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Non-discrete Frieze Groups

Alan F. Beardon

Abstract. _e classiûcation of Euclidean frieze groups into seven conjugacy classes is well known,
and many articles on recreational mathematics contain frieze patterns that illustrate these classes.
However, it is only possible to draw these patterns because the subgroup of translations that leave the
pattern invariant is (by deûnition) cyclic, and hence discrete. In this paper we classify the conjugacy
classes of frieze groups that contain a non-discrete subgroup of translations, and clearly these groups
cannot be represented pictorially in any practical way. In addition, this discussion sheds light onwhy
there are only seven conjugacy classes in the classical case.

1 Introduction

Informally, a frieze is a decorative linear strip given by the regular repetition of some
pattern along a line in the complex planeC, and it is well known that (up to the identi-
ûcation described below) there are exactly seven distinct frieze patterns. _ese seven
patterns are as follows:

F1 ∶ ⋅ ⋅ ⋅ ⌊ ⌊ ⋅ ⋅ ⋅
F2 ∶ ⋅ ⋅ ⋅ ⌊ ⌈ ⌊ ⌈ ⋅ ⋅ ⋅
F3 ∶ ⋅ ⋅ ⋅ ∼ ∼ ⋅ ⋅ ⋅
F4 ∶ ⋅ ⋅ ⋅ ∈ ∈ ⋅ ⋅ ⋅
F5 ∶ ⋅ ⋅ ⋅ ∨ ∨ ⋅ ⋅ ⋅
F6 ∶ ⋅ ⋅ ⋅ ∨ ∧ ∨ ∧ ⋅ ⋅ ⋅
F7 ∶ ⋅ ⋅ ⋅ ◻ ◻ ⋅ ⋅ ⋅

Each frieze pattern gives rise to a frieze group, namely the Euclidean symmetry group
of that frieze. Mathematically speaking, it is the groups rather than the patterns that
are interesting, and frieze groups are characterised as those groups of isometries ofC
that have the following two properties.
(i) _ere is a straight line L in C that is invariant under the action of G.
(ii) _e subgroup of translations in G is an inûnite cyclic group.
As L is invariant under G, all translations in G are in the direction of L.

Two frieze groups F and F′ are conjugatewithin the group of Euclidean similarities
if and only if there is a Euclidean similarity ϕ∶C→ C such that F′ = ϕFϕ−1. It is usual
to identify conjugate frieze groups, and the well-known classical result is that there are
exactly seven conjugacy classes of frieze groups, and these are represented by the frieze
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groups of the seven frieze patterns illustrated above. Clearly, when discussing conjugacy
classes, we can restrict our attention to frieze groups for which L = R.

We turn now to the results in this paper. Lyndon [7, p. 43] classiûed the seven
frieze groups and stated that a group of real isometries whose subgroup of translations
is, for example, {z ↦ z + a + b71/3 ∶a, b ∈ Q}, is of little geometric interest. _is may
be true, but it is not the real issue because the classiûcation into conjugacy classes
is algebraic, not geometric. Taking an algebraic view, we shall say that a group G is a
generalised frieze group if it is a groupof real isometrieswhose subgroupof translations
is non-trivial but not necessarily discrete. Now let T be a given non-trivial group of real
translations, and let G(T) be the class of generalised frieze groups whose subgroup of
translations is T . Our aim is to classify and count the conjugacy classes in G(T) and
in this notation the classical result is as follows.

_eorem 1.1 If T is cyclic, then there are exactly seven conjugacy classes in G(T).

We shall also prove (among others) the following three theorems, the last of which
relates to Lyndon’s remark.

_eorem 1.2 Let T be the group {z ↦ z + a ∶a ∈ F}, where F is a subûeld of R. _en
there are exactly ûve conjugacy classes in G(T).

_eorem 1.3 If T = {z ↦ z + a ∶a ∈ Z+Z
√

2}, then there are nine conjugacy classes
in G(T).

_eorem 1.4 If T = {z ↦ z+a+b71/3 ∶a, b ∈ Q}, then there are ûve conjugacy classes
in G(T).

Each of these results is a special case of the following general theorem which we
state and prove in a more deûnitive form later in the paper.

