COMMUTATORS OF MATRICES WITH
PRESCRIBED DETERMINANT

R. C. THOMPSON

1. Introduction. Let K be a commutative field, let GL(%n, K) be the
multiplicative group of all non-singular n X # matrices with elements from K,
and let SL(#n, K) be the subgroup of GL(#, K) consisting of all matrices in
GL(n, K) with determinant one. We denote the determinant of matrix 4
by |A|, the identity matrix by I,, the companion matrix of polynomial p(A)
by C(p(\)), and the transpose of 4 by A7. The multiplicative group of non-
zero elements in K is denoted by K*. We let GF(p*) denote the finite field
having p" elements.

The goal of this paper is to prove Theorem 1.

THEOREM 1. Let %,y € K* and let A € SL(n, K). Then X,V € GL(n, K)
extst such that

(H A =XYVX1y-1
with
(2) |X] ==, |Y]=y,

unless: (i) n =2, K 1s GF(2), or GF(3), x = v = 1, and A 1s similar within
GL(2,K) to C((\ £ 1)%); or (1) A = f1, where f has order n in K* and K
has infinitely many elements.

The cases (i) and (ii) are genuinely exceptional. In case (i) the matrices
C((A = 1)?) do not lie in the commutator group of SL(2, K). Whether (1)
and (2) possess a solution X, ¥ € GL(%n, K) in case (ii) depends very much
on the field K. In Theorems 2 and 3 and their corollaries we produce criteria
that can be used to determine the solvability of (1) and (2) in case (ii).

Theorem 1, in the case ¥ = y = 1, was the result obtained in (1; 2; 3).
The methods used to prove Theorem 1 are extensions of the methods of
(1; 2). It does not, however, appear to be the case that Theorem 1 follows
from the results of (1; 2; 3). Without further explanation we use notation,
terminology, and results from (1; 2; 3).

2. The scalar case. Let f ¢ K* have order # and let 4 = fI,. Suppose
(1) and (2) hold. Let x, = (=1)"%, y; = (—1)"%. From (1) we get
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fY = XYX71 Let £ be an eigenvalue of ¥ in some extension field of K. Then
f& is an eigenvalue of fY, hence of Y also as fY is similar to V. Thus
£ f& ..., " areall eigenvalues of V. Since f has order » and £ # 0, these
eigenvalues are distinct and therefore are all the eigenvalues of V. Thus ¥V
must be non-derogatory and is therefore similar within GL(n, K) to the
companion matrix of its characteristic polynomial. Note that, if # is even,
fre=D2 = (fryr—1 = (—1)"1;and if nisodd, fr—D2= (f1)*=D2=1=(—1)""L
Multiplying together the eigenvalues of ¥V we find that

V] = (=1)""y1 = (—=1)* 1

Thus £ = y; and so each eigenvalue of Y is a zero of the polynomial \* — ;.
Consequently \* — y; is the characteristic polynomial of ¥, and so

SYS1 = C\" — y1)
for some .S € GL(z, K). Now from (1) we get
fL = (SXS)(SYS) (SXSH)~1(SY.S—1),
and so, after a change of notation, we may assume that ¥ = C(A\® — y,). Let

(3) A=+ D+ O+ Q.
Then |A] = (—=1)"! and fY = AVA7, So (1) becomes AVA-! = X VX!
and thus Z = A7'X commutes with Y. Conversely, if for any non-singular
Z commuting with ¥ we put X = AZ, then fI, = XYX'Y~L Since Y is
non-derogatory, the only matrices commuting with ¥ are polynomials in Y.
This completes the proof of Theorem 2.

THEOREM 2. Let f € K* have order n. Let v € K*, and put y; = (—1)""1y,
Then all solutions of
(4) fl, = XYX71V!
with | Y| = v are given by

Y = SCO\" — 3,)57,
n—1
) X - m(;)zi CO™ — 3 > s
where 24, 21, . « . , Zn—1 are arbitrary elements of K (such that X is non-singular),

S ts an arbitrary element of GL(n, K), and A is defined by (3).

