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SUMMARY

Studies on climate impacts and related adaptation strategies are becoming increasingly important to counteract
the negative impacts of climate change. In Ethiopia, climate change is likely to affect crop yields negatively and
therefore food security. However, quantitative evidence is lacking about the ability of farm-level adaptation
options to offset the negative impacts of climate change and to improve food security. The MarkSim Global
Climate Model weather generator was used to generate projected daily rainfall and temperature data originally
taken from the ECHAMS5 general circulation model and ensemble mean of six models under high (A2) and low
(B1) emission scenarios. The FAO AquaCrop model was validated and subsequently used to predict maize yields
and explore three adaptation options: supplemental irrigation (Sl), increasing plant density and changing sowing
date. The maximum level of maize yield was obtained when the second level of supplemental irrigation (SI2),
which is the application of irrigation water when the soil water depletion reached 75% of the total available
water in the root zone, is combined with 30 000 plants/ha plant density. It was also found that SI has a marginal
effect in good rainfall years but using 94-111 mm of Sl can avoid total crop failure in drought years. Hence, Sl is a
promising option to bridge dry spells and improve food security in the Rift Valley dry lands of Ethiopia. Expected
longer dry spells during the shorter rainy season (Belg) in the future are likely to further reduce maize yield. This
predicted lower maize production is only partly compensated by the expected increase in CO, concentration.
However, shifting the sowing period of maize from the current Belg season (mostly April or May) to the first
month of the longer rainy season (Kiremt) (June) can offset the predicted yield reduction. In general, the
present study showed that climate change will occur and, without adaptation, will have negative effects. Use
of SI and shifting sowing dates are viable options for adapting to the changes, stabilizing or increasing yield
and therefore improving food security for the future.

INTRODUCTION therefore challenge vulnerable people who depend
on these systems. The Fourth Assessment Report of
the Intergovernmental Panel on Climate Change
(IPCC) predicts that climate change is likely to have
a significant effect on agricultural production in
many African countries (Boko et al. 2007). Droughts
and dry spells are predicted to be more frequent and
* To whom all correspondence should be addressed. Email: rain less consistent (Below et al. 2010). Ethiopia is
muluneh96@yahoo.com one of the countries most vulnerable to climate

Agricultural production still remains the main source
of income for most rural communities in Africa and
agricultural systems are adapted to the current prevail-
ing climate of the region. Changes in the climate can
influence the sustainability of these systems and will
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change and with least capacity to respond (Thornton
et al. 2006). The nature of Ethiopia’s agriculture, pri-
marily rain-fed, means that production is sensitive to
fluctuations in rainfall. Therefore, studies on climate
impact and related adaptation strategies are increas-
ingly important to help counteract the negative
effects of climate change on the livelihoods of
people in developing countries in general and
Ethiopia in particular.

The impacts of climate change are likely to vary
substantially within individual regions in Africa
(Downing et al. 1997) due to differences in biophys-
ical resources, management, climate change and
other factors. Therefore, studies at fine spatial scales
are needed to resolve local climate change hot spots
within regions (Lobell et al. 2008). Research at the
local level forms the basis of a community-led solution
that is ideal for smallholder farmers (Ngigi 2009).

Although rainfall within the shorter rainy season
(March-May) (Belg) is often unreliable, farmers in
the Ethiopian Rift Valley often plant longer-season
maize varieties during the short rains so they can
mature during the long rains (Kiremt). However, due
to long dry spells in most years, these plantings often
suffer severe water stress (Funk et al. 2012). In the
Central Rift Valley (CRV) of Ethiopia, the maximum
number of consecutive dry days during Belg has
increased for the past 40 years (1970-2009)
(Muluneh et al. 2016). This trend is expected to con-
tinue in the future and will affect the maize yield nega-
tively, especially in the semi-arid and dry sub-humid
areas (Funk et al. 2012; Muluneh et al. 2015).
Therefore, farmers need management alternatives to
overcome the dry spell problems, particularly those
that occur during moisture-sensitive stages of crop
growth.

Though most studies conducted in Ethiopia indicate
that climate change is likely to affect crop yields nega-
tively (Deressa 2007; Deressa & Hassan 2009; Kassie
et al. 2013; Muluneh et al. 2015), there is little quan-
titative evidence about effective climate change adap-
tation options to improve food security (Bryan et al.
2009; Conway & Schipper 2011; Di Falco et al.
2011). Quantitative assessment of adaptation strat-
egies to climate change impacts at farm level is
important, since effective adaptation measures are
highly dependent on specific, geographical and
climate risk factors (IPCC 2007). The process of plan-
ning adaptive strategies requires an inventory of
potential options (Downing et al. 1997). Potential
adaptation strategies such as use of fertilizers, altering
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planting dates and supplemental irrigation (SI) have
been suggested to offset negative climate change
impacts on food security (Travasso et al. 2006; Bryan
et al. 2009; Ngigi 2009; Vucetic 2011). The key chal-
lenge, however, continues to be identification of the
most successful combination of possible strategies
and technologies in a particular context (Burney
et al. 2014).

In SI, most of the crop water requirement is met from
rainfall but small quantities of additional water are
applied to prevent stress, especially at sensitive
growth stages, to bridge critical yield-reducing dry
spells, stabilize yields and increase crop water prod-
uctivity. Based on this description of SI, in the
current study the amount of water required for SI
and the critical growth stages that require SI were
determined.

From on-farm field experiments conducted in the
CRV of Ethiopia, the use of SI with increased plant
density and increased fertilizer application proved
effective in bridging dry spells and increasing crop
yields under current climate conditions (Muluneh
et al. unpublished). But how these strategies could
work during severe drought years and for projected
climate change scenarios has not yet been tested.
The present research addresses this issue using the
AquaCrop yield simulation model to assess those
possible adaptation strategies for their capability to
overcome or reduce the adverse effects of climate
variability and climate change, and therefore
improve food security.

The objectives of the current study were: (1) to
assess the drought conditions for the baseline and
climate change scenarios using dry spells, (2) to
assess the change in maize grain yield under reference
and projected CO; levels, (3) to determine the best
combination of SI and plant density from the baseline
yield simulation, (4) to evaluate the response of maize
yield to SI, plant density and shifting of the sowing
period adaptation options under future climate
Change scenarios (2020-49).

MATERIALS AND METHODS
Site description

The field experiment was located in the Halaba
Special Woreda (district) of the CRV of Ethiopia
(717'N, 38°06’'E) and situated 315 km south of
Addis Ababa. The study area has an altitudinal range
of 1554-2149 m a.s.l., but most of the woreda is
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found at about 1800 m a.s.l., with the topography
ranging from flat (0-61 of the area), to rolling (0-21)
and hilly (0-17) terrain. The experimental farms are
located in the rolling terrain.

The climate of the study area is dry sub-humid, with
an aridity index of 0-56 computed as the ratio of mean
annual precipitation to mean annual reference evapo-
transpiration (ETo). The study area is characterized by
two rainy seasons: Belg and Kiremt. The shorter rainy
season (Belg) is during March-May and the main rainy
season (Kiremt) is during June-September. The annual
rainfall varies between 675 and 1221 mm with a
mean of 922 mm for the past 42 years (1970-2011).

According to the FAO classification system (FAO
1974), the most dominant soil of the woreda is
Andosol (Orthic), followed by Phaeozems (Ortic)
and Chromic Luvisols (Orthic). This means that soils
contain mostly silt and ash (white, volcanic), charac-
terized by a high water infiltration capacity.

As a result of a long history of agriculture and high
population pressure in the area, vegetation cover is
very low. This, in combination with the high soil erod-
ibility of the Andosols, means that there is a soil
erosion hazard in sloping areas. In addition to sheet
erosion, gullies are also common in many parts of
the study area.

