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Background. Group-level results suggest that relative to healthy controls (HCs), ultra-high-risk (UHR) and first-episode
psychosis (FEP) subjects show alterations in neuroanatomy, neurofunction and cognition that may be mediated
genetically. It is unclear, however, whether these groups can be differentiated at single-subject level, for instance
using the machine learning analysis support vector machine (SVM). Here, we used a multimodal approach to examine
the ability of structural magnetic resonance imaging (sMRI), functional MRI (fMRI), diffusion tensor neuroimaging
(DTI), genetic and cognitive data to differentiate between UHR, FEP and HC subjects at the single-subject level using
SVM.

Method. Three age- and gender-matched SVM paired comparison groups were created comprising 19, 19 and 15 subject
pairs for FEP versusHC, UHR versus HC and FEP versus UHR, respectively. Genetic, sMRI, DTI, fMRI and cognitive data
were obtained for each participant and the ability of each to discriminate subjects at the individual level in conjunction
with SVM was tested.

Results. Successful classification accuracies (p<0.05) comprised FEP versus HC (genotype, 67.86%; DTI, 65.79%; fMRI,
65.79% and 68.42%; cognitive data, 73.69%), UHR versus HC (sMRI, 68.42%; DTI, 65.79%), and FEP versus UHR
(sMRI, 76.67%; fMRI, 73.33%; cognitive data, 66.67%).

Conclusions. The results suggest that FEP subjects are identifiable at the individual level using a range of biological and
cognitive measures. Comparatively, only sMRI and DTI allowed discrimination of UHR from HC subjects. For the first
time FEP and UHR subjects have been shown to be directly differentiable at the single-subject level using cognitive, sMRI
and fMRI data. Preliminarily, the results support clinical development of SVM to help inform identification of FEP and
UHR subjects, though future work is needed to provide enhanced levels of accuracy.
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Introduction

Considerable effort has been made over the last
30 years to identify biological and cognitive markers
of schizophrenia. A large number of studies have re-
ported significant differences in chronic schizophrenia
(ChSz) patients relative to healthy controls (HCs)
across a range of neurobiological and neurocognitive
measures. These include structural magnetic resonance

imaging (sMRI), functional MRI (fMRI) and diffusion
tensor MRI (DTI) (Ellison-Wright et al. 2008; Ellison-
Wright & Bullmore, 2009; Minzenberg et al. 2009;
Pettersson-Yeo et al. 2011), genotype (Ripke et al.
2011; Steinberg et al. 2011) and neuropsychological
profile (Tyson et al. 2004; Minzenberg et al. 2009).
More recently, efforts to facilitate earlier and more
effective treatment intervention have resulted in
studies focusing on those in the earliest stages of the
illness, namely, individuals with first-episode psycho-
sis (FEP) and those deemed to be at ultra-high risk
(UHR). In these groups, similar neuroanatomical,
neurofunctional and cognitive alterations (Bilder et al.
2000; Keefe et al. 2006; Wood et al. 2007; Walterfang
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et al. 2008; Benetti et al. 2009; Crossley et al. 2009; Allen
et al. 2010, 2011; Koutsouleris et al. 2010; Seidman et al.
2010; Mechelli et al. 2011; Fusar-Poli et al. 2012) that
may be mediated genetically (Fusar-Poli et al. 2012)
have also been reported, though such alterations are
usually less severe than those seen in ChSz groups
(Egerton et al. 2011). The majority of studies, however,
have largely employed univariate analyses that
allow inference at the group level only. Therefore, to
promote the clinical translation of such work, efforts
have progressively turned toward alternative analyti-
cal approaches that allow inference at the level of the
individual.

One such technique is the supervised learning
method support vector machine (SVM). A type of
multivariate pattern recognition algorithm, SVM has
become increasingly used in studies of psychiatric
and neurological disorder (Orrù et al. 2012), the ration-
ale for which is twofold: first, SVM allows inference at
the single-subject, rather than group, level (Lao et al.
2004; Norman et al. 2006); second, as a multivariate
analysis, SVM is able to account for the inter-relation-
ship between different within-modality measures for
each subject by considering them simultaneously.
Specifically, SVM involves the development of a gener-
alized decision function [represented by an optimal
separating hyperplane (OSH)] using a known ‘train-
ing’ dataset (e.g. voxel intensities), able to discriminate
between examples (i.e. subjects) belonging to two pre-
defined classes (e.g. diagnostic categories). This func-
tion is then applied to new, as yet unseen ‘test’ data,
and its accuracy assessed in terms of the proportion
of examples correctly classified providing an estimate
of how well the classifier can be expected to generalize
to future individual cases (Pereira et al. 2009).

At present, only a handful of studies have used SVM
to investigate psychosis, with those that have predomi-
nantly employing data from only a single modality.
Studies using sMRI, for example, report that ChSz
patients can be significantly discriminated from HCs
with accuracies of 81.1% (Davatzikos et al. 2005) and
86.1% (Sun et al. 2009), and UHR subjects from HCs
with an accuracy of 82% (Koutsouleris et al. 2009a).
DTI has also been used by one study which reported
that ChSz patients can be discriminated from HCs
with 90.62% accuracy based on white matter (WM)
integrity (Ingalhalikar et al. 2010). In addition two
studies using fMRI data reported the ability to dis-
criminate ChSz patients from HCs with accuracies of
92.4% (Costafreda et al. 2011) and 81.6% (Yang et al.
2010), respectively. By contrast, only one study has
applied SVM to genotype data in the context of
psychosis, and reported that genetic information
could accurately discriminate ChSz subjects from
HCs with 73.9% accuracy (Yang et al. 2010). Lastly,

