ux, but the roles of U and
Ux can be reversed in this argument and we conclude that U ≥ Ux. This implies (by the
arbitrariness of x) that U is translation invariant. Theorem B implies that U must equal
Ren(å). Because the space of measures on f0, 1gZ is compact and the sequence ftng is
arbitrary we conclude thatç0

t converges in distribution to P[ú Ú 1]é0+P[ú ≥ 1] Ren(å).
This completes the Proof of Proposition 3.2.

We now return to the Proof of Proposition 3.1.

PROOF OF PROPOSITION 3.1. We first consider a NPS with ç0 finite. It will be suf-
ficient to prove that for any continuous increasing function f with f (0) ≥ 0, Eç0 [f (çt)]
converges as t tends to infinity to P[ú ≥ 1]hRen(å), f i. First Lemma 3.2 states that for
any ç (finite or not)

lim
t!1

Eç0 [f (çt)] � lim
t!1

E1[f (çt)] ≥ hRen(å), f i.

Therefore, for any n,

lim
t!1

Eç0 [f (çt)] ≥ Eç0

�
lim
t!1

Eçn [f (çt)]
½
� P[ú Ù n]hRen(å), f i.

The time n can be arbitrarily large, so we can conclude that

lim
t!1

Eç0 [f (çt)] � P[ú ≥ 1]hRen(å)f , ói.
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It remains to show the reversed inequality. We do this by mimicking the proof of the
translation invariance of U in Proposition 3.1 and then using this result. Redefine the
stopping times

1. D0 ≥ 0,
2. Sk ≥ infft Ù Dk�1 : çt(0) ≥ 1g,
3. for k Ù 0, Dk ≥ infft Ù Sk : ç0,Sk

t ≥ 0g.
Again (by Corollary 2.2) we note that the events fú ≥ 1g and the event fr :
Sr Ú 1, Dr ≥ 1g are a.s. equal. As before

Eç0 [f (çt)] ½
X

r
E[f (ç0,Sr

tn )ISrÚtnÚDr].

This latter term converges to P[ú ≥ 1]hRen(å), f i as t tends to infinity, so Proposition 3.1
is proven for NPS with ç0 finite. To complete the proof for arbitrary ç0 it remains to treat
the case where ç0 is infinite.

If ç0 is infinite let çn
0 be the finite configuration given by

çn
0(y) ≥

(
ç0(y) if jyj Ú n,
0 otherwise.

Given f , increasing, continuous and 0 on 0, attractiveness of our NPS yields

lim
t!1

Eç0 [f (çt)] ½ lim
t!1

Eç
n
0 [f (çt)] ≥ Pç

n
0 [ú ≥ 1]hRen(å), f i.

But Pç
n
0 [ú ≥ 1] converges to one as n tends to infinity. We conclude that lim

t!1
Eç0 [f (çt)] ½

hRen(å), f i. That the converse inequality holds is guaranteed by Lemma 3.2, and the
proof is complete.

Section 4. We have so far dealt with attractive, reversible NPS with å(n)
å(n+1) decreasing

to some constant strictly greater than one. Throughout this section we assume that å(n)
å(n+1)

decreases to one and
P
l
å(l) Ù 1. Let ç be a corresponding NPS. We may choose í Ú 1,

so that if å̄(l) ≥ ílå(l) for each l, then
P
l
å̄(l) Ù 1. So the NPS, ç, corresponding to å̄

satisfies the conclusions of Proposition 3.1. It should be noted that Ren(å̄) ≥ Ren(å).
We define the process ç̄n

t so that
1. ç̄n

t ≥ çt for t � n.
2. ç̄n

n+s is a NPS corresponding to å̄, which is conditionally independent of Fn given
çn.

3. çn+s ½ ç̄n
n+s for all n.

We may assert the existence of a ç̄n since our processes are attractive and given a config-
uration, the flip rates of vacant sites will be larger for the ç process than the ç̄n process.

As before it is sufficient to show that for any f increasing, continuous and zero on 0,
we must have lim

t!1
Eç0 [f (çt)] ½ P[ú ≥ 1]hRen(å), f i. Let f be such a function. Then for

any n
lim
t!1

Eç0 [f (çt)] ½ lim
t!1

Eç0 [f (ç̄n
t )].
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Proposition 3.1 may be applied to å̄ NPS. Therefore the right hand side of the above
inequality is equal to P̄n[ú ≥ 1]hRen(å), f i, where P̄n refers to the probability for events
defined by ç̄n and so in this context ú is the hitting time of 0 by ç̄n. However, P̄n[ú ≥ 1]
converges to P[ú ≥ 1] as n tends to infinity, since if the process çt never hits the empty
set, then jçnj tends to infinity as n tends to infinity. This completes the proof of our main
Theorem.
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