_eorem 1.5 For each non-trivial group T of real translations there is a positive integer
N(T) associated with T (which will be deûned in Section 5) such that G(T) has exactly
3 + 2N(T) conjugacy classes with respect to similarities.

Finally, we mention that frieze patterns and frieze groups can be deûned (in the
obvious way) in the hyperbolic plane, see [6]. Similar questions arise in this case, and
we leave these for the interested reader to pursue.

2 Some Preliminary Remarks

We shall be considering groups of real isometries, i.e., isometries ofC that leaveR in-
variant, and we begin by introducing notation that will be used throughout the paper.
First, for much of the time we shall be using the real isometries

τ(z) = z + 1, σ(z) = z̄, ρ(z) = −z, µ(z) = −z̄, ν(z) = z̄ + 1
2 .
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We also use I for the identity map, I for the group of real isometries, and ⟨a, b, . . .⟩
for the group generated by a, b, . . . .
Each real isometry ofC is of the form z ↦ az+b (a direct isometry), or z ↦ az̄+b

(an indirect isometry), where a = ±1 and b is real. Apart from I, there are ûve types of
real isometries, namely

translations: z ↦ z + b = I(z) + b, b ≠ 0,
rotations of order two: z ↦ −z + b = ρ(z) + b,
re�ections across a vertical line: z ↦ −z̄ + b = µ(z) + b,
the re�ection across R: z ↦ z̄ = σ(z),
glide re�ections: z ↦ z̄ + b = σ(z) + b, b ≠ 0,

where, in each case, b is real.
Consider for a moment the list F1 , . . . , F7 above, and let us use Fi for both the

pattern and the group. If we assume (as we may) that the subgroup of translations
that leaves each Fi invariant is generated by τ, then the seven representative frieze
groups are F1 = ⟨τ⟩, F2 = ⟨ν⟩, F3 = ⟨τ, ρ⟩, F4 = ⟨τ, σ⟩, F5 = ⟨τ, µ⟩, F6 = ⟨ν, µ⟩, and
F7 = ⟨τ, ρ, σ⟩ or, informally,

⟨z + 1⟩, ⟨z̄ + 1
2 ⟩, ⟨z + 1,−z⟩, ⟨z + 1, z̄⟩, ⟨z + 1,−z̄⟩, ⟨z̄ + 1

2 ,−z̄⟩, ⟨z + 1,−z, z̄⟩.
Proofs of this can be found in many texts, e.g., [2, p. 164], [4, p. 516], [5, Chapter 3],
[7, pp. 40–42], and [8, pp. 78–84].

Our analysis of generalised frieze groups will be simpliûed if we write the ûve
diòerent types of isometries in a common form. So let K = {I, ρ, σ , µ} (the Klein
4-group). _en each real isometry g takes the form g(z) = ϕg(z) + g(0), where
ϕg ∈ K. Further, the map Θ∶ I → K given by Θ(g) = ϕg , is a surjective homomor-
phism whose kernel is the group T of all real translations. _e main idea behind the
classiûcation of conjugacy classes in G(T) is as follows. Suppose that G ∈ G(T). _en
T is a normal subgroup of G, and the restriction ΘG of Θ to G is a homomorphism
of G intoK. _us the quotient group G/T is either the trivial group, a cyclic group of
order two, or the Klein group of order four, and every non-trivial element ofG/T has
order two. With a little work we can use these facts to identify the conjugacy classes
of groups in G(T). We know that the quotient group I/T is isomorphic to K, so that
I is the disjoint union of the four cosets
(i) Θ−1(I) (the group T of real translations),
(ii) Θ−1(ρ) (all rotations of order two with a real ûxed point),
(iii) Θ−1(µ) (all re�ections across some vertical line),
(iv) Θ−1(σ) (the re�ection σ across R, and all glide re�ections).
_is observation raises a question about terminology. As our discussion will be in
terms of Θ and K, from now on we shall classify the map σ as a glide re�ection, and
not as a re�ection. Admittedly this con�icts with standard terminology but it is simply
terminology, and it is consistent with the view that the identity map is a trivial trans-
lation. More importantly, it greatly simpliûes our algebraic approach which concen-
trates on the coset decomposition rather than the geometric action. To summarise: in
this revised terminology, an isometry g in I is a re�ection if and only if Θ(g) = µ and
it is a glide re�ection if and only if Θ(g) = σ . When we want to distinguish between
z ↦ z̄ and z ↦ z̄ + a, where a ≠ 0, we shall say that z ↦ z̄ is the trivial glide re�ection
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and that z ↦ z̄ + a is a non-trivial glide re�ection. For the beneût of the reader we
emphasize that from now on, a re�ection will always mean a re�ection across a ver-
tical line, and not across the real axis. _us a re�ection preserves each of the upper
and lower half-planes, whereas a glide re�ection interchanges them, and this perhaps
adds support in favour of the revised terminology.