cognitive profile has also been employed by one recent
study which reported that UHR subjects were discrim-
inable from HCs with 94.2% accuracy (Koutsouleris
et al. 2011). Taken together, these studies support the
notion that the individual use of different modalities,
each in conjunction with SVM, may allow discrimi-
nation between those at different stages of the psycho-
sis time-course at the single-subject level. However,
as no investigation has yet gathered data from such
a wide range of modalities during the same study,
the relative accuracies of genetic, DTI, sMRI, fMRI
and neuropsychological data within the same popu-
lation(s) are unknown. Furthermore, since the majority
of work so far has applied predominantly to those with
ChSz, it is less clear whether these same metrics can be
reliably utilized to draw inference at the individual
level for FEP and UHR subjects, differentiating them
either from HCs, or, for the first time at cross-sectional
level, from each other.

In the current study, therefore, we aimed to investi-
gate the discriminative potential of genetic, sMRI,
fMRI, DTI and/or cognitive data in the classification
of FEP, UHR and HC subjects at the individual level.
Based on the evidence currently available, our hypoth-
eses were threefold. (1) FEP subjects would be discrim-
inable from HCs across the largest range of modalities,
since at the group level greater magnitudes of differ-
ence have been reported in FEP over UHR subjects
relative to HCs (Bilder et al. 2000; Eastvold et al. 2007;
Fusar-Poli et al. 2009, 2012; de Mello Ayres et al.
2010; Smieskova et al. 2010). (2) In comparison with
FEP subjects, UHR subjects would be differentiable
from HCs by fewer modalities, with sMRI, DTI, fMRI
and cognitive data being the most sensitive measures,
in correspondence with previous group-level results
(Pflueger et al. 2007; Benetti et al. 2009; Crossley et al.
2009; Koutsouleris et al.2009b). (3) We would be able
to directly discriminate FEP from UHR subjects, with
sMRI and cognitive data being the most able to differ-
entiate the two groups (Riecher-Rössler et al. 2009;
Mechelli et al. 2011).

Method

A brief description of the materials and methods is
provided in this section. For further methodological
details, please see Supplement 1.

Subjects

FEP

A total of 19 subjects were recruited through the South
London and Maudsley National Health Service Trust
(http://www.slam.nhs.uk). All had experienced a FEP
within the past 24 months that met Diagnostic and
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Statistical Manual of Mental Disorders, Fourth Edition
(DSM-IV) criteria for a schizophreniform psychosis.

At-risk mental state

A total of 19 subjects were recruited from Outreach
and Support in Southeast London (OASIS), a clinical
service for young people at high risk of developing
psychosis (Broome et al. 2005). Their clinical status was
defined according to the Personal Assessment and
Crisis Evaluation (PACE) criteria (Yung et al. 1998) and
their diagnosis confirmed using the Comprehensive
Assessment of At-Risk Mental States (CAARMS; Yung
et al. 2005). In brief, individuals are classed as being
UHR based on the presence of (1) attenuated psychotic
symptoms, (2) brief limited intermittent psychotic
symptoms, or (3) trait and state risk factors (e.g. in-
dividual has a schizotypal personality disorder or a
first-degree relativewith a DSM-IV psychiatric disorder
combined with a significant decline in cognitive and
social functioning over the past year).

For FEP and UHR subjects, psychopathology was
measured on the day of scanning using the Positive
and Negative Syndrome Scale (PANSS; Kay et al. 1987).

HCs

A total of 23 subjects were recruited from the local area
through advertising. No subjects met criteria for a
DSM-IV psychiatric disorder, fulfilled the PACE cri-
teria for prodromal symptoms or had a first-degree
family history of psychiatric disorder.

All subjects included in the study were aged
18–35 years and spoke English as their first language.
Exclusion criteria included a history of neurological
disorder, DSM-IV criteria for substance misuse dis-
order, or prior head trauma resulting in loss of con-
sciousness and/or hospitalization (Table 1).

Data acquisition

MRI

All neuroimaging was conducted using a 3-T MRI
scanner (Sigma LX-GE, USA) at the Maudsley Hos-
pital, London. For sMRI-derived grey matter (GM)
images, T1-weighted scans were obtained with a volu-
metric three-dimensional Spoiled Gradient Recall
sequence [repetition time (TR)=7.044ms, echo time
(TE)=2.82ms, flip angle=20°, slice thickness=1.1 mm,
in-plane resolution=1.09×1.09mm, field of view
(FOV)=21 cm2, matrix=256×256] producing 196
coronal slices. For DTI-derived fractional anisotropy
(FA) maps, volumes were acquired using a multi-slice
peripherally-gated doubly refocused spin-echo echo
planar imaging (EPI) sequence, optimized for precise
measurement of the diffusion tensor in parenchyma,

from 60 contiguous near-axial slice locations with a
TE=104.5 ms, flip angle=90°, slice thickness=2.4mm,
FOV=30.7 cm2 and matrix=128×128. The maximum
diffusion was 1300 s/mm2 and four images were
acquired at slice locations with no diffusion gradients,
alongside 32 diffusion-weighted images in which
gradient directions were uniformly distributed in
space. Functional images were acquired using a TR=
2000ms, TE=30ms, flip angle=70°, slice thickness=
3mm, FOV=24 cm2 and matrix=64×64 producing 38
axial slices in parallel to the AC-PC (anterior com-
missure–posterior commissure) line. During the ac-
quisition of functional images, subjects performed the
Hayling sentence completion task (HSCT) using an
experimental protocol described elsewhere (Allen
et al. 2008). In brief, subjects were visually presented
for 4 s with a five-, six- or seven-word sentence-stem
with the last word omitted. Presentation of a question
mark then required them to overtly generate a word
either congruent (initiation condition) or incongruent
(suppression condition) with the preceding sentence.
The task was arranged into eight blocks of five
sentence-stems, with each block separated by a base-
line condition whereby the subject was shown a
visual fixation-cross for 4 s, followed by the word
‘REST’ for 4 s which they had to read overtly. Overall,
one initiation session and one suppression session
were run separately, generating 600 image volumes
in total.