Field experimental design and data inputs for model
validation

A field experiment was conducted during the 2012
and 2013 growing seasons in the study area. A
maize cultivar that is widely used in the CRYV,
BH540 (Bako hybrid-540) with a growing period of
145 days, was used for the current experiment. It is
highly suitable for areas with altitudes varying from
1200 to 1800 m a.s.l., and well suited to a climate
zone with rainfall between 980 and 1040 mm and
temperature between 17 and 23 °C. Soil physical
characteristics such as bulk density, field capacity,
permanent wilting point and water content at satur-
ation were determined in the laboratory (Table 1).

Ten different combinations of Sl level and planting
density were tested in the field for two consecutive
growing seasons (Muluneh et al. unpublished). One
experimental plot of 4x5m? was established in
three different farmers’ fields having similar condi-
tions. Hence, there were 30 plots (ten treatments x
three replications). The description of the treatments
is presented in Table 2.
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The first treatment, SI1, was with no SI with depend-
ence entirely on natural rainfall. In SI12, supplemental
irrigation was applied when the percentage of soil
water depletion (SWD) reached 75% of total available
water (TAW), i.e. when available water (AW) reached
26 mm, where the TAW in the root zone (60 cm) was
about 105 mm. In SI3, supplemental irrigation was
applied when the SWD reached 60% of TAW, i.e.
when AW reached 42 mm. In SI4, AW was kept as
close as possible to TAW. Since it was difficult in prac-
tice to keep the moisture content constantly at field
capacity, SI was applied when SWD dropped below
20%, i.e. when AW reached 84 mm.

The SI was applied using a low-cost drip irrigation
kit. Based on periodic soil moisture measurements,
the application date and quantity of SI were
scheduled. Soil water content (SWC) profiles were
measured at soil depths of 20, 40 and 60 cm every
week with a Time-Domain-Reflectometer (TDR)
(Eijkelkamp Equipment, Model 14-62, Giesbeek, the
Netherlands) by installing access tubes at the centre
of each experimental plot.

The SI treatments were combined with four dif-
ferent plant densities: D1 (30 000 plants/ha), D2 (45
000 plants/ha), D3 (60000 plants’ha) and D4 (75
000 plants/ha). However, not all Sl treatments were
combined with all plant densities. Therefore, only
ten different combinations of SI and plant density
were used (Table 2). Traditionally, farmers in the
CRV use 30 000-40 000 plants/ha for maize.

Fertilizer was applied at 150% of the recommended
amount to keep soil fertility at a non-limiting level.
For the CRV, the recommended fertilizer level is
100 kg of urea and 100 kg of diammonium phosphate
(DAP) (Demeke et al. 1997; Debelle et al. 2001).
Diammonium phosphate was applied at planting
whereas urea was top-dressed at about 4 weeks after
planting.

The canopy cover (CC) was estimated by the line-
transect method (Eck & Brown 2004), using the
amount of shadow under the crop. A rope, with knots
at intervals of 10 cm, is stretched diagonally across
the crop rows. The knots that are shaded from sunlight
are counted. For every plot, six diagonals are measured.
For each transect, the number of shaded knots is
divided by the total number of knots on that transect.
The resulting average number is an estimate of the per-
centage of soil that is covered by the crop. For the
period of assessment, the CC measurements were
taken every 10 days for each plot between 11.20 and
13.30 h when the sun was overhead.
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Table 1. Soil physical properties (n=9), Halaba special Woreda, Central Rift Valley, Ethiopia

Soil water content (vol %)

Soil layer (m) Sat FC PWP BD (g/cm3)

0-00-0-20 42-79 (1-98) 27-71 (1-07) 10-43 (0-49) 1-02 (0-032)
0-20-0-40 42-56 (1-05) 30:99 (1-40) 1143 (0-22) 0-94 (0-038)
0-40-0-60 44-30 (2-45) 28:13 (0:77) 12-13 (0-97) 0-94 (0-104)

Sat, water content at saturation; FC, field capacity; PWP, permanent wilting point; BD, bulk density.
Standard error of the mean in parenthesis.

Table 2. Supplemental irrigation (SI) and plant density combination during the field experiment in 2012, Halaba,
Central Rift Valley, Ethiopia

Supplemental irrigation Plant density Combination Description

Si D1 SI1D1 Rainfed and 30 000 plants/ha
SI2 D1 S12D1 75% TAW depleted and 30 000 plants/ha
D2 SI12D2 75% TAW depleted and 45 000 plants/ha
SI3 D1 SI3D1 60% TAW depleted and 30 000 plants/ha
D2 SI3D2 60% TAW depleted and 45 000 plants/ha
D3 SI3D3 60% TAW depleted and 60 000 plants/ha
Sl4 D1 S14D1 No water stress and 30 000 plants/ha
D2 S14D2 No water stress and 45 000 plants/ha
D3 S14D3 No water stress and 60 000 plants/ha
D4 S14D4 No water stress and 75 000 plants/ha

In SI2 and SI3, supplemental irrigation was applied when the percentage of soil water depletion (SWD) reached 75% and 60%

of total available water (TAW), respectively.

Total above-ground biomass and grain yields were
determined at maturity by hand-harvesting the crop
from three 1 m” areas in each plot. The biomass and
grain yield was weighed after oven drying at 70 °C
for 48 h.

Baseline climate data and agro-meteorological
analyses

The 30-year (1966-95) daily rainfall and temperature
data from the National Meteorological Agency of
Ethiopia at Halaba station was used as a baseline.
This is the closest station to the experimental site.
Reference evapotranspiration was determined from
the daily long-term temperature data (1970-2011)
using the FAO Penman-Monteith method (Allen
et al. 1998). The FAO Penman-Monteith equation
was calibrated using full climatic data observed
during 2012 and 2013 from an automatic weather
station  (Eijkelkamp Equipment, Model 16:99,
Giesbeek, the Netherlands) installed at the study
area, and the empirical coefficients (R? =0-88;
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N=188) were determined with

equation:

the following

ETo = 1-10ETomp — 0-82 (1)

where ETq is the reference evapotranspiration value
based on calibration, and EToump is the reference
evapotranspiration obtained from long-term maximum
and minimum temperature data by FAO Penman-
Monteith.

The observed meteorological variables during the
2012 and 2013 experimental period included rainfall,
temperature, wind speed, sunshine hours, relative
humidity and incoming radiation. Therefore, ETo
during the 2 experimental years was determined
using the FAO Penman-Monteith equation as
described in Allen et al. (1998) and using the ETq cal-
culator (Raes 2009).

Climate change data

For the present study, the ECHAMS5 Global Climate
Model (GCM) (Roeckner et al. 2003) and ensemble
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mean of six GCMs under A2 (high) and B1 (low) emis-
sion scenarios for the period 2020-49 were used. The
ECHAMS5 model is known for its good performance in
estimating average annual rainfall (McHugh 2005)
and abrupt declines of March-May rainfall due to
changes in sea surface temperature in east Africa
(Lyon & DeWitt 2012). Doherty et al. (2010) also
reported that the climate simulated by ECHAMS5,
along with the Community Climate System Model
version 3 (CCSM3) and Hadley Centre Coupled
Model version 3 (HadCM3) models, is in closest
agreement with observations for East Africa.
Similarly, in their study about assessing the regional
variability of GCM simulations, Cai et al. (2009)
showed that ECHAMS5, along with HadCM3, is best
for East Africa.