CoroLLARY 1. Let x1 € K*. The necessary and sufficient condition that (4)
have a solution X, Y € GL(n, K) with |X| = (—=1)""'%y, | V] = (—1)"1y; 3s
that the polynomial equation

n—1

(6) Z 24 C()\n — yl)i = X
=0

have a solution 2y, 21, ..., 21 € K.
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COROLLARY 2. (1) Let y be fixed tn K*. The set of all x1 € K* such that (4)
has a solution X,Y € GL(n, K) with |X| = (—=1)" %, |Y]| =y forms o
multiplicative group G, in K* containing y and 2* for each z € K*. (i) Let x
be fixed in K*. The set of ally: € K* such that (4) has a solution X, Y € GL(n, K)
with | X| = x, |Y| = (—1)"Yyy forms a multiplicative group H,in K* containing
x and 2" for each z € K*.

Proofs. Corollary 1 is clear from (5). Corollary 2(i) is also immediate since
all X are given by X = SAZS~! where Z runs over the multiplicative group
of matrices in GL (#, K) commuting with C(\* — y1), with y; = (—1)*"1y. If
we put Z = C(\* — ) or Z = gl, we find that |Z| =y or |Z| = 2. This
proves (i). We may deduce (ii) from (i) by noting that (4) holds if and only
if fI, = Y7IXYX! holds, since from (4), we get

fI, = Y1)V = V" {(XVX-'Y)Y = Y IXVX-L

TuroreM 3. Let f € K* have order n. Let m|n and let x,v € K*. Then (4)
has a solution X, Y € GL(n, K) with

@) X = (=1)"k, |V] = (—1)1yn/m
if and only if
®) L, = XYX-1yt

has a solution X, Y € GL(m, K) with
9) X| = (1", |V = (-1)"1.

Proof. Let &, f¢,...,f" 71 be the eigenevalues of C(\" — 4*/™), where we
choose & so that & = . Then, by Corollary 1, (4) has a solution
X, Y € GL(n, K) satisfying (7) if and only if

2 51 C = y"m)y
=1

has determinant equal to x. Since the eigenvalues of C(\* — y»/™) are f* 1,
1 < 7 < #, this condition is equivalent to

(10) x = H <Z zj_lf(i—l)(j—1)£j1> )

=1 =1
Put j—1=¢t—14+m(e—1) and 2 — 1 =p — 1+ (u — 1)n/m, where
1<p,0<n/m1l<tu<m Then, upon setting ¢ = f*/ and using ™ = y
and f* =1, (10) becomes

n/m

m m nim
(11) x = H <Zl g_(;1—1)(6—1) St—lzlf (p—l)(z—1+m(17-1))’yo-—lzt_1+m(”~1)> .
= o=
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Introduce new variables w,, by setting, for each fixed £, 1 < ¢t < m, and
variable p, 1 < p < n/m:

n/m

(12) Zfwl)(z—1+m<a—1>>,yoﬁlzHW(‘H) = w,,

o=1

If we view (12) as a linear system linking variables v 712, 1, -1, 1 < ¢ < n/m,
with variables w,,, 1 < p < n/m, then the coefficient matrix

(floDC=tFme=1)y

is non-singular since, upon removing f=D¢=D from row p, the resulting
matrix (fO Ve DMy o<nm 18 @ Vandermonde matrix and is non-singular
because /™ is a primitive root of unity of order #/m. Thus for fixed ¢, as the
Zitim—1, 1 < o < n/m, run freely over K, so also do the w,,, 1 < p < n/m.
We now write (11) as

p=1 \ =1

The expression in braces in (13) is the determinant of the matrix

(14) Zl w, CON" — 7).
1=
So we may rewrite (13) as
n/m m -
(15) =11 | % weCO" — )"
=11 =

Since any polynomial in C(A™ — v) has the form

W con =

it follows that if (4), (7) hold, then

(16) x= 2 W C\" = y)*!
=1

has a solution Wo, Wy, ..., W,_1 € K. By Corollary 1, this implies that (8)
has a solution X, ¥ € GL(m, K) satisfying (9). Conversely, if X, ¥ exist in
GL(m, K) satisfying (8) and (9), then Corollary 1 implies that (16) has a
solution Wy, Wy, ..., W,_1 € K. From this solution we construct a solution
of (15): simply putw,y = W,_iforl <t m,w;, =1forallp>1,w, =0
for ¢t and p > 1. With this choice of the w,, (16) coincides with (15). We
may then use (12) to find valucs for the 2, 1y, | <o < n/m, 1 <t < m,
for which (10) holds. Corollary 1 and (10) then imply that X, ¥ exist in
GL (n, K) satisfying (4) and (7).

https://doi.org/10.4153/CJM-1968-019-0 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1968-019-0

COMMUTATORS OF MATRICES 207

COROLLARY 3. Let n = 0 (mod 2), let f have order n in K¥*, and let x, v € K*,

Then X, Y € GL(n, K) exist satisfying (4) and |X| = —x, |V| = —"/2 if
and only if

an xu? + 1?2 = 1

has a solution u,v € K.