Molecular genetics

Saliva samples were obtained from each subject using
the Oragene® DNA collection kit (DNA Genotek Inc.,
Canada), preceded by 30min of nil by mouth.

Neuropsychology

Designed to quantify different components of verbal
learning, retention and retrieval (Delis et al. 1987) the
California Verbal Learning Test, Second Edition
(CVLT-II) is a neuropsychological test that comes
provided with associated demographically corrected
norms (Delis et al. 2000). This test was chosen since it
had revealed robust deficits in ChSz patients, FEP
and UHR subjects relative to matched controls in pre-
vious studies (Cirillo & Seidman, 2003; Rund et al.
2004; Niendam et al. 2006). Prior to scanning, the
CVLT-II was administered to each subject by a trained
researcher and their answers recorded.

Data analysis

sMRI

Structural images were pre-processed using the
Diffeomorphic Anatomical Registration using
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Table 1. Demographic data for each SVM diagnostic comparison

Characteristic

UHR v. HC FEP v. HC FEP v. UHR

HC (n=19) UHR (n=19) Analysis HC (n=19) FEP (n=19) Analysis FEP (n=15) FEP (n=15) Analysis

Age, years 23.32 (3.43) 22.42 (3.42) 24.89 (4.41) 24.37 (4.71) 23.20 (3.43) 23.27 (3.69)
Gender, n
Male 9 9 12 12 9 9
Female 10 10 7 7 6 6

WRAT estimated
premorbid IQ

107.58 (10.77) 103.16 (13.14) t =−1.22
p=0.237

108.53 (10.48) 102.74 (9.33) t =−1.68
p=0.110

104.87 (11.98) 103.80 (9.97) t =−0.25
p=0.807

PANSS totala 52.53 (9.28) 54.37 (15.13) 53.73 (9.11) 51.80 (12.46) t =−0.46
p=0.655

PANSS positivea 12.84 (3.67) 12.58 (3.96) 12.80 (3.65) 12.07 (3.08) t =−0.60
p=0.556

PANSS negativea 14.00 (4.08) 13.79 (5.26) 14.33 (4.05) 13.47 (5.05) t =−0.51
p=0.618

PANSS generala 25.68 (5.01) 28.00 (8.35) 26.60 (4.97) 26.27 (7.35) t =−0.14
p=0.893

Total medicationb 4538.49 (19226.27) 32828.58 (29788.57) 5748.75 (21628.90) 31291.57 (27178.41)
Mean medication/dayc 13.27 (44.43) 204.08 (116.35) 16.81 (49.75) 211.70 (109.89)

Data are given as mean (S.D.).
SVM, Support vector machine; UHR, ultra-high risk; HC, healthy control; FEP, first-episode psychosis; WRAT, Wide Range Achievement Test; PANSS, Positive and Negative Syndrome

Scale; S.D., standard deviation.
a Symptom profile recorded at the time of the scan.
b Total medication refers to the average absolute amount of medication taken by that group in standardized mg units of chlorpromazine±1 s.D.
c Mean medication/day is the average medication dosage taken by each subject during their period of treatment in standardized mg units of chlorpromazine±1 s.D.
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Exponen-tiated Lie algebra (DARTEL) toolbox
(Ashburner, 2007) in SPM8 software (http://www.fil.
ion.ucl.ac.uk/spm) running under Matlab7.1 (Math
Works, USA). This procedure involves the creation of
a study-specific template and the segmentation of
each individual image using said template, with the
aim of maximizing accuracy and sensitivity.

DTI

The diffusion data were pre-processed using the
ExploreDTI (Leemans et al. 2009) software package,
including the RESTORE (robust estimation of tensors
by outlier rejection) algorithm (Chang et al. 2005), in
order to generate FA maps corrected for eddy current
distortion, head motion, b-matrix reorientation and
rejection of data outliers. These images were then
used to create FA ‘skeletons’ depicting each subject’s
unique WM network and associated FA value defined
integrity for each voxel, using tract-based spatial stat-
istics (Smith et al. 2006) software.

fMRI

Functional images were pre-processed using SPM8
software (http://www.fil.ion.ucl.ac.uk/spm) running
under Matlab7.1 (Math Works, USA). Following
the standard SPM8 functional imaging pipeline for
pre-processing and analysis, using the parameter esti-
mates obtained for all brain voxels from the task’s
six experimental conditions: (1) initiation (In); (2) sup-
pression (Su); (3) repetition of ‘REST’ during initiation
(RI); (4) repetition of ‘REST’ during suppression
(RS); (5) cross-fixation during initiation (CFI); and
(6) cross-fixation during suppression (CFS), five con-
trasts of interest were computed, namely, Su>In, Su>
RS, In>RI, Su>CFS and In>CFI.