Thornton et al. (2011) indicated that yield changes in
East Africa do not show much variability under different
climate models and emissions scenarios. However,
others believe that multi-model ensemble means are
more reliable in climate projections (Semenov &
Stratonovitch 2010) and reduce the error in both the
mean and variability (Pierce et al. 2009). For instance,
Giorgi & Coppola (2010) suggest a minimum of four to
five models to obtain robust regional precipitation
change estimates. For the current study, an ensemble
mean of six GCMs (Average climatology of six GCMs
embedded in the MarkSimGCM module) were used.
The GCMs included were: BCCR_BCM2-0 (Bjerknes
Centre for Climate Research, University of Bergen,
Norway, 1:9°x1-9°), CNRM-CM3 (Météo-France/
Centre National de Recherches Météorologiques,
France, 1-9°x 1-9°), CSIRO-Mk3:5 (Commonwealth
Scientific and Industrial Research Organization
Atmospheric  Research,  Australia, 1-9°x1-99),
ECHam5 (Max Planck Institute for Meteorology,
Germany, 1-9°x1:9°, INM-CM3_0 (Institute for
Numerical Mathematics, Moscow, Russia, 4-0° x 5-0°)
and MIROC3-2 (Centre for Climate System Research,
National Institute for Environmental Studies and
Frontier Research Centre for Global Change,
University of Tokyo, Japan, 2:8°x2-8°). The main
reason behind using these six models for the current
study was that the original MarkSimGCM downscaling
model provides only six GCM Model results that were
utilized in the IPCC’s Fourth Assessment Report (IPCC
2007). Accordingly, all the aforementioned six
models could be compatible with the MarkSimGCM
downscaling.

Climate change impact studies usually require
information at finer spatial and temporal scales than
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the typical GCM grid resolutions. To address this,
the web-based MarkSimGCM module with a user
interface in Google Earth (Jones & Thornton 2013)
was used to generate daily rainfall and temperature
data. It is an updated version of the MarkSim model,
a detailed description of which can be found in
Jones & Thornton (2000). MarkSim, a third-order
Markov rainfall generator, is a generalized downscal-
ing and data generation method used as a GCM down-
scaler that uses both stochastic downscaling and
climate typing. It takes the output of the original reso-
lution of each GCM and interpolates it to 0-5 latitude-
longitudes. Generally, the model uses a mixture of
methods, including simple interpolation, climate
typing and weather generation to generate daily
weather data that are to some extent characteristic of
future climatology. To make a globally valid model
that does not need recalibration every time that it is
used, the developers of the model calibrated
MarkSim using over 10 000 stations worldwide with
more than 10 years of continuous data, which were
clustered into 702 climate clusters of monthly precipi-
tation and monthly maximum and minimum tempera-
tures. Accordingly, MarkSim has been widely tested
and used in East Africa and reportedly provides a real-
istic simulation of daily precipitation and temperature
distributions (Jones & Thornton 1993, 1997, 2013;
Thornton et al. 2009, 2011; Lobell & Burke 2010).
Dixit et al. (2011) and Farrow et al. (2011) have
demonstrated that MarkSim can generate synthetic
time series that show patterns of rainfall variability
over East Africa with acceptable accuracy (without
statistically significant differences between observed
and MarkSim-generated data) for applications in agri-
culture. Muluneh et al. (2015) have also tested
MarkSimGCM-generated data in the CRV Ethiopia
and found simulated rainfall values close to the histor-
ical values.

AquaCrop model description and data inputs

To assess crop response and vyield, the FAQO's
AquaCrop model was employed. AquaCrop is a
dynamic crop-growth model developed to simulate
attainable crop yield in response to water, and is par-
ticularly suited to address conditions where water is a
key limiting factor in crop production (Hsiao et al.
2009; Raes et al. 2009; Steduto et al. 2009). Hsiao
et al. (2009) showed that AquaCrop was able to simu-
late the CC, biomass development and grain yield of
maize cultivars over six different cropping seasons
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that differed in plant density, planting date and evap-
orative demands. Thus it was well suited to the
current work.

The input parameters of the AquaCrop model
encompass (i) the climate, with its thermal regime,
rainfall, evaporative demand and carbon dioxide con-
centration; (ii) the crop, with its growth, development
and vyield processes; (iii) the soil, with its water
balance; and (iv) crop management, which includes
major agronomic practices such as planting date, fer-
tilizer application and irrigation (Raes et al. 2009;
Steduto et al. 2009). Accordingly, there are five
input files for the model simulations: climate, crop,
soil, management and initial SWC.

The climate file includes user-specific daily values
of (i) minimum and maximum air temperature, (ii)
ETo and (iii) rainfall. The mean annual CO, input for
AquaCrop during the baseline climate (1966-95)
came from the Mauna Loa Observatory records in
Hawaii (Steduto et al. 2009), while those for the
future period came from IPCC Special Report on
Emissions Scenarios (SRES) projections (Houghton
et al. 2001). The daily precipitation, minimum and
maximum temperature data at Halaba station for the
baseline climate were obtained from the Ethiopian
National Meteorological Agency, whereas for the
future period it was generated from the
MarkSimGCM module. No long-term data was avail-
able on relative humidity, solar radiation or wind
speed. Hence, ETo, estimated from daily maximum
and minimum temperature data using the FAO
Penman-Monteith method, was calibrated from
observed data in Eqn (1) above and used for the
AquaCrop simulation model. Based on the analysis
of evapotranspiration in Ethiopia using data over the
last half century, Tilahun (2006) reported that the
FAO Penman-Monteith method is a better estimator
of ETo than more simplified methods such as
Hargreaves, even when there is only limited data.

Crop input parameters used in the AquaCrop model
are known as conservative (i.e., constant) and user-
specific. Conservative crop input parameters do not
change with geographic location, management prac-
tices and time and, while determined with data from
favourable and non-limiting conditions, they remain
applicable for stress conditions via their modulation
by stress response functions (Raes et al. 2009;
Steduto et al. 2009). The other parameters are user-
specific and affected by environmental conditions.
Therefore, they need to be adjusted for local condi-
tions, cultivars and management practices.
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AquaCrop has been parameterized and tested for
several crops, for example maize (Heng et al. 2009;
Hsiao et al. 2009; Zinyengere et al. 2011) and was
able to properly simulate CC, biomass development
and grain yield. In the current study, the conservative
crop input parameters derived from Hsiao et al. (2009)
were used (Table 3), except for water productivity.
Water productivity was adjusted from 33-7 to
30-7 kg/m® based on the calibration of Biazin &
Stroosnijder (2012) in the CRV. The user-specific
crop input parameters for local maize variety BH540
were adjusted from the field experiment conducted
during 2012 and 2013 cropping season in the study
area (Table 4).

The soil input parameters described in Table 1 were
used for all simulations and consisted of volumetric
SWC at permanent wilting point, field capacity and
saturation, and saturated hydraulic conductivity at sat-
uration (Ksat). Non-limiting soil fertility levels were
used. Based on historical simulations in the CRV of
Ethiopia, the initial SWC was fixed at 75% of field cap-
acity (Biazin & Stroosnijder 2012).

The management component of the model com-
prises irrigation and field management options. In
the current experiment, four different levels of SI and
four planting densities were evaluated (Table 2). The
field management also includes surface characteristics
such as runoff. However, since the plots were very flat,
runoff was insignificant and therefore not a factor.

Model calibration and validation

AquaCrop model has been parameterized and tested
under a wide range of environmental conditions for
different crops in Ethiopia (Araya et al. 2010, Erkossa
et al. 2011; Abrha et al. 2012; Biazin & Stroosnijder
2012; Muluneh et al. 2015) and elsewhere (Heng
et al. 2009; Hsiao et al. 2009; Andarzian et al. 2011;
Salemi et al. 2011; Mhizha et al. 2014). It was
designed to be widely applicable under different
climate and soil conditions, without the need for
local calibration after it has been properly parameter-
ized for a particular crop species (Steduto et al. 2012).
Thus, in the current study, conservative parameters
established by Hsiao et al. (2009) were used while
non-conservative parameters were adjusted from the
experimental data obtained under local conditions.
To evaluate the performance of the model for
maize, validation was carried out based on the data
obtained during the 2012 field experiment. The
model performance was evaluated using absolute
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Table 3. Conservative crop input parameters of AquaCrop for maize

Description Value Unit/meaning

Base temperature 8 °C

Cut-off temperature 30 °C

Canopy cover (CC) per seedling at 90% emergence 6-5 cm?