Proof. By Theorem 3, with m = 2, (4) holds with [X| = —x, |V] = —y7/2
if and only if —71; = X YX~1V~! has a solution € GL(2, K) with X = —x,
Y| = —v. By Corollary 1 this latter event will hold if and only if

' 20 21 _
I")/Zl 20

has a solution in K. This equation in turn is 2?2 — v%® = x and is easily
shown to have a solution zy, 2, € K if and only if (17) has a solution u, v € K.
(Consider separately the cases zo = 0, 20 = 0; u = 0, u % 0.)

Ifweputx = v = —1, then we find from Corollary 3 thatfor n = 2 (mod 4),
[ is « commutator of SL(n, K) if and only if —1 is a sum of two squares
in K. This is part of Theorem 1 of (1).

CoROLLARY 4. Let n = 0 (mod 2), let xy € K*, and let | have order n in K*.
Suppose that (17) does not heve « solution u,v € K. Then (4) does not have a

solution X, Y € GL(n, K) with | X| = —x, |V] = —~.
Proof. Suppose v*'* € H_,. Then (4) would havea solution X, ¥ € GL(n, K)
with |X| = —x, |Y]| = —v"/%2. By Corollary 3 this implies that (17) has a

solution #,v € K. This contradiction implies y*/2 ¢ H_,. If v € H_,, then,
as H_, is a group, v*/* € H,,. llence v ¢ H_,.

COROLLARY 5. Let Q be the rational number field Let x,v € Q*. Let f be a
primilive rool of unity of order n = 0 (mod 2) in the complex number field. If
there exists a prime p = 1 (mod n) suck that (17) does not have a solution in
the p-udic number field, then (4) has no solution X, Y € GL(n, Q(f)) with
|X]| = —x, |[V]| = —7.

Proof. Let Q, be the p-adic number field. It is known that if | (p — 1)
then Q,* contains an element of order #. So we may assume that f € Q,%,
and hence Q(f) C Q,. If (17) does not have a solution in Q,, then surely it
has no solution in Q(f).

We remark that well-known techniques are available for determining the
solvability of (17) in Q,. These techniques and Corollary 5 suffice to show
that many combinations of determinants cannot be reached in Q{f) to satisfy
(1) and (2).

TueoreM 4. Let K = GF (p*) be a finiie field. Let n | (p* — 1). Let x,y € K*.
Then (4) has a solution X,Y € GL(n, K) with |X| = x, |V] = ».
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Note that GF (p*)* contains an element f of order n if and only if | (p*— 1).

Proof. Let ¥ be a generator of the cyclic multiplicative group K*. First
note by Corollary 2 that ¥ € Hy. Since Hy is a group, this implies that
Hy = K* Thus (—1)*y € Hy. Hence there exist elements X, ¥ € GL(n, K)
such that (4) holds with |X| = ¥,1Y| = v. In turn thissays that (—1)* ¥ €G,.
Consequently G, contains the cyclic group generated by (—1)"1W¥. If K has
characteristic 2 or if % is odd, we have (—1)"! = 1 and hence G, = K*. Thus
(=1)*'x € G, so that a solution of (4) with [X| =x, |¥| = y exists in
GL(n, K). Now let # be even and p be odd. Let m = p* — 1 be the order of
K*. Then ¥™ = 1 and —1 = ¥™/2, The order of (—1)*1¥ = —¥ = Y7/
is m/(m, 1 +m/2) =m if 4|m, =m/2 if 2|lm. Thus if m =0 (mod 4),
(—1)~'¥ is also a generator of K*; consequently G, = K* and hence again
we may solve (4) within GL(n, K) with |X| = «, || = 3. Now let m = 2
(mod 4). In this case G, contains the cyclic group of order m/2 generated
by —¥; therefore [K*: G,] < 2. Since the order of ¥? is m/(m,2) = m/2,
the cyclic group generated by —¥ is also generated by ¥?2, hence consists of
exactly the even powers of ¥. We now find an odd power of ¥ in G,. Note