Now let T be a non-trivial group of real translations, and suppose that G ∈ G(T).
If G contains a rotation and a re�ection, or a rotation and a glide re�ection, or a
re�ection and a glide re�ection, then it contains isometries of all three types because,
in the notation above, ρσ = µ, ρµ = σ , and σµ = ρ. It follows from this that G is one
of the following distinct types of groups.
(i) G contains only translations.
(ii) G contains translations and rotations (and only these).
(iii) G contains translations and re�ections (and only these).
(iv) G contains translations and glide re�ections (and only these).
(v) G contains translations, rotations, re�ections and glide re�ections.

We shall need the following lemma.

Lemma 2.1 Let f be a similarity that preserves R, and g a real isometry. _en g and
f g f −1 are simultaneously either (1) a translation, (2) a rotation, (3) a re�ection across
a vertical line, (4) the trivial glide re�ection z ↦ z̄, (5) a non-trivial glide re�ection.

Proof _e ûve classes of isometries described in the lemma can be identiûed by (a)
the number of ûxed points inR, and (b) whether they are direct or indirect isometries.
For example, the isometry is a re�ection across a vertical line if and only if it is an
indirect isometry with one ûxed point in R. Since (a) and (b) are invariant under
conjugation, the result follows immediately.

Lemma 2.1 implies that each of the classes (i)–(v) described above is a union of
conjugacy classes; thus our problem reduces to describing and counting the conjugacy
classes in each of these ûve cases separately. It is also clear that for any choice of the
translation group T , there are at least ûve conjugacy classes of groups, namely

T , ⟨T , ρ⟩, ⟨T , µ⟩, ⟨T , σ⟩, ⟨T , ρ, µ, σ⟩.
_us _eorem 1.2 suggests (informally, and not surprisingly) that the richer the alge-
braic structure of T , the fewer the number of conjugacy classes.

3 The Proof of Theorem 1.2

_eorem 1.2 is much easier to prove than the classical _eorem 1.1 because the Eu-
clidean translation lengths form a ûeld rather than an integral domain. _e fact that
this is never mentioned in texts is testament to the (perhaps excessive) concentration
on geometric illustrations to the exclusion of algebraic ideas.

We suppose then that G is a generalised frieze group that leaves R invariant, and
whose subgroup of translations contains z ↦ z + a if and only if a ∈ F. _e ûrst
possibility is that G contains only these translations and there is nothing more to be
said about this case. Now suppose that G contains only translations and rotations.
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_en G contains some rotation r(z) = −z + a. Let t(z) = z − a/2 and note that here
we are not assuming that a ∈ F. _en tTt−1 = T (because translations commute), and
trt−1(z) = −z = ρ(z). It follows easily that tGt−1 has the coset decomposition T∪Tρ,
so that G is conjugate to ⟨T , ρ⟩. _is shows that there is only one conjugacy class of
groups that contains only translations and rotations. A similar argument holds for
groups that contain only translations and re�ections across some vertical line, and
these groups are conjugate to ⟨T , µ⟩.

We need a slightly diòerent argument for groups that contain only translations and
glide re�ections. Let G be such a group, and suppose that h ∈ G, where h(z) = z̄ + a
with a real. _en h2(z) = z + 2a, so that 2a, and hence a, is in F. Let f (z) = z + a.
_en f ∈ G so that h f −1 ∈ G. As h f −1(z) = z̄ = σ(z), we now see that G = ⟨T , σ⟩.