Canopy growth coefficient (CGC) 0-013 Increase in CC relative to CC per GDD*

Crop coefficient for transpiration at CC = 100% 1-03 Full canopy transpiration relative to ETo

Crop coefficient decline after reaching CCx 0-003 Decline per day due to leaf aging

Canopy decline coefficient (CDC) at senescence 0-0106 Decrease in CC relative to CC, per GDD

Leaf growth threshold P- upper 0-14 Fraction of TAW, above this leaf growth inhibited
Leaf growth threshold P- lower 0-72 Leaf growth stops completely at this point

Leaf growth stress coefficient curve shape 29 Moderately convex curve

Stomatal conductance threshold P- upper 0-69 Above this stomata begin to close

Stomatal stress coefficient curve shape 6 Highly convex curve

Senescence stress coefficient p- upper 0-69 Above this stomata begins to close

Senescence stress coefficient curve shape 2-7 Moderately convex curve

Reference harvest index (Hl) 0-48 Harvest index (HI)

Volume % below saturation 6 %, Moderately tolerant to water logging
Coefficient, inhibition of leaf growth on Hl 7 HI increased by leaf growth inhibition at anthesis
Coefficient, inhibition of stomata on HI 3 HI reduced by stomata inhibition at anthesis
Water productivity, normalized to year 2000 30-7 g m~? (biomass/m™~?) function of atmospheric CO,

GDD, growing degree-days; CCx, maximum canopy cover.

Table 4. User-specific crop input parameters from phenological observations of local maize cultivar (BH540)

Description Value Unit/meaning
Time from sowing to emergence 7 Calendar days
Time from sowing to maximum canopy cover 70 Calendar days
Time from sowing to flowering 65 Calendar days
Duration of flowering 15 Calendar days
Time from sowing to start of senescence 120 Calendar days
Time from sowing to harvest 145 Calendar days
Maximum rooting depth 0-6 Meter

Plant density 30 000-75 000 Plants/ha

Maximum canopy cover (CC,) 70-95 %, Plant density function

root mean square error (RMSE) and normalized RMSE
(NRMSE) statistical indices as follows.

RMSE = \/;zn:(/vl,- —-5) (2)

NRMSE = \ﬁi(/\/l» —5)? 100 (3)
S Vn&st ' M

where n is the number of measurements, M; and S; are
observed and simulated values respectively, and M is
the mean of observed values. The unit for absolute
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RMSE is the same as that for M; and S;. The closer
the value is to zero, the better the model simulation
performance. Normalized RMSE gives a measure (%)
of the relative difference of simulated v. observed
data. The simulation is considered excellent if the
NRMSE is <10%, good at 10-20%, fair at 20-30%
and poor if it is >30% (Jamieson et al. 1991).
Additional model performance evaluations were con-
ducted using the percentage deviations between mea-
sured and simulated biomass and grain yield:

Deviation (%) = (Simulated — Measured)
x 100/measured
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The supplemental irrigation and plant density level
with maximum yield

Using the baseline climate, 30 years of maize grain
yield, total biomass and water productivity were simu-
lated. The results were compared in three different
ways: (i) comparison amongst the four SI levels for
determining Sl that gives maximum yield, (ii) compari-
son amongst the four density levels to determine plant
density that gives maximum yield and (iii) comparison
amongst the ten different combinations of Sl and plant
density for determining the combination that gives
maximum yield. The Bonferroni statistical method
for multiple mean comparisons was used (Bland &
Altman 1995). This method is a type of multiple com-
parison test used in statistical analysis and is robust
enough to work with unbalanced designs where
there are different numbers of observations in each
sub-group (Lomax 1992; Rafter et al. 2003). The
Bonferroni method is a relatively simple way to
reveal any results that may be significant in essentially
any multiple test situations (Bender & Lange 2001)
where a large number of tests are carried out
without pre-planned hypotheses (Armstrong 2014).
The Bonferroni method is straightforward to use,
requiring no distributional assumption and enabling
individual alternative hypotheses to be identified
(Simes 1986).

Dry spells and rainfall season onset definition

The analysis of dry spells for each month during the
potential maize growing period was carried out
using the statistical package Instat+3-37 (Stern et al.
2006). A dry spell was defined as a continuous
period of ‘no rainfall’ (<0-85 mm/day).

Defining the onset of the rainy season for yield
simulation is important. Based on the assumed
starting dates of the Belg season in the CRV, the
starting date of onset of the rainy season for
maize crop is 1 March. For yield simulation, the
onset date was defined as the date when accumu-
lated precipitation over 3 days was at least 20 mm
and no dry spell of greater than 10 days appeared
within the subsequent 30 days. This definition
works for the onset window period of maize from
1 March to 30 June and was based on the work
of Segele & Lamb (2005), who recommended it
for relatively wetter regions in Ethiopia. Sivakumar
(1988) used a similar definition of onset elsewhere
in Africa.
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Climate change impact on maize yield and yield
response to elevated carbon dioxide

Assessment of climate change impact on maize grain
yield due to projected climate variables (rainfall and
maximum and minimum temperature) were deter-
mined by subtracting baseline climate simulation
from projected climate simulation, both using refer-
ence CO, level (369-14 ppm). The response of
maize grain yield due to elevated CO, alone was
determined by subtracting the simulated grain yield
using projected climate variables with elevated CO,
level from simulated grain yield using projected
climate variables with reference to CO, level
(369-14 ppm).

Effect of supplemental irrigation on maize yield

First, the SI and plant density combination with
maximum yield was determined under the 30-year
baseline climate data as mentioned previously. Then
the simulated grain yield was compared under rain-
fed conditions (SI1TD1) and the selected SI and plant
density combination (in this case SI2D1) during base-
line and projected climate scenarios with the refer-
ence CO, level. The difference between the two
simulations (simulation under rain-fed conditions
(SITD1) and under supplementary irrigation (SI12D1)
was considered to be the effect of SI on maize yield
under baseline and projected climate change
scenarios.

Effect of shifting the sowing date on maize yield

The response of yield to a different sowing period
was determined by simulating yield under five differ-
ent sowing dates in a month (Tst, 8th, 15th, 22nd and
29th of a month). The comparison of yields for the
baseline climate and the climate change scenarios
were determined as follows: first, grain yield was
simulated for baseline climate conditions by
running the AquaCrop model using the five onset
dates for the month of April, and then grain yield
was simulated for the climate change scenarios
using the five onset dates for the months of April,
May and June, after which the results were com-
pared. The month of April for the baseline climate
simulation was used because in the current climate
this is the month when the rainy season generally
starts.
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RESULTS
Validation of AquaCrop

Figures 1 and 2 show the observed SWC and CC
plotted against the results simulated by the
AquaCrop model under (a) rain-fed only (SI1), (b) SI2
(75% TAW depleted), (c) SI3 (60% TAW depleted)
and (d) SI4 (20% TAW depleted). The scatter plots
show that the AquaCrop model can simulate soil
moisture well under both rain-fed and SI conditions.

Similarly, the simulated CC correlated well with the
observed data. There was not much difference
between the simulated and observed CC (Fig. 2). All
statistical parameters (RMSE, NRMSE and % devi-
ation) showed good results for simulation of soil mois-
ture and CC (data not shown).

The simulated grain yields and total biomass of
maize agreed well with that of the observed values
under all treatments (Table 5). The NRMSE was
between 2 and 7% for grain yield and between 1
and 3% for total above-ground biomass, both of
which indicate excellent performance of the model.
Similarly, the percentage deviation of the simulated
values from the observed values also indicated good
agreement.

Change in rainfall and temperature

Under ECHAMbS model, the Belg rainfall is projected
to decline under both emission scenarios (A2 and
B1), while the total rainfall during the Kiremt season
is likely to increase under both climate change scen-
arios (Table 6). Under an ensemble mean of six
GCM s, the results of Belg and Kiremt rainfall showed
a slight increase under both climate change scenarios,
except for a slight decrease during Belg under BT
emission scenarios (Table 6).