Genotyping

DNA was extracted from saliva samples and geno-
typed for a pre-selected list of 26 psychosis-associated
single nucleotide polymorphisms (SNPs) (Ferreira et al.
2008; O’Donovan et al. 2008; Schulze et al. 2009;
Stefansson et al. 2009; Rivero et al. 2010; Chen et al.
2011; Cichon et al. 2011; Hansen et al. 2011, Ripke
et al. 2011; Steinberg et al. 2011; Williams et al. 2011)
(see Table 2) using the KASP™ (competitive allele-
specific PCR) genotyping system. All SNPs were
under Hardy–Weinberg equilibrium (p>0.05), calcu-
lated using Fisher’s exact test. The genotype of each
SNP was orthogonally coded and the values for each
subject collated into a vector that could be entered
into a SVM. In cases where one or more SNPs could
not be genotyped for a given subject, these were

excluded for all other pairs in the SVM comparison
since each vector length must be the same. The number
of SNPs therefore entered into the SVM for FEP versus
HC, UHR versus HC, and FEP versus UHR were 20,
20 and 19, respectively. In cases where subjects
declined to provide a DNA sample, a reduced number
of SVM subject pairs was examined.

Neuropsychology

Each subject’s answers were entered into the CVLT-II
software package and a summary of raw and standard-
ized scores generated for each task component. These
scores were then collated into a single vector, reflecting
the subject’s performance across the test, which could
be entered into a SVM. Since one UHR subject did
not complete the task, only 18 SVM subject pairs
were examined for the UHR versus HC CVLT-II-
based comparison.

SVM

Each subject’s data (segmented GM images, FA
skeletons, HSCT contrast images, orthogonally coded
genotype data or CVLT-II score vectors) were entered
separately into SVMs (Burges, 1998) as implemented
in the PROBID software package (http://www.brainmap.
co.uk/probid.htm) running under Matlab7.1 (Math
Works, USA) in order to assess the diagnostic potential
of each modality with respect to UHR and FEP subjects
relative to HCs, and also to each other. For each com-
parison, subject pairs matched for age (±4 years) and
gender were used to construct samples for the classifier,
with each individual scan treated as a data point located
in high-dimensional space and assigned by the operator
to a given class. SVM comparator groups comprised 19,
19 and 15 subject pairs for FEP versus HC, UHR versus
HC and FEP versus UHR, respectively. Each classifier
was embedded in a leave-one-out cross-validation
(LOOCV) framework, whereby all input vectors except
those from one pair (one subject from each group)
were used as training data for the classifier and the
remaining pair withheld as test data. The accuracy of
the classifier was calculated by taking the mean of its
sensitivity and specificity (Hastie et al. 2001) across all
LOOCV folds. Statistical significance of the accuracy
was determined by a permutation test, whereby subjects
were randomly assigned to a class and the LOOCV cycle
repeated 1000 times. This provided a distribution of accu-
racies reflecting the null hypothesis that the classifier did
not exceed chance. The number of times where it was
greater than or equal to the true accuracy was then
divided by 1000 to estimate a p value for the accuracy.
For each neuroimaging comparison a discrimination
map was produced visualizing each voxel’s weight-
vector score (wi) – representing its relative contribution
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in defining the OSH – displaying the pattern of regions
able to discriminate each group. Unlike previous studies
(Mourão-Miranda et al. 2005; Marquand et al. 2008)
no map threshold was applied since any successful dis-
crimination was founded on the total number of voxel
intensities entered into the SVM. For successful genetic
and CVLT-II-based classifiers, analogous graphs show-
ing the wi for each SNP or CVLT-II subcomponent,
respectively, were also produced. Given that redundant
feature extraction was not employed, nor a priori regions
of interest specified, it was not possible to draw infer-
ences regarding specific regions, SNPs or CVLT-II
subcomponents out of the context of the overall pattern
unlike mass-univariate results. For all classifiers, a linear

kernel was used and the SVM parameter C was fixed to
unity.

SVM classification accuracies

In order to correct for multiple comparisons we
employed both a Holm–Bonferroni step-down pro-
cedure, which controls for family-wise error (FWE)
(Holm, 1979), in addition to the generally less con-
servative Benjamini–Hochberg procedure, which con-
trols for false discovery rate (FDR) (Benjamini &
Hochberg, 1995). Since both procedures are intended
for independent data, however, which the compari-
sons here are unlikely to be, there is an increased

Table 2. Specific single nucleotide polymorphisms selected as support vector machine input and
corresponding publication from which they were derived

Gene
Single nucleotide
polymorphism Reference

1. ZNF804A rs1344706 O’Donovan et al. (2008)
2. CACNA1C rs1006737 Ferreira et al. (2008)
3. MHC/PRSS rs13211507 Steinberg et al. (2011)
4. TCF4 rs9960767 Stefansson et al. (2009)
5. MMP16 rs7004633 Ripke et al. (2011)
6. NRGN rs12807809 Stefansson et al. (2009)
7. CMYA5 rs10043986 Chen et al. (2011)
8. CMYA5 rs4704591 Chen et al. (2011)
9. MHC/PRSS rs3131296 Stefansson et al. (2009)
10. MHC/PRSS rs6932590 Stefansson et al. (2009)
11. NCAN rs1064395 Cichon et al. (2011)
12. PBRM1 rs2251219 Williams et al. (2011)
13. TCF4/CCDC68 rs4309482 Steinberg et al. (2011)
14. AHIL rs7750586 Rivero et al. (2010)
15. MHC/PRSS rs911507 Steinberg et al. (2011)
16. PCGEM1 rs17662626 Steinberg et al. (2011)
17. CNNM2 rs7914558 Ripke et al. (2011)
18. NT5C2 rs11191580 Ripke et al. (2011)
19. ANK3 rs10994336 Ferreira et al. (2008)
20. ANK3 rs9804190 Schulze et al. (2009)
21. CSMD1 rs10503253 Ripke et al. (2011)
22. TCF7L2 rs7903146 Hansen et al. (2011)
23. VRK2 rs2312147 Steinberg et al. (2011)
24. CACNA1C rs7972947 Ripke et al. (2011)
25. DYPD rs1625579 Ripke et al. (2011)
26. TRIM26 rs2021722 Ripke et al. (2011)