_e argument so far accounts for four conjugacy classes of groups. _e remaining
case that we have not yet discussed is whenG contains translations, and at least two of
the other maps considered above. In this case G must contain a rotation, a re�ection
across a vertical line, and a glide re�ection. _en, by conjugating with a translation
(as above) we may assume that the rotation is ρ. Also as above, we see that G must
contain the map σ . It follows that G contains ρσ , which is µ. It follows that a�er a
conjugation with a suitable translation G has coset decomposition T ∪Tρ∪Tσ ∪Tµ.
_us if G contains all four types of maps, then G is conjugate to ⟨T , ρ, σ , µ⟩, and this
gives us exactly one more conjugacy class.

4 Groups Without Glide Reflections

In this section we show that given a non-trivial, real translation group T , each of
the subclasses (i), (ii), and (iii) described above is a single conjugacy class. _us the
groups in G(T) that do not contain glide re�ections are partitioned into exactly three
conjugacy classes. _is result follows immediately from the following lemma.

Lemma 4.1 Suppose that T is a non-trivial group of real translations and that G in
G(T) does not contain any glide re�ections. _en G is conjugate to exactly one of the
groups T, ⟨T , ρ⟩, and ⟨T , µ⟩.

Proof First, it is clear from Lemma 2.1 that no two of the three given groups are
conjugate. As G does not contain any glide re�ections, the quotient group G/T is
either trivial or a group of order two. Obviously, if G/T is trivial, then G = T . Now
suppose that G/T is of order two. _en either G contains some map g(z) = −z + b
or some map h(z) = −z̄ + b. Let ϕ(z) = z − b/2, so that ϕgϕ−1 = ρ and ϕhϕ−1 = µ.
If g ∈ G, then G = ⟨T , g⟩ so that ϕGϕ−1 = ⟨T , ρ⟩. If h ∈ G, then G = ⟨T , h⟩ so that
ϕGϕ−1 = ⟨T , µ⟩.

Lemma 4.1 shows that there is one conjugacy class in G(T) for each of the groups
that contain only translations, only translations and rotations, and only translations
and re�ections. Later we shall see that for some positive integer N(T) (which will be
deûned later) there are N(T) conjugacy classes of groups that contain only transla-
tions and glide re�ections, and also N(T) conjugacy classes of groups that contain
isometries of all four types. _us the total number of conjugacy classes in G(T) is
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3 + 2N(T). We shall also see that if T is cyclic then N(T) = 2, and this will conûrm
the classical division into seven conjugacy classes.

5 An Analysis of Glide Reflections

It is clear from the preceding remarks that the number of conjugacy classes in G(T)
depends in an essential way on the glide re�ections in G. We shall now explain the
basic mechanism that allows us to compute the number of conjugacy classes in G(T)
when glide re�ections are present. _e key question to ask is that if the translation
g(z) = z + g(0) is in G, is the glide re�ection z ↦ z̄ + g(0)/2 (whose second iterate is
g) in G? In order to discuss this question we let

T0 = {g(0) ∶ g ∈ T}, T1 = { 1
2 g(0) ∶ g ∈ T},

so that T0 ⊂ T1. Of course, z ↦ z + a is in T if and only if a is in T0. However,
although g ↦ g(0) is an isomorphism from T onto T0, our arguments will be more
transparent (and easier to follow) if we use a notation that carefully preserves the
distinction between T and T0.

Next, let UT be the multiplicative group of non-zero real numbers u such that
uT0 = T0. We call UT the group of units of T0 (or of T). If T0 = Z (the classical case),
then UT = {1,−1}. However, if T0 = R, then UT is the inûnite multiplicative group
of non-zero real numbers. _e groups T0, T1, and UT will play a crucial role in what
follows and, in particular, we have the following lemma.

Lemma 5.1 Suppose that T is a non-trivial group of real translations and that f is
a similarity whose restriction to R is, say, f (x) = ax + b, where a, b, x ∈ R. _en
f T f −1 = T if and only if aT0 = T0 (equivalently, a ∈ UT ).

Proof If g(z) = z + k, then f g f −1(x) = x + ak. _us

f T f −1 = {z ↦ z + ak ∶ k ∈ T0} = {z ↦ z + k′ ∶ k′ ∈ aT0}.