The projected temperature followed a similar trend,
where the highest simulated temperature was during
Belg and the lowest was in Kiremt (Table 7). Under
both ECHAMS5 and ensemble mean of models, the
average maximum and minimum temperatures
during Belg are likely to increase by 0-9-3-2 °C and
1-0-1-9 °C, respectively. Thus, the Belg season tem-
perature is projected to increase between 1-0 and
3:2°C in 2050s. During Kiremt, the average
maximum and minimum temperatures are likely to
increase by 1-0-2-7 °C and 1-6-2-0 °C, resulting in
mean Kiremt seasonal temperature changes of 1-0-
2:0°C in 2050s. Both ECHAM5 and Ensemble
mean of models showed consistently increasing
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temperatures in both seasons and annually under the
two emission scenarios (A2 and B1) (Table 7).
However, the ECHAM5 model projected much
larger increases in maximum temperature.

The supplemental irrigation and plant density level
with maximum yield

Based on the 30-year simulation, the irrigation level
SI2 (75% TAW depleted) is a better option in terms
of increasing grain and total biomass yield and water
productivity (Table 8). It was considered a better
option because (i) there is a significant difference
(P<0-05) in yield and water productivity between
rain-fed (SI11) and the second irrigation level (SI2), (ii)
there were no significant further increases in yield
and water productivity with higher irrigation levels
(SI3 and SI4), (iii) SI2 was enough to save the crop in
drought years (when there would have been a total
crop failure under rain-fed conditions) and (iv) SI2
requires less irrigation water as compared with the
higher levels of supplemental irrigation (SI3 and SlI4).

Based on the plant density level, yield and water
productivity results, the lowest plant density level
(D1) was significantly different (P <0-05) from those
achieved with D3 and D4 but not significantly differ-
ent from the second level plant density (D2)
(Table 8). The density levels D2, D3 and D4 also
showed no significant difference. However, since
yield showed a continuous yield increase as plant
density increased from D1 through D4, though some
not significant, higher plant density is recommended
(75 000 plants/ha) for farmers.

The combined effect of SI and plant density on
maize yield shown in Table 9 indicates that yield
was not significantly different when the irrigation
level was increased beyond SI2. Therefore, the com-
bination of SI2 with plant density D1 (SI2D1), which
is significantly different (P<0-05) from the rain-fed
grain and total biomass yield (SI1D1), was used for
the subsequent baseline and future yield simulations.
Since the density level under rain-fed (S11D1) and sup-
plemental irrigation (SI2D1) are the same, the yield
difference could arise from the supplemental irriga-
tion. Thus, SI2D1 combination hereafter is simply
called supplemental irrigation and abbreviated as SI.

Effect of supplemental irrigation in drought years

Under the baseline climate, SI increased maize grain
yield by 20% (yield increased from 6-03 t/ha without
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Fig. 1. Observed and simulated soil moisture in the top 0-6 m under various conditions: (a) only rain-fed without
supplemental irrigation (SI1) (b) SI2 supplemental irrigation (c) SI3 supplemental irrigation and (d) SI4 supplemental irrigation.

Sl to 7-:26 t/ha with Sl) (Fig. 4). This increase in grain
yield is in comparison with the 30-year average,
which does not clearly show the effect of SI in each
year, specifically in drought years. Thus, the response
to Sl in drought years during the baseline climate was
assessed separately, as shown in Table 10.

From 30 years of baseline climate simulations under
rain-fed conditions, the years 1967 and 1972 resulted
in total crop failure due to severe drought related to
long dry spells during the critical growth stages. The
1967 crop failure was due to a dry spell of >30 days
in the period 60-90 days after sowing (DAS), while
in 1972 it was due to a dry spell of >20 days that
occurred in the 30-60 and 60-90 DAS periods. The
crop water requirement for those years was higher
than the amount of rainfall, leading to total crop
failure. For instance, in 1967, during the first 90
DAS, the crop water requirement (424 mm) was
more than twice the available rainfall (188 mm)
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(Table 10). Simulation results using SI during those
severe drought years increased the maize grain yield
from total crop failure to 6-8 t/ha. The amount of SI
water used to save the crop from total failure ranges
between 94 and 111 mm.

In comparison, the year 1973, which showed the
maximum grain yield (8-57 t/ha), only suffered a dry
spell of <5 days during the critical growth stage
(60-90 DAS) and also had larger amount of rainfall
compared with crop water requirement during the
first 90 DAS. The yield increase due to Sl in this year
with already high rain-fed grain yield was marginal
(2-5%), with the amount of SI water used also very
minimal (1-7 mm).

The years 1971 and 1981, despite having limited
dry spells (<10 days) during the first 90 DAS, still
showed very low grain yield as compared with the
grain yield in 1973. The very low maize grain yield
during these years was due to very high crop water
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Fig. 2. Observed and simulated canopy cover under various conditions: (a) only rain-fed without irrigation (SI1) (b) SI2
supplemental irrigation (c) SI3 supplemental irrigation and (d) SI4 supplemental irrigation.

Table 5. Mean observed and simulated maize grain yield and total biomass with the root mean square error
(RMSE), normalized root mean square error (NRMSE) and percentage deviation (Dev.)

Grain yield Total Biomass

Observed  Simulated RMSE ~ NRMSE  Dev. Observed  Simulated RMSE  NRMSE  Dev.
Treatment  tha t/ha t/ha (%) (%) t/ha t/ha t/ha (%) (%)
SITD1 7-45 7-83 0-4 5-41 4-99 15-81 16-31 0-52 3-28 3-14
SI12D1 779 8-20 0-52 663 5-31 16-83 17-09 0-29 1-75 1-56
S12D2 8-54 8-72 0-34 3-97 2-11 18-1 18-18 0-26 1-44 0-46
SI13D1 816 8-46 0-3 3-70 3-63 17-63 1762 0-27 1-52 -0-1
SI13D2 891 8-89 0-14 1-61 -0-22  21-35 18-53 0-18 0-96 0-4
SI13D3 9-04 9-18 0-36 4-00 1-55 19-85 19-53 0-34 1-73 -1-61
S14D1 8-32 879 0-47 569 5-59 17-97 18-31 0-39 2-15 1-89
S14D2 9-14 917 0-19 2-08 0-27 18:87 19-12 0-43 2-25 1-31
S14D3 9-09 9-47 0-39 4-32 4-22 19-94 20-16 0-23 1-15 1-10
S14D4 9-78 9-55 0-27 2-74 -2:33  21-16 21-22 0-15 0-69 0-3

S, supplemental irrigation.

requirement and low amounts of rainfall during the
first 90 DAS (Table 10). During 1981, a dry spell of
39 days at 90-120 DAS contributed to the low grain
yield but not to the extent of total crop failure. The
use of SI would have increased grain yields by
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59-62% for those years with very low rain-fed grain
yield (1971 and 1981).

The sowing date/onset for the years simulated with
crop failure (1967 and 1972) and very low grain
yield (1971 and 1981) were during the month of
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Table 6. Percentage change in mean rainfall during Belg and Kiremt seasons for the near future time period using
ECHAMS5 and ensemble mean of six Global Climate Models (GCMSs) under A2 and B1 SRES scenarios against
baseline, Halaba, Central Rift Valley, Ethiopia

Change in future rainfall simulation

Baseline period A2 SRES Scenario B1 SRES Scenario
1966-95 2020-49 2020-49
GCM model Season Mean rainfall(mm) %Change %Change
ECHAMS Belg season 192-4 -56-4 -51-8
Kiremt season 596-1 25-8 24-7
Ensemble mean Belg season 192-4 15-5 -79
Kiremt season 596-1 34 10-4

Table 7. Change in maximum and minimum temperature (°C) during Belg and Kiremt seasons and annually for
the future time period using ECHAMS5 and ensemble mean of six Global Climate Models (GCMs) under A2 and B1
SRES scenarios against baseline period, Halaba, Central Rift Valley, Ethiopia