ZNF804A, Zinc finger protein 804A; CACNA1C, calcium channel, voltage dependent,
L-type, alpha 1 subunit; MHC/PRSS, major histocompatibility complex/cationic
trypsinogen gene; TCF4, transcription factor 4; MMP16, matrix metallopeptidase 16;
NRGN, neurogranin; CMYA5, cardiomyopathy associated 5; NCAN, neurocan; PBRM1,
protein polybromo1; CCDC68, coiled coil domain containing 68; AHIL, Abelson helper
integration 1; PCGEM1, prostate-specific transcript 1; CNNM2, cyclin M2; NT5C2,
5′-nucleotidase cytosolic II; ANK3, ankyrin 3; CSMD1, CUB and sushi multiple domains 1;
TCF7L2, transcription factor 7-like-2; VRK2, vaccinia-related kinase 2; DYPD,
dihydropyrimidine dehydrogenase; TRIM26, tripartite motif containing 26.
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risk of type II error. Therefore, in the absence of
an optimally established method for correcting non-
independent hypotheses, for completeness both cor-
rected and uncorrected accuracies are reported (see
Table 3).

Comparing classifiers

Though the study’s primary focus was to investigate
whether each data type can, or cannot, successfully dis-
tinguish FEP and UHR subjects from HCs, and/or each
other, for completeness, a non-parametric Cochran’s
Q test was also performed to examine whether the
levels of accuracy for each classifier differed signifi-
cantly for each diagnostic comparison. In the event of
a significant result, a post hoc McNemar’s test, with
Bonferroni correction, was then applied to identify
which specific classifiers were statistically different.

Standard univariate analysis

In order to compare the results of our multivariate
approach with those of a standard univariate analysis,

a paired t test comparing those subjects used for the
corresponding SVM comparisons was conducted for
GM images, FA skeletons, HSCT contrasts and
CVLT-II scores.

Results

Demographics

There were no significant differences with respect to
pre-morbid IQ between any of the groups (p>0.05),
nor was there a significant difference in PANSS scores
(total, positive, negative or general) between UHR and
FEP subjects (p>0.05). With respect to medication, all
FEP subjects, except one, were medicated. In compari-
son, all UHR subjects were medication-naive, apart
from two (see Table 1).

SVM classification of GM images

Using GM images, SVM was able to successfully dis-
criminate FEP from UHR subjects and UHR from HC
subjects with accuracies of 76.67% (p<0.05, FWE

Table 3. Classification accuracy, sensitivity, specificity and p value for each binary group comparison, using sMRI, DTI, fMRI, genetic and
cognitive input data

SVM comparison

SVM input data

GM FA skeleton Su>Ina Su>RSa In>RIa Su>CFSa In>CFIa Genotype CVLT-II

UHR v. HC
Classification accuracy, % 68.42b 65.79b 47.37 60.53 57.89 60.53 36.84 52.94 50.00
Sensitivity, % 68.42 68.42 31.58 57.89 57.89 57.89 36.84 52.94 44.44
Specificity, % 68.42 63.16 63.16 63.16 57.89 63.16 36.84 52.94 55.56
p 0.010 0.032 0.707 0.113 0.179 0.127 0.967 0.457 0.590

FEP v. HC
Classification accuracy, % 63.16 65.79b 63.16 44.74 65.79b 47.37 68.42b 67.86b 73.69c

Sensitivity, % 57.89 68.42 47.37 36.84 63.16 42.11 63.16 71.43 68.42
Specificity, % 68.42 63.16 78.95 52.63 68.42 52.63 73.68 64.29 78.95
p 0.066 0.031 0.064 0.791 0.034 0.694 0.017 0.031 0.002

FEP v. UHR
Classification accuracy, % 76.67d 56.67 53.33 46.67 63.33 53.33 73.33c 33.33 66.67b

Sensitivity, % 80.00 46.67 40.00 46.67 53.33 40.00 66.67 41.67 66.67
Specificity, % 73.33 66.67 66.67 46.67 73.33 66.67 80.00 25.00 66.67
p 0.001 0.281 0.404 0.731 0.087 0.425 0.005 0.927 0.034

sMRI, Structural magnetic resonance imaging; DTI, diffusion tensor neuroimaging; fMRI, functional magnetic resonance
imaging; SVM, support vector machine; GM, grey matter; FA skeleton, fractional anisotropy skeleton; Su, suppression;
In, initiation; RS, repetition of ‘REST’ during suppression; RI, repetition of ‘REST’ during Initiation; CFS, cross-fixation
during suppression; CFI, cross-fixation during initiation; CVLT-II, California Verbal Learning Test – second edition; UHR,
ultra-high risk; HC, healthy control; FEP, first-episode psychosis.