It follows that f T f −1 = T if and only if aT0 = T0.

Lemma 5.1 shows that if two generalised frieze groups (both with invariant lineR)
are conjugate, then the conjugatingmap z ↦ az+b is such that a ∈ UT . _e groupUT
also plays another important role in our analysis. For each u in UT we have a natural
operation of “multiplication by u” acting on the quotient group T1/T0, namely

u(x + T0) = ux + uT0 = ux + T0 , x ∈ T1 ,

and this provides the ”multiplication” map mu ∶T1/T0 → T1/T0 deûned by

mu(x + T0) = u(x + T0) = ux + T0 .

_e next lemma describes in detail how themaps mu act on the quotient group T1/T0.

Lemma 5.2 Let M = {mu ∶ u ∈ UT}. _en M is a group of permutations of T1/T0,
and u ↦ mu is a homomorphism of UT into M.
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With this available, we can ûnally state our main result, which is alluded to in
_eorem 1.5 and which gives a precise formula for the number of conjugacy classes
in G(T).

_eorem 5.3 Let T be a non-trivial group of real translations, and let N(T) be the
number of orbits in T1/T0 under the action of the group M. _en G(T) has exactly
3 + 2N(T) conjugacy classes with respect to similarities.

We give the proof of Lemma 5.2 now, but as it may be helpful for the reader to
gain familiarity with these ideas before seeing the proof of_eorem 5.3, we give some
applications of _eorem 5.3 in the next section and defer its proof until Section 7.

_e Proof of Lemma 5.2 First,mu is properly deûned on the quotient group T1/T0.
Indeed, suppose that x + T0 = y + T0. _en x − y ∈ T0 so that u(x − y) ∈ T0. _us
ux + T0 = uy + T0 so that mu is properly deûned on T1/T0. Next, mu maps T1/T0
into itself because if x ∈ T1, then 2x ∈ T0. _us 2ux ∈ T0, so that ux ∈ T1. Next, mu
is injective because if ux + T0 = uy + T0, then u(x − y) ∈ T0, so that (as u−1 ∈ UT)
x − y ∈ T0 and hence x +T0 = y+T0. Finally,mu is surjective since given any element
y + T0 of T1/T0 is mu(u−1 y + T0). We conclude that mu is a permutation of T1/T0. It
is obvious that M is a group, and that u ↦ mu is a homomorphism ofUT into M.

6 Some Examples

First, suppose that T0 is ûnitely generated, say T0 = ⟨a1 , . . . , ar⟩. _en

T0 = ⟨a1 , . . . , ar⟩ = {m1a1 + ⋅ ⋅ ⋅ +mrar ∶ m1 , . . . ,mr ∈ Z},
T1 = { 1

2m1a1 + ⋅ ⋅ ⋅ + 1
2mrar ∶ m1 , . . . ,mr ∈ Z},

T1/T0 = {ε1a1 + ⋅ ⋅ ⋅ + εrar + T0 ∶ ε1 , . . . , εr = 0, 1
2}.

_us, in this case T1/T0 is isomorphic to C2 × ⋅ ⋅ ⋅ × C2 with r factors. For example, if
T0 = Q, then T1 = T0 so that T1/T0 is the trivial group. If T0 = Z, then T1/T0 is C2. If
T0 = Z +Z

√
2, then T1/T0 is C2 × C2. We now give some explicit examples.

Example 6.1 Let T = ⟨τ⟩ (this is the classical case). _en T1/T0 = {Z, 1
2 + Z},

UT = {−1, 1}, andM acts as the trivial group onT1/T0. _usN(T) = 2 (the cardinality
of T1/T0), so there are exactly seven conjugacy classes in G(T).

Example 6.2 Suppose that T0 is a subûeld of R. _en T1 = T0, so that T1/T0 is
the trivial group. As T1/T0 is a singleton set, N(T) = 1. Hence in this case there are
exactly ûve conjugacy classes in G(T). _is provides another proof of _eorem 1.2.