Future temperature simulation

Change in temperature

Baseline A2 Scenario B1 Scenario A2 Scenario B1 Scenario

GCM Season Temp (°C) 1966-95 2020-49 2020-49 2020-49 2020-49
ECHAMS5 Belg Tmax 279 31-1 30-7 3-2 2-7
Tmin 12-5 13-7 13-5 1-2 1-0
Kiremt Tmax 24-8 27-4 27-2 2-7 2-4
Tmin 12-4 14-4 14-1 2-0 1-8
Annual Tmax 269 28-8 284 1-8 1-5
Tmin 11-7 12-9 127 1-2 11
Ensemble mean  Belg Tmax 27-9 28-8 293 0-9 13
Tmin 12-5 14-3 14-4 1-8 19
Kiremt Tmax 24-8 259 25-8 1-1 1-0
Tmin 12-4 14-1 14-0 1-7 1-6
Annual Tmax 269 28-0 28-0 1-0 1-0
Tmin 11-7 13-6 13-5 19 19

Table 8. Means of grain yield, total biomass and grain water productivity at different levels of supplemental
irrigation (SI) and plant density

Grain yield Total biomass Grain water

Irrigation (t/ha) S.EM.¥ (tha) S.EM.¥ productivity (kg/m?) S.EMF
SI1 (D1) 6-04 0-351 12:72 0-643 1-55 0-092
SI2 (D1,D2) 7-40 0-141 15-40 0-291 1-80 0-055
SI3 (D1,D2,D3) 7-51 0-151 15-76 0-314 1-83 0-058
SI4 (D1,D2,D3,D4) 7-58 0-159 16-13 0-337 1-75 0-051
Density

D1 (SI1,S12,S13,S14) 6-95 0-159 14-59 0-317 1-65 0-052

D2 (512,S13,514) 7-50 0-150 15-73 0-313 1-79 0-055

D3 (S13,S14) 7-69 0-163 16-37 0-343 1-86 0-056

D4 (S14) 7:99 0-174 17-00 0-370 1-97 0-056

* Each Sl and density level was run for 30 years, p.F. = 29.
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Table 9. Means of grain yield and total biomass at = 5
different combinations of irrigation and plant density S $S3gE e arCfo
under baseline climate £ 33 E|ST = <C
S
Grain yield Total biomass S 2
n
Treatments  (t/ha) s.EM* (Yha) S.E.M.* S =)
< o
SID1 604 0352 1272 0-643 = s
SI12D1 726 0-135 15-10 0-279 “'q,i ;’e § °
SI2D2 7-54 0-147 157 0-305 S48 2zt =
S w|EFE|IBS8E
SI3D1 7:31 0141 1521 0-292 s XIS CE|TRIRS
SI13D2 7-55 0-151  15-73 0-314 g 2
SI3D3 7-66 0-163 16-33 0-339 E 2 2
.
SI4D1 7:20 0-144 15-33 0-307 ?;\g =0
S14D2 7-41 0-152  15-78 0-324 SCIERE|gwmon
L 2 T 1 £ | 0N T 1
SI4D3 771 0-165 16-40 0-350 T Al -S| - N
S14D4 7:99 0174 17:00 0:371 T2
T N 9]
oo
* Each supplemental irrigation (SI) and density level was run g § E
for 30 years, D.F. = 29. L E ;
2 < =
< = () LN
. . L 20 SR8 aB
March or early April, whereas the sowing date/onset SIS
. . . . S
for the year with maximum vyield (1973) was in the Sot o
month of May. = @ SE|gIBRy
3 S FE2|loN oo
=&
)
Effect of climate change on dry spells S 2 E
— [
The projected percentage change in the longest mean % <3 %’ 838513
dry spell in each month of the Belg and Kiremt seasons > Al e
for the future climate (2020-49) compared with the ‘s E » ”
c
baseline climate (1966-95) is shown in Table 11. 2_}0 -% é S
Under the baseline climate, all months of the Belg 33 Ed == oz |2
season showed the longest mean dry spell as being i;% e E § %E 2 S
. . = Q e
between 12 and 15 days. During the Kiremt season, S g ALl Am =)D
particularly in July, August and September, the SN - =
longest mean dry spells were <10 days. October, %E) i 5
which is usually considered to be out of the Kiremt S S22 k=
o Tl N a M N N o S
season, had a longest mean dry spell of 22 days. The % L - °
. . ~ -—
month of October was included because in some 58 <
years, when the sowing of maize goes as late as the ° =2, £
first week of July, a 120-150 DAS growing period I & é 5 O -0l
. . ogs — = 9
can extend into October. Thus, rainfall conditions =2 =
during October can sometimes affect yield. 2 Z = E
Lt w
Under the ECHAMS5 model, the projected length of %t é 5 won ¥ g
dry spells for March and April increased by 20-25% £ S g
. . . wn
and 4-5% under A2 (high) and B1 (low) emission g Sllg 2 2
scenarios, respectively. By contrast, the projected = % g' g S| -« =l £
longest dry spell between June and October decreased g 5 = |7 - >
. 5]
by 7-42% and 6-55% under A2 and B1 scenarios, < ,: R i §
respectively, except in August where there was S % TS55|onwemw ©
almost no change under the B1 scenario. The pro- — 9 g
. . m ,~—
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. . T = v [e) BN eI B e )]
always higher than under B1 scenario. = = > A [
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Table 11. Percentage change (%) in the longest dry spell for March—October for future climate under ECHAMS5
and ensemble mean of models on A2 and B1 SRES scenarios against the baseline longest dry spell (days)

ECHAMS5 Ensemble mean

Months Baseline (days) A2 scenario B1 scenario A2 scenario B1 scenario
March 15 20 4 11 9

April 12 25 5 7 16

May 12 8 -7 -20 -16

June 11 -9 -31 -19 =25

July 5 -7 -6 0 =11

August 5 =12 1 =10 -14
September 8 -17 -26 -12 -8
October 22 —42 -55 —49 -56

The first three months (March-May) are the Belg (short rainy season) while the 5 months (June-October) are the Kiremt (main
rainy season). The Kiremt season is usually considered to be June-September but sometimes it can be extended to include

October.

Under ensemble mean of models, the projected
longest dry spell decreased for almost all months
except March and May, where there was a modest
increase under both scenarios. With both models
and scenarios, the decrease in projected longest dry
spell was greatest for October.

Effect of carbon dioxide level on maize yield

With the ECHAM5 model, the simulated maize grain
yield under projected climate change scenarios
using the reference CO, level (369-14 ppm) showed
decreases of 22 and 9% under A2 and B1, scenarios,
respectively, compared with the baseline climate
simulation (Fig. 3). Under ECHAM5 model, both rain-
fall analysis (Table 6) and dry spell analysis (Table 11)
consistently showed a drying Belg (March-April),
despite Kiremt getting wetter. Since maize is sensitive
to moisture stress during the first 30 DAS and between
60 and 90 DAS, later stages of maize are less sensitive
to moisture stress. Therefore, since most sensitive
stages are during Belg, assuming early Belg sowing,
maize yield is more affected during Belg season dry
spells. That could be the reason behind the decline
in maize yield under ECHAMS5 projection as com-
pared with baseline yield.

Using the ensemble mean of models, the simulated
maize grain vyield under the same conditions
decreased slightly (6%) under the A2 scenarios,
whereas it stayed almost the same for the B1 scenario
compared with the baseline climate simulation
(Fig. 3).

With elevated CO, concentrations, under projected
climate variables, grain yield increased compared
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Fig. 3. Baseline and Projected (proj.) maize grain yield
under reference (ref.) CO, (369-14 ppm) and projected
CO, level on ECHAM5 and ensemble mean model under
high (A2) and low (B1) emission scenarios in Halaba
special Woreda, Central Rift Valley, Ethiopia. Error bars
indicate the 95% confidence interval of the mean.

with the simulations using reference CO, with both
GCM models. Under ECHAMS5, the simulated grain
yield increased by 7-5% when CO, concentration
level increased from the reference 369-41-
518:88 ppm under the A2 scenario, and by 6-:2%
when CO, concentration level increased from the ref-
erence 369-41-467-57 ppm under the B1 scenario.
Under similar CO, increases, for the ensemble mean
of models, the vyield increased by 7-4 and 6-4%
under A2 and B1 scenarios, respectively (Fig. 3).
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Effect of supplemental irrigation on maize yield

Figure 4 presents maize grain yield under rain-fed and
SI conditions for different climate change scenarios.
The ECHAMS5 model, with the A2 scenario and S,
showed an increase in grain yield of 8% against the
baseline yield, and of 38% against the projected
rain-fed grain yield. Similarly, with the B1 scenario,
Sl increased the grain yield by 8% against baseline
yield and by 19% against the projected rain-fed
grain yield.