a Hayling sentence completion task contrast conditions.
b p<0.05 uncorrected.
c p<0.05 false discovery rate-corrected.
d p<0.05 family-wise error-corrected.
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Fig. 1. Multivariate discrimination maps for successful structural magnetic resonance imaging (MRI)-, diffusion tensor
neuroimaging (DTI)- and functional MRI-based support vector machine (SVM) classifiers. (a, b) Multivariate maps showing
the pattern of grey matter regions used to discriminate: (a) first-episode psychosis (FEP) and ultra-high-risk (UHR) subjects –
red indicates discrimination in favour of the FEP versus the UHR group, whilst blue indicates discrimination in favour of the
UHR group versus the FEP group; (b) UHR and healthy control (HC) subjects – red indicates discrimination in favour of the
UHR versus the HC group, whilst blue indicates discrimination in favour of the HC group versus the UHR group. (c, d)
Multivariate maps showing the pattern of white matter regions used to discriminate: (c) UHR and HC subjects – green
indicates discrimination in favour of the UHR versus the HC group, whilst yellow indicates discrimination in favour of the
HC group versus the UHR group; (d) FEP and HC subjects – green indicates discrimination in favour of the FEP versus the
HC group, whilst yellow indicates discrimination in favour of the HC group versus the FEP group. (e–g) Multivariate maps
showing the pattern of neurofunction used to discriminate: (e) FEP and HC subjects using the initiation>repetition of ‘REST’
during initiation (In>RI) contrast – gold indicates discrimination in favour of the FEP versus the HC group, whilst turquoise
indicates discrimination in favour of the HC group versus the FEP group; (f) FEP and UHR subjects using the initiation>cross
fixation during initiation (In>CFI) contrast – gold indicates discrimination in favour of the FEP versus the UHR group, whilst
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corrected) and 68.42% (p<0.05), respectively. At a
trend level only, SVM was also able to discriminate
FEP subjects from HCs with an accuracy of 63.16%
(p=0.066). For the FEP versus UHR comparison the
regional pattern most representative of FEP subjects
was more rostrally and subcortically concentrated in
comparison with the UHR group. Similarly for the
UHR versus HC comparison, the regional pattern that
most typified the UHR group appeared concentrated
in more extreme cortical, rostral and caudal regions
(Fig. 1a, b).

SVM classification of FA skeletons

Based on FA skeletons, SVM was able to successfully
discriminate both FEP subjects from HCs, and UHR
subjects from HCs with 65.79% accuracy (p<0.05).
The pattern of regions used for each classification
was widely and diffusely spread, with no clear concen-
tration of regions discernible (Fig. 1c, d). In contrast, it
was not possible to directly discriminate FEP from
UHR subjects using DTI with significant accuracy.

SVM classification of HSCT contrasts

Of the five contrasts tested, only two were able to make
successful discriminations. Using the In>RI contrast
FEP subjects were distinguishable from HCs with an
accuracy of 65.79% (p<0.05). In comparison, using
the contrast In>CFI, SVM could discriminate between
both FEP and UHR subjects, and also between FEP
subjects and HCs, with accuracies of 73.33% (p<0.05,
FDR corrected) and 68.42% (p<0.05), respectively. As
Fig. 1e–g show, the regional pattern discriminating
FEP from UHR and HC subjects was concentrated in
the frontal and occipital cortices; in contrast, the pat-
tern that most typified the UHR and HC relative to
FEP subjects was widespread with greater prominence
in the areas encompassing the central fissure. fMRI
data were unable to distinguish UHR from HC
subjects.

SVM classification using genotype

Using genetic information comprising data from
a combination of 20 psychosis-associated SNPs, SVM
was able to successfully discriminate FEP subjects
from HCs with an accuracy of 67.86% (p<0.05)
(Fig. 2a). Comparatively, it was not possible to

discriminate UHR subjects from HCs, or FEP from
UHR subjects using genetic data.

SVM classification using CVLT-II score

Based on each subject’s collated score representing
their performance across the CVLT-II, SVM was able
to successfully discriminate both FEP from HC subjects
and also FEP from UHR subjects with accuracies of
73.69% (p<0.05, FDR corrected) and 66.67% (p<0.05),
respectively (Fig. 2b, c). In contrast, CVLT-II score
could not accurately differentiate UHR from HC
subjects.

Comparison of classifiers

Using a Cochran’s Q test no significant differences
were observed between the classifiers intended to dis-
criminate UHR and HC subjects (Q=8.856, p=0.451),
nor FEP and HC subjects (Q=10.400, p=0.319). Whilst
a significant difference was observed between the clas-
sifiers intended to discriminate FEP and UHR subjects
(Q=18.353, p=0.031), subsequent post hoc McNemar’s
tests (Bonferroni corrected) comparing individual clas-
sifiers were not significant (p>0.05).

Standard univariate analysis

Paired t test analysis revealed significant (p<0.05, FWE
corrected) FA differences for the contrast HC>UHR
(see Supplementary Fig. 1). Further, a number of task
subcomponents of the CVLT-II differed between
groups in each of the three SVM comparisons (see
Supplementary Table 1). In contrast, no significant
differences were detected for GM or HSCT contrast
data, with respect to any of the corresponding SVM
comparisons.