Example 6.3 Suppose that T0 = Q + Qλ, where λ is irrational. _en T0 = T1, so
that N(T) = 1. _us, for any irrational λ, there are ûve conjugacy classes in G(T). In
particular, there are ûve conjugacy classes in the example given by Lyndon, and this
provides a proof of _eorem 1.4.
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Example 6.4 Suppose that T0 = Z +Zλ, where λ is irrational. _en

T1/T0 = {T0 , 1
2 + T0 , λ

2 + T0 , 1
2 +

λ
2 + T0} .

_us 1 ≤ N(T) ≤ 4, so there are 5, 7, 9, or 11 conjugacy classes in G(T).

In certain cases in Example 6.4 we can calculate N(T), and the last two examples
are of this type.

Example 6.5 Suppose that T0 = Z+Z
√

2. We shall show that in this case, N(T) = 3
so that in this case there are exactly nine conjugacy classes in G(T), and this proves
_eorem 1.3. First, it is clear that

T1/T0 = {T0 , 1
2 + T0 ,

√

2
2 + T0 , 1+

√

2
2 + T0} .

Next, UT is the set of units of the integral domain T0, and it is known that

UT = {±ηn ∶ n ∈ Z}, η = 1 +
√

2

(see [1, pp. 5, 264]). We must now examine the induced group action on T1/T0. A
simple calculation shows that the map mη ∶ x + T0 ↦ ηx + T0 acts as follows:

T0 ↦ T0 ,
√

2
2 + T0 ↦

√

2
2 + T0 , 1

2 + T0 ↦ 1+
√

2
2 + T0 ↦ 1

2 + T0 .

It follows from this that mη−1 = mη , so that the action ofM on T1/T0 provides exactly
three orbits. _us N(T) = 3 as required.

Example 6.6 Let T0 = Z +Z
√

6. _en

T1/T0 = {0 + T0 , 1
2 + T0 ,

√

6
2 + T0 , 1+

√

6
2 + T0} .

Again, UT is the set of units in the integral domain T0 and it is known that hereUT =
{±ηn ∶ n ∈ Z}, where η = 5+2

√
6. A straightforward calculation shows that mη is the

identity map on T1/T0. _us N(T) = 4 and there are exactly eleven conjugacy classes
in G(T).

Formore details of this discussion see, for example, [1, Chapters 1 and 11], [3, Chap-
ter 7], [9, Section 4.8], and [10, Chapters 5 and 7] (andmany other texts). _e element
η in Examples 6.5 and 6.6 is called the fundamental unit of Z + Z

√
m, m = 2, 6, and

Table 4 in [1, p.280] gives the fundamental units of Z + Z
√

m for all squarefree m
with 2 ≤ m ≤ 39. With this, the reader can easily provide many more examples and it
may be that a deeper investigation of these algebraic ideas would would reveal some
further structure here.

7 The Proof of Theorem 5.3

Let T be a given group of real translations. In view of our discussion above, it is
suõcient to show that there are exactly 2N(T) conjugacy classes of groups in G(T)
that contain glide re�ections. In order to analyse these groups, we select a complete
set of coset representatives of T0 in T1, say c j + T0, where j ∈ J; thus,

T1/T0 = {c j + T0 ∶ j ∈ J}, T1 = ⋃
j∈J

(c j + T0),
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where c i+T0 = c j+T0 if and only if i = j. Corresponding to these coset representatives,
we have the glide re�ections σ j(z) = z̄ + c j , j ∈ J.

We begin our analysis by considering groups that contain translations and glide
re�ections, and only these.

Lemma 7.1 Suppose that G ∈ G(T) and that G contains glide re�ections, but no
rotations or re�ections. _enG is one of the groups ⟨T , σ j⟩. Moreover, the groups ⟨T , σi⟩
and ⟨T , σ j⟩ are conjugate if and only if c i + T0 and c j + T0 are in the same orbit under
the action of M on T1/T0. In particular, there are exactly N(T) conjugacy classes of
such groups in G(T)

Proof Suppose that g is a glide re�ection in G, say g(z) = z̄ + b. _en b ∈ T1 so
that b ∈ c j + T0 for some j. We conclude that g(z) = z̄ + c j + a, where a ∈ T0 or,
equivalently, there is some t in T with t(z) = z + a and

g(z) = z̄ + c j + a = tσ j(z) = σ j t(z).
_is implies that gT = σ jT , and this proves that G = ⟨T , σ j⟩ since in this case we have
G = T ∪ gT = T ∪ σ jT = ⟨T , σ j⟩.