Under the ensemble mean of models with the A2
scenario, Sl increased the grain yield by 15% against
the baseline yield and by 13% against the projected
rain-fed grain yield. The ensemble mean of models
with the B1 scenario and SI showed an increase in
grain yield of 19% against baseline yield and of 11%
against projected rain-fed grain yield. On both
ECHAMS5 and ensemble mean of models, when the
projected grain yield was compared between rain-
fed and Sl conditions, the effect of Sl for the A2 scen-
ario was higher than for the B1 scenario.

Effect on maize yield of shifting the sowing date

Table 12 presents the percentage change in grain yield
when the sowing dates are in April, May and June
compared with the baseline sowing date of April.
Using the ECHAM5 model with the A2 scenario, the
simulated grain yield decreased by 61 and 2% when
sowing date was in April and May, respectively, but
an increase of 96% when sowing date was delayed
until June. The ECHAMS5 model with the B1 scenario
simulated a grain vyield decrease of 37% when
sowing of maize was in April but an increase of 35%
when sowing was in May. When the sowing of maize
was further extended to June, the grain yield increased
by 140% under the B1 scenario.

Under the ensemble mean of models, sowing of
maize in any of the months will increase yield under
both A2 and B1 scenarios except in April, where
maize grain yield decreased slightly under the B1
scenario. Overall, maximum yield was obtained
when the sowing of maize was extended to June
under both models and scenarios.

DISCUSSION

The aim of the current study was (i) to determine the
best combination of SI and plant density using 30
years of baseline climate, to be used in future
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climate scenarios, (ii) to assess drought for the baseline
and future climate using dry spell analysis and (iii) to
evaluate the adaptation options of Sl, plant density
and shifting of the planting date for improving maize
grain yield and improved food security.

AquaCrop validation

A key part of achieving the aims of the current study
was validation of the AquaCrop model. AquaCrop
has proven to show good performance in simulating
soil moisture, CC, grain yield and total biomass
under different levels of irrigation treatments else-
where (Abedinpour et al. 2012, 2014). Similarly,
AquaCrop has also been validated for maize else-
where in Ethiopia and reported that it can simulate
grain yield and total biomass well (Erkossa et al.
2011; Biazin & Stroosnijder 2012). Therefore, due to
its simplicity, accuracy and robustness, AquaCrop is
becoming a widely used model for estimating crop
yield for climate change scenarios and to test different
adaptation options (Mainuddin et al. 2011, 2013;
Soddu et al. 2013; Abedinpour et al. 2014; Shrestha
et al. 2014, 2016; Vanuytrecht et al. 2014; Deb
et al. 2015; Muluneh et al. 2015). The AquaCrop
model was able to simulate the soil water, CC and
crop yields well for the BH540 maize cultivar under
both rain-fed conditions and different levels of Sl
with conservative and user specific crop parameters.
The values of RMSE, NRMSE and percentage devi-
ation for the model validation were all in acceptable
ranges.

Change in rainfall and temperature

The change in rainfall for future climate in Halaba dis-
trict is almost consistent with previous results found in
the CRV, with rainfall during the Belg and Kiremt
seasons decreasing and increasing, respectively
(Muluneh et al. 2015). Therefore, the projected
decrease in Belg rainfall will negatively affect long-
cycle crop yields (e.g. maize) in the CRV.

The projected temperature increase generally
agrees with other studies in Ethiopia and elsewhere.
For example, Admassu et al. (2012) reported a tem-
perature increase of 1-5-2 °C in 2050 in some areas
of Ethiopia using the Model for Interdisciplinary
Research on Climate (MIROC) and Commonwealth
Scientific and Industrial Research Organisation
(CSIRO) GCM  models. Similarly, Conway &
Schipper (2011) reported a temperature increase of
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Fig. 4. Maize grain yield (“ha) under rain-fed and supplemental irrigation (S) for baseline and future climate conditions. The
blue bold lines indicate the mean deviation. Boxes indicate inter-quartile ranges and error bars indicate minimum and

maximum values. Colour online.

Table 12. Percentage change (%) in projected maize
grain yield in different sowing months respective to
baseline yield under ECHAMY5 and ensemble mean
models with A2 and B1 SRES scenarios

ECHAMS5 Ensemble mean

A2 B1 A2 B1
Months scenario scenario scenario scenario
April —61 -37 14 -6
May -2 35 112 102
June 96 140 150 156

1-4-2-9 °C in 2050s in most regions of Ethiopia using
18 GCM averages. Many GCMs project mean average
temperature increases to 2050 for the East Africa
region larger than the global mean: for example, for
scenario A2, increases of between 1-5 and 2-5°C
have been projected (Jones & Thornton 2013).

Yields will be reduced when the optimal tempera-
ture ranges of crops are exceeded (Adams et al.
1998; Wheeler et al. 2000). The optimal temperature
range for C4 summer crops such as maize was set
by Hsiao et al. (2009) as 8-30 °C. Similarly, Lobell
et al. (2011) found statistically insignificant effects of
temperature on maize vyields to increased degree
days between 8 and 30 °C. The same study (ibid)
also found that maize yields in Africa may gain from
warming at relatively cool sites (such as Ethiopia,
where average growing-season temperatures in most
regions are <30 °C), but are significantly reduced in
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areas where temperatures commonly exceed 30 °C.
This was clearly observed in the current work, in tem-
perature analysis for baseline and projected scenarios;
despite showing increased projected temperature, it
remains in the range where there is no significant
effect on the maize crop (between 8 and 30 °C).
Generally, these temperature ranges fall inside the
temperature regimes favouring the growth and
production of maize. Other studies also indicated
towards this trend, where although crop yield could
be affected by both precipitation and temperature, it
is more sensitive to the precipitation than temperature
(Akpalu et al. 2008; Kang et al. 2009). However, any
temperature increase will increase rates of evapotrans-
piration, possibly leading to a deficit in the water
balance and posing a major challenge to rain-fed
agriculture.

The supplemental irrigation and plant density level
with maximum yield

After simulating yield with ten different combinations
of SI and plant density for each year of the 30-year
baseline period, the means of simulated yield were
compared to determine the best combination of SI
and plant density. Among the ten combinations of SI
and plant density, SI2D1 (i.e., application of SI when
the SWD of the TAW reached 75% using 30 000
plants/ha) simulated maximum grain yield and total
biomass. The maize crop density level most com-
monly used by farmers in the CRV is 30 000-40
0000 plants/ha. Despite a continuous grain vyield
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increase from lower Sl and plant density combination
to higher level combination, the difference was not
statistically significant. Therefore, the combination
with the lowest Sl level was chosen (52D1).

Effect of supplemental irrigation in drought years

The 30-year mean yield increase from SI was modest.
However, this long-term mean yield cannot show how
the crop responds to Sl in a particular drought year
when there would be total crop failure under rain-
fed conditions. Therefore, the effect of Sl was analysed
on crop yield under conditions where there would be
total rain-fed crop failure or very low crop yield. Total
crop failure during drought years was due to a dry
spell of >30 days during the 60-90 DAS period
(1967) and dry spells of >20 days in both the 30-60
and 60-90 DAS periods (1972). Another study in the
semi-arid part of the CRV by Biazin & Sterk (2013)
found that dry spells longer than 30 days occurring
in the first 60 DAS, or longer than 20 days in the
60-90 DAS period, were critical and caused total
crop failure for maize crops. This confirms that the
most damaging effect of dry spells is manifested
during sensitive stages of crops such as flowering
and grain filling, which has also been documented
by Stern & Coe (1984).