the following chain of equivalences: fI, = XYX1V~! with |X| = —¥*/2,
V| =y e fI, = VIXVX with [V =y,
[Xl = — P2 —y=ly? 4 Y2 = 1

has a solution in K < —yu? 4+ W92 = 1 has a solution in K. That this equa-
tion always has a solution in a finite field is well known and can be seen as
follows: the map # — u? is2: 1 in K* and 0 — 0. Thus —yu? assumes 1 + m/2
values as # runs over K. So also does 1 — ¥9? as v runs over K. If these two
sets of values were disjoint, K would have m -+ 2 elements. Since K has
only m 4+ 1 elements, —yu? = 1 — ¥9? has a solution in K. Consequently
we know that ¥*/2 € G,. But m = 2 (mod4) and # even implies 7 = 2
(mod 4); thus ¥"/2 is an odd power of ¥. Hence G, is properly larger than
the subgroup of index two in K*, and hence G, = K*.

Now let K be again an arbitrary field.

TurorReM 5. Let f have order n in K*, let m > 1, and let x,v € K*. Then
flun = XYX YL has a solution X, Y € GL(mn, K) with [ X| = x, |V| = y.

Proof. Since for any o, 1 € H, and for any 8, 1 € Gp, it follows that we
can find Xi, Vi, Xo, V3, X3, V3 € GL(#, K) such that

fIn = X1 Y1X1_1Y1‘1 = Xz Y2X2_1Y2_1 = X3 Y3X3—1Y3~1

with [Xy] = (—=1)" 4, [ V1| = (=1)*y, | X, = (—1)=Da-Dg |V, = (— 1),
[ Xs] = (—=1)"1,|¥V;| = 1. Put

X=X+ Xo+ X5+ X4+ ... 4 X
V=Yi+ Vo4 Vs + Vodb...+ Vs
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(X5, Vs each appear m — 2 times.) Then fI,, = XVX-'V~! and |X]| = «x,
|7} = .

3. The non-scalar case. Let 4 € SL(n, K). To avoid conflict with nota-
tion used in (1; 2) we now let ¢, 7 € K* and we attempt to find matrices
S, D such that

18) 4 =SDSD-Y,  S,D € GL(n, K),
(19) 1S =9, D] =r.

Following the discussion in (1, §4) we let 4 = 4+ ... 4 4, where
A; € GL(j(z), K) is a companion matrix, 1 < ¢ < m, and
i) <j@) <...<jm).

If we can locate a matrix D € GL(n, K) with |D| = 7, possessing a linear
elementary divisor A — o where o € K, and such that AD is similar to D,
then (1, Lemma 6) can be used to find S € GL(#n, K) with |S| = ¢ such
that AD = SDS™'. Hence (18) and (19) will hold. The rest of this paper is
devoted to locating matrix D.

Note that, in several places in (1; 2), the determinant of a direct sum
Ay ... F 4, is written as |4y ... A, when a better notation would be
[A1] ... |Ap] or |4y 4 ...+ 4,

Case 1. m = 1. If 7 # 1 construct, by (1, Lemma 4) a standard matrix
D € GL(n, K) such that both D and AD have elementary divisors A — 7,
(A — 1)™1 This finishes the case m = 1, r £ 1 for any field. This argument
also worksif r = land # = 1. If n > 1 and » = 1 choose p € K* such that
p? 5% 1. This is possible if K s GF(2) or GF(3). By (1, Lemma 4) construct
D € SL(n, K) such that both D and AD have elementary divisors A\ — p,
A —p7Y, (A — 1)*2 This finishes the case m =1, r = 1, » > 1 over any
field except GF(3) or GF(2).