We now prove the second assertion in Lemma 7.1. Suppose that c i +T0 and c j +T0
are in the same M-orbit in T1/T0. _en there is some a in UT such that ac i + T0 =
c j + T0 or, equivalently, ησiη−1T = σ jT , where η(z) = az. It follows that

η⟨T , σi⟩η−1 = ⟨ηTη−1 , ησiη−1⟩ = ⟨T , ησiη−1⟩ = ⟨T , σ j⟩,
so that ⟨T , σi⟩ and ⟨T , σ j⟩ are conjugate.

Now suppose that ⟨T , σi⟩ and ⟨T , σ j⟩ are conjugate, say f ⟨T , σi⟩ f −1 = ⟨T , σ j⟩,
where f is the real similarity whose restriction to R is f (x) = ax + b. By Lemma 2.1,
we see that f T f −1 = T so that from Lemma 5.1 aT0 = T0. Now f σi f −1 ∈ ⟨T , σ j⟩ =
T ∪Tσ j , so that f σi f −1 ∈ Tσ j . _is implies that there is some k in T0 such that for all
real x, x + ac i = x + c j + k. Hence ac i ∈ c j + T0, so that

ma(c i + T0) = ac i + T0 = c j + T0 .

_is shows that c i + T0 and c j + T0 are in the same M-orbit in T1/T0.

We now consider groups in G(T) that containmaps from at least two of the classes
(i) rotations, (ii) re�ections, and (iii) glide re�ections. As such a group G must then
containmaps from all three classes, wemay assume thatG inG(T) contains rotations,
re�ections, and glide re�ections.

Lemma 7.2 Suppose that G ∈ G(T) and that G contains rotations, re�ections, and
glide re�ections. _enG is conjugate to one of the groups ⟨τ, σ j , ρ⟩. Moreover, the groups
⟨T , σi , ρ⟩ and ⟨T , σ j , ρ⟩ are conjugate if and only if the groups ⟨T , σi⟩ and ⟨T , σ j⟩ are
conjugate.

Proof By Lemma 7.1, the subgroup of translations and glide re�ections in G is one
of the groups ⟨T , σ j⟩ where j ∈ J. By assumption, G contains a rotation, say r, where
r(z) = −z + a, and a re�ection, say s. Now let t(z) = z − a/2. _en trt−1 = ρ and
tσ j t−1 = σ j . _us tGt−1 contains the rotation ρ, the glide re�ection σ j , and the two
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re�ections s1 (= tst−1) and ρσ j . As s−1
1 ρσ j is a translation in T , we see that s1T = ρσ jT .

_us tGt−1 = T ∪ ρT ∪ σ jT ∪ s1T = T ∪ ρT ∪ σ jT ∪ ρσ jT . Hence G is conjugate to
⟨T , σ j , ρ⟩.

We now prove the second statement in Lemma 7.2. Suppose that the groups
⟨T , σi , ρ⟩ and ⟨T , σ j , ρ⟩ are conjugate. _en from Lemma 2.1 we see that the sub-
groups ⟨T , σi⟩ and ⟨T , σ j⟩ are conjugate.

Now suppose that ⟨T , σi⟩ and ⟨T , σ j⟩ are conjugate, say ⟨T , σ j⟩ = f ⟨T , σi⟩ f −1, for
some similarity f . _en f ⟨T , σi , ρ⟩ f −1 = ⟨T , σ j , ρ1⟩ where ρ1 = f ρ f −1 (a rotation).
Now choose a translation t such that tρ1 t−1 = ρ. As t commutes with all translations
and glide re�ections, we see that (t f )⟨T , σi , ρ⟩(t f )−1 = ⟨T , σ j , ρ⟩, so that ⟨T , σi , ρ⟩
and ⟨T , σ j , ρ⟩ are conjugate.

In conclusion, Lemmas 4.1, 7.1, and 7.2 provide the proof of _eorem 5.3.
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