The current analysis showed that by using 94—
111 mm of SI during sensitive stages of maize crop,
it is possible to avoid total crop failure. Similarly,
Magombeyi et al. (2009) in South Africa found that
using 110 mm of Sl in the driest year of their research
resulted in the highest yield responses. The availability
of water for Sl is an important factor for evaluating and
determining effective Sl strategies, as determined in
another similar study in the CRV (Muluneh et al.
unpublished). The results of that research showed
that sufficient amounts of water for SI would be avail-
able from existing farm ponds, even in drought years.

Effect of climate change on dry spells

With respect to predicting the length of dry spells, the
two climate models used showed consistent results.
Both models indicate increasing tendency of dry
spells during Belg (March and April) and a decreasing
tendency during Kiremt (June-October). However,
during Belg the ECHAMS5 model showed more
dryness than the ensemble mean of models. Most
other studies also indicate the drying tendency of the
Belg season, mostly in the Ethiopian highlands. For
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example, recently, Cook & Vizy (2012) using ten
GCM ensemble mean models found that the number
of dry days in the Ethiopian Highlands is likely to
increase by 5-20 days, a 2-10% increase during
2041-60 compared with 1981-2000. This future
increase in dryness was associated with a reduction
of the Belg (March-May) rainfall.

The drying of Belg is consistent with the declining
March-June rainfall that occurred during the second
half of the 20th century and which is projected to con-
tinue into the future in the East African region, particu-
larly in Ethiopia (Funk et al. 2008; Williams & Funk
2011; Lyon & DeWitt 2012; Muluneh et al. 2015).
Agricultural production in the Ethiopian CRV takes
place in two cropping seasons per year, the Kiremt
and Belg seasons. Belg rains are critical for long-
cycle crops (such as maize and sorghum), which are
harvested at the end of the Kiremt season. Belg-
dependent growing areas are typically the most
food-insecure  cropping areas (World  Food
Programme 2014). Therefore, the predicted effects of
Belg season drought could exacerbate future liveli-
hood degradation and food insecurity in the CRV of
Ethiopia.

Furthermore, the two climate models used are con-
sistent in showing the cessation of rainfall in the future
likely to be extended compared with the current
climate. This may extend the growing season into
October, which could allow a later sowing date (see
later). This could compensate, at least in part, for the
predicted increase in dry spells during Belg drought.

Effect of carbon dioxide level on maize yield

With both ECHAMS5 and the ensemble mean of
models, the projected maize grain yield showed a
declining tendency in the dry sub-humid area of the
CRV. On the other hand, when both GCM models
were run with elevated CO, concentrations, they
showed increasing grain yields. Similarly, Muluneh
et al. (2015) reported maize grain yield increases
from elevated CO, in the CRV.

Generally, there is a consensus that elevated CO,
tends to increase growth and yield of most agricultural
plants as a result of higher rates of photosynthesis and
low rates of water loss that improve water-use effi-
ciency (Allen & Amthor 1995; Parry et al. 2004;
Vanuytrecht et al. 2011). However, the question is,
can the yield increase from elevated CO, fully com-
pensate the yield decline caused by climate change?
In the current study, the ensemble mean of models
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yield projection elevated CO, level was able to offset
the negative impact of climate change, because there
was not too much difference between the projected
simulated yield and the baseline simulated yield.
However, the ECHAM5 model projection, despite
the 7-5% vyield increase from elevated CO, level,
still shows grain yield to be less than the baseline
climate simulation, because the projected simulated
yield was much lower than the baseline simulated
yield. Thus, despite the positive effect of elevated
CO, to crops, the predicted lower maize production
due to the changing rainfall is only partly compen-
sated by the expected increase in CO, concentration.

Effect of supplemental irrigation on maize yield

The simulated maize yield using Sl for future climate
scenarios proved that SI can offset the predicted
yield reduction due to climate change. With SI, the
22% simulated vyield reduction from the ECHAM5
model for the A2 scenario and rain-fed climate
becomes an 8% increase. The ensemble mean of
models projected a similar increase in simulated
yield under SI. Thus, SI is a promising adaptation
option for farmers in the CRV. Although, due to the
expected increase in dry spells, sowing of maize
under rain-fed conditions during Belg is becoming
riskier, Sl is a strategy to enable growing of long-
maturing maize varieties that can still be sown
during the Belg season.

Effect of shifting the sowing date

The average sowing date for the baseline climate is in
April. If the baseline sowing date is used for future
climate scenarios, the vyield is affected negatively
unless additional measures are taken. However, from
the results of both ECHAM5 and ensemble mean of
models, shifting sowing of maize from April to June
(from mid-Belg to the start of Kiremt) for future
climate conditions increases the maize grain yield.
These results are consistent with research findings
elsewhere in Africa. In Ghana, Tachie-Obeng et al.
(2013) reported that delaying sowing dates by 6
weeks, from the baseline date of 1 May to 15 June,
increased maize yields by up to 12%. For projected
future climate conditions, the sowing of maize in
June will decrease the risk of crop failure, since dry
spells continuously decrease from June to October.
Furthermore, the projected decrease in the longest
dry spell as the Kiremt months progress (June—
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October) indicates an extension to the end of Kiremt
rainfall, thus increasing the length of the crop
growing period. This is consistent with a previous
study that reported the lengthening of the growing
season in the CRV of Ethiopia due to the later cessa-
tion of Kiremt (Muluneh et al. 2015). Other studies
also indicated that the simulated annual cycle for
Ethiopia shows a shift in both the rainfall onset and
cessation dates, by about a month (Shongwe et al.
2008). This result implies a shift in the whole rainy
season, with October receiving more rainfall than in
the present climate.

Generally, in the Ethiopian highlands, climate
change may extend the agricultural growing seasons
as a result of increased temperatures and rainfall
changes (Thornton et al. 2006; Boko et al. 2007).
According to Segele & Lamb (2003), warm sea
surface temperatures in the Indian Ocean and
Arabian Sea are likely to be associated with delayed
Kiremt cessation and hence prolonged rain.
Therefore, shifting the sowing period of maize from
the baseline Belg season (mostly April or May) to the
first month of Kiremt season (June) seems to be a prom-
ising adaptation to increase food security in the face of
expected climate change.

CONCLUSIONS

A change in climate in the CRV of Ethiopia is inevit-
able and maize yield will decline if no changes in
cropping practices are made to adapt to the future cli-
matic conditions (2020-49). In the current study, the
projected changes in dry spells, rainfall, CO, levels
and their effect on maize grain yield were assessed
in dry sub-humid and semi-arid parts of the
Ethiopian CRV. Then a validated crop simulation
model was used to explore three adaptation options:
plant density, SI and shifting of the sowing date.
From the results of the assessment and analysis
reported above, the following conclusions have
been drawn regarding the adaptation options:

1. Increasing plant density from 30000 to 75
000 plants/ha showed statistically significant yield
increase. So, higher plant density is recommended
(75000 plants/ha).

2. Supplemental irrigation is a promising option for
crop survival and improving yield and therefore
food security. Although SI has a marginal effect in
good rainfall years, using 94-111 mm of Sl
during sensitive growth stages can avoid total
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crop failure in drought years. From earlier research
conducted in the area it was proved that this
amount of SI can be available using farm ponds
catching runoff, even in drought years (Muluneh
et al. unpublished).

3. Shifting the sowing period of maize from the
current Belg season (mostly April or May) to the
first month of Kiremt season (June) is another prom-
ising adaptation for increasing food security in the
face of expected climate change. The climate
models used predicted a temporal shift in rainfall,
meaning even less in Belg and more in Kiremt,
thus extending the growing season. Shifting the
sowing period can reduce the risk of crop failure
and offset the predicted yield reduction caused
by climate change.
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