Case 2. m > 1, j(m) » 8 or j(m) = jim — 1) = 2, K has more than six
elements. These cases go almost exactly the same as cases 2 and 3 of (1). We

need only make the following small changes: replace equations (13) and
(15) of (1) by (13") and (15") below:

m m—1

(13") (H 51) <H WM)_l) Y’ T = 1,
i=1 i=1
m m—1

(15r) <ITI 61)(11 'Yij“)_l) ,ij(m)—3,y/,y// = I

Construct matrices Dy, ..., D, as in (1, Cases 2 and 3). Put
D=Dy+...+ D,

Then D and DA are similar. D has a linear elementary divisor, and |[D] = 7.
This finishes Case 2.
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Case 3. As in the discussion at the end of Case 3 of (1), it only remains
to consider the case 4 = fI,_o + C((\ — /)(\ — g)) where f, ¢ ¢ K and
"¢ =1, n > 3. The following proof is valid if K = GF(2) or GF(3). First
let /5% 1. Let a» be any element of K* such that as # 2 -+ 2(—1)" — #n.
Put a3 = 1 + (—1)"7 — as and let p(\) = A — az\? — ash + (—1)"r. Then
p(1) =0 and dp(A\)/dx 2 0 when A = 1. Thus A =1 is a simple zero of
p(N). Set x = a1 — 2" vy =a(1 — [ Then «x =0, Let
B = (b,;) € SL(n, K) where b;; =f for 1 <i<n—1, by = ¢, by = x,
b, = v; and all other b,; = 0. Then B is similar to 4. This is most ecasily
seen by reducing A, — B to Smith canonical form. In \* — B add x '(A—f)
times row # and yx~! times row 2 to row 1. Then add x~'(A — g) times column
1 to column #. Finally multiply column 1 by —x=! and row 1 by x. Inter-
change rows 1 and # and add y times column one to column two to display
invariant factors A — f, ..., A — f ( — 2 times) together with the invariant
factor (\ — /)(A — g). Thus B is similar to A. Now AT'BC(p (M)A = C(p(N)).
Thus BC(p(N\)) is similar to C(p(\)) and has A — 1 as an elementary divisor.
AMoreover, |C{p(\))| = . Thus B, and hence and 4, is a commutator of the
required type. The case f = 1 follows from Lemma 1 below.

LemMa 1. Let K = GF(2) or GF(3), let ¢, 7 € K*, and let A € SL(n, K)
have X\ — 1 as an elementary divisor. Then S, D may be found to satisfy (18)

and (19).

Proof. Within GL(n, K), A is similar to a matrix of the form W + I
where W is a direct sum of companion matrices: W = W; 4 W, + ...+ W,
where W, € GL(w (1), K), say, 1 < i < k. Select 6; ¢ K*, define §,,1=|W,[4;
for 1 <i <k —1, select v; € K*¥ such that v; # 6, §,4.. Construct, by
(1, Lemma 4), a standard matrix D; € GL(w(), K) such that D, has ecle-
mentary divisors A — §;, (A — v )*®P~t and such that W,; D, has elementary
divisors X — [Wilé;,, (\ —v)*@ for 1 <i <k Put E =D, + ...+ D,
Then WE is similar to E, so that WE = TET ' for some I" € GL(n — 1, K).
Put S =74 ({7]'¢), D = E -+ (|E|"r). Then W + I, = SDS'D~! and
IS| = ¢, |D| = r, as required.

Theorem 1 is now completely established, except when K has five or fewer
elements. The rest of this paper is devoted to finishing the proof of Theorem 1
when K is one of the exceptional fields GIF(3), GIF(2?%), GI7(5). The case
K = GF(2) was treated completely in (3).

4. The case K = GF(3). We use the notation of (2).

Luvmma 2. Let K = GF@3) and let A € SL(n, K) be a compuanion mairix.
Then matrices S, D satisfying (18), (19) exist where (¢, 7) = (1, —1), (—1, 1),
(—1, —1),asdemanded. 1] A 5= C((\ == 1)?), then wemay also have (¢, 7) = (1,1).

Proof. By §3, case 1 above with 7= —1 we have (18), (19) with
(p, 7) = (1, —1) or (—1, —1), at will. If we apply this result to 47 (which
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is similar to 4) we achieve (18), (19) with (¢, 7) = (—1,1). By (2, Lemma
5) we obtain (18), (19) with ¢ = 7 = 1, if n # 2. Finally
CO® 4 1) = SDS-1D—!