Potential confounds

Since most FEP subjects were medicated we examined
whether any successful classifier able to discriminate
them from UHR, or HC, subjects could possibly be dri-
ven by this potential confound. This was achieved by
performing a Pearson’s correlation analysis between
the projection of each FEP subject’s input data onto
the weight vector (i.e. the distance of each test subject’s
scan from the hyperplane, quantifying the relative
ease, or difficulty, with which they were categorized)

turquoise indicates discrimination in favour of the UHR group versus the FEP group; (g) FEP and HC subjects using the
In>CFI contrast – gold indicates discrimination in favour of the FEP versus the HC group, whilst turquoise indicates
discrimination in favour of the HC group versus the FEP group. (a–g) Left to right, axial slices with Montreal Neurological
Institute (MNI) z coordinate −28, −6, 2, 16, 32, 46, 67. The colour scale for each subfigure shows the absolute value of the
weight vector score for each voxel, representing its relative contribution to the optimal separating hyperplane.
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and their corresponding medication measure, i.e. total
dose and mean dose per day. No significant corre-
lations were found (see Supplementary material for
details).

Discussion

In agreement with our first hypothesis, FEP subjects
were most readily discriminable from HCs with ac-
curate classifiers generated by all modalities, with the
exception of sMRI. Notably, this demonstrates the
novel finding that genetic data may be used to discri-
minate FEP subjects from HCs at the individual level
with significant accuracy. As proposed in our second
hypothesis, we show that UHR subjects are differ-
entiable from HCs based on sMRI and DTI; however,
it was not possible to distinguish these two groups
using fMRI, cognitive or genetic data. Finally, consistent
with our third hypothesis, we found that FEP and UHR
subjects could be accurately differentiated when com-
pared directly using sMRI, fMRI and cognitive, but not
genetic or DTI, data.

Taken together, the results provide a number of
possible inferences associated with the UHR and FEP
states. Given that DTI data were able to successfully
discriminate between the two patient groups relative

to HCs, for example, supports the notion that WM
alterations are associated with psychosis risk.
Likewise, the fact that sMRI was able to discriminate
UHR from FEP and HC subjects may imply that GM
alterations are specifically associated with the UHR
state, but not those who have transitioned. The absence
of GM alteration in FEP subjects relative to HCs is sur-
prising, however, given previous reports of wide-
spread significant effects (Shepherd et al. 2012). One
speculative explanation for this is that the FEP subjects
recruited here were less clinically severe than those of
previous studies, potentially resulting in less severe
alteration. This is supported by their relatively stable
symptom profile (Table 1), which may possibly, in
turn, have been driven by downstream effects of
exposure to anti-psychotic medication. This inter-
pretation is made with caution, however, since the pre-
cise effects of such exposure remain unclear (Navari &
Dazzan, 2009), and since a successful classifier was not
generated furthermore, this could also not be inves-
tigated quantitatively using a correlation analysis.
In comparison, the fact that fMRI and cognitive data
could differentiate FEP from UHR and HC subjects
suggests that alterations in these two domains are
specifically associated with conversion to psychosis.
This inference is also true for individual genotype
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Fig. 2. Weight vectors for successful genetic- and California Verbal Learning Test – second edition (CVLT-II)-based support
vector machine (SVM) classifiers. (a–c). Bar charts showing the weight vector for each (a) single nucleotide polymorphism
and (b, c) CVLT-II subcomponent, representing their relative contribution to the optimal separating hyperplane, used to
discriminate. (a) First-episode psychosis (FEP) and healthy control (HC) subjects: light grey indicates discrimination in favour
of the FEP versus the HC group, whilst dark grey indicates discrimination in favour of the HC group versus the FEP group
(‘E-n’ multiplies the preceding value by (10)–n, where n is a real number). (b) FEP and HC subjects: light grey indicates
discrimination in favour of the FEP versus the HC group, whilst dark grey indicates discrimination in favour of the HC group
versus the FEP group. (c) FEP and ultra-high-risk (UHR) subjects: light grey indicates discrimination in favour of the FEP
versus the UHR group, whilst dark grey indicates discrimination in favour of the UHR group versus the FEP group. (See
Table 2 for single nucleotide polymorphisms 1–20, and Supplementary material for CVLT-II subcomponents 1–45.)
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data, which were able to discriminate only between
those with a FEP and HCs.

Methodologically, our results consolidate the notion
that multivariate techniques such as SVM may be
better suited to the development of a real-world
clinical diagnostic tool than standard mass-univariate
methods. Although no focal abnormalities survived
univariate threshold either for sMRI nor fMRI, for
example, overall patterns of alteration in data from
these two modalities were still able to successfully dis-
criminate between subjects. Furthermore, the ability to
accurately distinguish FEP from HC subjects using
genetic data supports the notion that individuals
who suffer a FEP may be genetically predisposed to
transitioning (Kéri et al. 2009). As a non-invasive, easily
obtained and relatively cheap data type, it could poten-
tially serve as a good basis for future diagnostic tools
in conjunction with clinical assessment. Similarly,
the fact that CVLT-II score was able to distinguish
FEP from both UHR and HC subjects may represent
another non-invasive and inexpensive tool to inform
identification of individuals with a FEP. With specific
regard to UHR subjects in comparison, the fact that
only sMRI and DTI were able to distinguish them
from HCs might suggest that they are associated
with patterns of neuroanatomical alteration that may
occur in the absence of similar genetic, neurofunctional
or cognitive patterns of alteration, though focal abnor-
malities may still be evident. This aspect of our results
therefore provides tentative support for the use of
sMRI and DTI as a clinical aid in identifying those at
UHR of psychosis, but may be limited by the associ-
ated costs and technical expertise involved.