10 01
s=[3 ) | i
LEmMMA 3. Let K = GF(3). Let A = A, + Ay € SL(n, K) where A, is
similar to the companion matrix of a power of a polynomial irreducible over K
and |4, = —1,¢=1,2. Then (18), (19) hold where, as demanded, we have
(¢: T) = (lv 1)7 (1y '—1)) (_lr 1)! (_1’ _1)

Proof. That we can achieve (¢, 7) = (1, 1) is the result of (2, Lemma 7).
The proof of (2, Lemma 8) shows how to construct a matrix D € GL(#n, K)
such that D and AD have elementary divisors A + 1, (A — 1)1, This shows
we can achieve ¢ = 1, 7+ = —1. Applying this result to A7, we achieve
¢=—1 r=1

Lemya 4. Let K = GF®3). Let A = C((\» £ 1)2) - C((A = 1)?), where
either sign may appear in each divect summand. Then (18), (19) hold, where,
at will, (¢, 7) = (1,1), (1, —1), (—1,1), (—1, —1).

Proof. Let Cy, Cs each be either C({(A 4 1)2) or C((A — 1)?). By Lemma 2,
C] = Sl D1 Sl—llel where (fSlf, [D1’> = (—qS, —1), and Cz = SQ DQ S271D271
where  (|Su], |Da]) = (=1, —7). Put S=5,-+S,, D =D;+ D, Then
A = SDS71D-! and (S|, |D|) = (¢, 7).

We now prove Theorem 1 in the case K = GF(3) and A4 not scalar. Let
A=4,+ ...+ A, where, here, either 4, is the companion matrix of a
power of a polynomial irreducible over GF(3) and |4, =1, or else
A, = A, 4+ A, where 4,4 and 4, are each companion matrices of powers
of polynomials irreducible over GF(3) and [A,| = |4, = —1. If an 4,
appears which is not C((A &= 1)?), choose the notation so that 4,, is not
C((x &= 1)2). If each A, is C((A & 1)?), then m > 2. (Since, if m = 1, the
result follows from Lemma 2 above.) In this event change notation so that
A, = C((\ = 1)2) + C((» £ 1)?). By Lemmas 2, 3 we may find S, D; with
elements in GF(3) so that 4, = S, D, S D/ 1< < m — 1. By Lemmas
2, 3, 4 we may express A, = S, D, S, D,~", where

1Sl = 1SU oo Swidd, D] = D). Dyl
PutS =S8 4+...4+S, D=D,+ ...+ D, Then (18), (19) are satisfied.
This proves Theorem 1 when K = GF(3).

where

4, Some lemmas. To handle the cases K = GF(4) and GF(5) we require
the following rather complicated lemmas. The proofs of these lemmas are
extensions of the method used to prove Lemmas 7 and 8 of (2). For the
moment K will still be an arbitrary field. Let ¢; = (0,0,...,0,1) have <
components, of which all but the last are zero.
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Lemma 5. Let ¢t > 2. Suppose mairices A, Uy Ay € GL(j(4), K) and poly-
nomials p;(\) over K are given satisfying U, A, A, Uit = C(p;(\)), such that
A, is a companion matrix, the last column of U; is e;nT, and A; is upper
triangular, 1 < 1 < t. Suppose also that vectors v, with j(i + 1) components
from K are given, such that whenever §(4) = 1, v, = |4 | i1, piy1 being the
furst row of Uy, 1 <t <t — 1. Let D be a triangular matrix, presented in
partitioned form as

_Al Dy Dy Dy, i
0 Ay Dy D,,
0 0 A; Ds,
D ==
1 0 0 0 ... A, |

We suppose that v; is the lastrowof Dy, 131, 1 <2< t—1. LetA=4, +.. .44,
Then it 1s possible to select the as yet unspecified elements in Dys, D1s, . . ., D1,
from K in such a manner that AD is non-derogatory and has p1(\) ... p,(\)
as 1is characteristic polynomial.