It should be acknowledged, however, that in com-
parison with the few previous studies to have applied
SVM to the UHR cohort, the accuracies found here
discriminating UHR from HC subjects were relatively
modest (Koutsouleris et al. 2009a, 2011). As with
many univariate studies, this inconsistency may have
arisen from a number of possible methodological
differences which include, but are not restricted
to, the assessment tools used to identify subjects at
UHR; the strength of the scanner and the acquisition
sequence used for the collection of neuroimaging
data; the data-processing pipeline used to construct
features for input into SVM; and the choice of SVM
parameter settings (Caruana & Niculescu-Mizil, 2006;
Orrù et al. 2012). Indeed, it is perhaps worth noting
that as a relatively novel application to the field of
psychiatry, efforts to identify the optimal criteria
necessary for accurate discrimination using SVM are
currently ongoing, of which these studies represent
some examples.

In the context of developing real-world diagnostic
tools, therefore, two notes of caution must be

considered. First, the eventual use of genetic, neuro-
psychological and multimodal neuroimaging data in
clinical practice would arguably require greater levels
of diagnostic accuracy than those found here. One ave-
nue to achieving this may lie in the integration of
different types of data within the same SVM allowing
information from one modality to inform that of
another, for example, as used recently by Yang et al.
(2010) to discriminate ChSz patients from HCs. It re-
mains, however, that any future translational imple-
mentation of SVM must account for the fact that the
impact of misclassifying someone ill as healthy may
be worse than misclassifying someone healthy as ill.
As such, a classifier able to detect patients with excel-
lent sensitivity, but healthy individuals with only
good specificity, may be preferred to a classifier with
excellent specificity but only good sensitivity. Second,
it should be noticed that the application of SVM
could only reach the same level of diagnostic accuracy
as traditional methods of clinical assessment since the
development of the classifier is based on the distinction
between groups in the training data, which ultimately
relies on traditional diagnostic methods. Nevertheless,
such technology may help in a clinical setting by dis-
criminating between those most difficult to categor-
ize using traditional methods of assessment alone.
Furthermore, it could potentially be used in a forensic
setting as an objective means of reducing controversy
in evaluations of mental illness and minimizing errors
in detecting malingering (Sartori et al. 2011).

Limitations

The study’s primary limitation was that at the time
of scanning, the majority of FEP patients were medi-
cated, and correspondingly, symptomatically stable.
Although we found no evidence for a significant
impact of medication, it is possible that anti-psychotic
exposure, or even other variables not considered here,
may still have contributed to the classification in an as
yet undetectable way, potentially confounding the
inference one can draw from the successful discrimina-
tor. It should also be acknowledged furthermore that
the medication measures used as variables to detect
potential confounds (i.e. total dose, average dose)
may not have fully captured the historical and cumu-
lative effects of exposure to anti-psychotics which
may, in comparison, be more severe. Consequently,
it cannot be ruled out, for example, that the successful
FEP classifiers were simply distinguishing subjects
who have, or have not, been exposed to anti-
psychotics. However, it remains that since the exact
nature and extent of the effects of anti-psychotic medi-
cation on brain structure are not yet known (Navari &
Dazzan, 2009), this is an issue not specific to the
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current study, but is instead one that applies to the vast
majority of studies of psychiatric patients. A second
limitation is that, in the absence of an optimally estab-
lished method for correcting for non-independent com-
parisons, we used two types of correction intended for
multiple independent comparisons which may have
resulted in an increased risk of type II error. However,
we also reported uncorrected results for completeness.
A third limitation, applicable to any study with access
restricted to their own sample, is that as a single-centre,
cross-sectional, study we are unable to make inference
regarding the generalizability across different research
centres for any of the successful classifiers, nor at this
stage make any prediction of subsequent progression
within the UHR group. A fourth limitation of the
study is that the three subject groups were not com-
pared using a multi-class classification approach,
which would have provided a closer approximation
of how differential diagnostic decisions are made in
real-world clinical practice. However, since multiple
binary classifiers for each possible comparison were
generated in the current study, a quantitative estimate
is still provided demonstrating the relative ease, or
difficulty, with which subjects from each group may
be differentiated from the subjects of every other
group, with respect to each data type. Lastly, since
we did not use any a priori regions of interest or auto-
mated data-driven feature selection, we are unable to
make inferences regarding specific neuroanatomical
regions, CVLT-II task components, SNPs, or risk
alleles, since in each case the entirety of the
data entered into the SVM was used to generate the
classifier.

Conclusion

The evidence presented here demonstrates that
subjects who have had a FEP can be identified at the
individual level using a range of biological and cogni-
tive measures including genetic, DTI, fMRI and
cognitive data. In contrast, sMRI and DTI were the
only modalities that allowed identification of those
at UHR of psychosis with significant accuracy. For
the first time we have shown that FEP and UHR
subjects can be directly differentiated using neuro-
psychological, sMRI and fMRI data. From a clinical
perspective, the results provide preliminary support
to the translational development of SVM as a clinically
useful diagnostic aid, highlighting patterns of genetic,
cognitive, neuroanatomical and neurofunctional altera-
tions that could, in the future, be potentially used to
inform identification of those with subclinical sympto-
matology and recent converters. Nevertheless, we
would stress that the eventual use of this approach in
everyday clinical practice would arguably require

greater levels of diagnostic accuracy than found in
the present study, with the integration of data repre-
senting one possible solution.

Supplementary material

For supplementary material accompanying this paper
visit http://dx.doi.org/10.1017/S003329171300024X.
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