Proof. Let v, = (v;1, %42, - - ., U5, 5041 ). Let « be fixed, a < t. We first
specify the elements of D, 1. If jla) = 1, this has already been done by
the hypotheses. Let j(@) > 1 and for this fixed @ let Ry, Ry, . . ., Rt denote
the rows of A,.1 Asry, and let

dll d12 dl,j(cz+1)
dar dss d2,1<a+1)
Da,a+l =
dj(a)—l,l dj(a)——1,2 dj(a)—l,j(a+1)
L Va1 Va2 Ya, j(at1) _

Let 8, denote the bottom right corner element of A,. As A, is triangular and
non-singular, 8, # 0. Let C, be the last column of 4, A,. Because 4, is a
companion matrix, the next to bottom element of C, is 6.. Now A, Dy g1

has the form

day d2s d2, j(a+1)
ds dss dS,j(a+l)
Aa Da,a+1 = . .
j@-1,1 j-1,2 & jr—1, j(at D)
Va1 Va2 Var, jlat1)
L & 22 Zjat+D) R
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where
(20) 2 = (—1)7@=1|4,| dis + a fixed linear combination of
d?sy d3sy ey dj(a)—l,sy Dasy 1 < N < ](C{ + 1)
We now impose the following condition upon the elements of Dy qy1:
(1) [Oj(a)~1,1<a+1):] 4 50‘—1(%1 Cus ¥z Cor + + + » Tty C)
Pa+1
Oj@—1,5a+1)
N el ) = Ay Dy or1.
Z Vo Ry o
p=1

Here, in (21), the first matrix in the left member has j(a) rows, the first
jl@) — 1 of which are zero vectors and the last p,y1; the second matrix on
the left has j(a 4 1) columns, each of which is the indicated multiple of C,;
the third matrix on the left has j{a) — 1 rows of zeros, followed by a row
which is the indicated linear combination of Ry, ..., Rj@+n. From an exami-
nation of the form of 4, D, .11, we see that (21) immediately determines all
rows of D, i1 except the first; and then (20) can be used to determine the
first row of Dyqy1 in such a manner that (21) is satisfied. All this can be
done for a« =1,2,...,t{ — 1. Hence Dy, Ds3, ..., D, 1, are now con-

structed.
Now form AD. We find that

_A1 Ay A1 Dy Egg Eqs ... Eq i
0 A2 Az Az D23 E24 e EZt
0 0 Ag A3 A3D34 Egt
AD =
L O 0 0 0 .

Here E.p = Aq Dog. Let a be fixed, 1 < a < ¢ — 1. We now perform the
following similarity transformations on AD. If j(a) = 1, we do nothing. If
jl@) > 1, we subtract 8,71 2. times column 7(1) + j(2) + ... + jla) of AD
from column j(1) +37(2) 4+ ...+ jla) + s, then add 8,7, times row
)+ + ...+ jl@)+ s to row JA)Y ... Fjlo), for s=1,2,...,
jla + 1). Owing to (21) this results in converting the block A, D, 041 into a
block whose last row is p.y1 and whose other rows are all zero. If j{a) = 1,
it is already true that 4, Da .11 has pe.1 for its only row. In addition observe
that these similarity transformations leave all diagonal blocks 4144, ..., 4 A,
unchanged. The only block in the block diagonal just above and parallel to
the main block diagonal that changes is Ay Daoy1- Also observe that while
certain of the E matrices change, they do so only in the following way. If
an E matrix, say E,, becomes altered, the only alteration is to add to the
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elements of E,, certain known linear combinations of elements from matrices
which lie in block row p and which are to the left of E,, or to add to some
of the elements of E,, certain known linear combinations of elements from
matrices which lie in block column ¢ and which are below F,,.

We now perform the above similarities on 4D with « = ¢ — 1, then on

the result perform the above similarities with @ =t — 2, then  — 3, ..., 1.
The result of all of this is to find a non-singular W such that
—Al Al ]“12 Gl;g GM - Glz ]
0 AZ AZ }1‘23 G‘Z{ L G?L
0 0 Aiﬂ Aii }734 e GSt
WADW—! =
| o 0 0 0 ... 4.4

Owing to our construction of D, .1, we have

s O j(@-1. ja+1
Faas1 = [ fomhier ) L Ca <t — L
Pat1
4 3 = U, 94 = ey 2, — U & 1 1
Now set Gz = 0, Goy = 0, Gis.. = 0. Because of the manner in which
the G matrices arisc from the E matrices, this amounts to setting

Aa Da,a+2 = Y‘a, 1 < [ < { — 2,

where the 1, are some matrices of known elements. So we may solve for
Dy, Doy, ..., Dys,y such that Gy =0, Goy =0,...,G,2, = 0. Now set
G =0,Gs5 =0,...,G,—3, = 0. By the same kind of argument this amounts
to putting Ag Daoys = Ve, 1 < a < ¢ — 3, where the V, are certain matrices
of known elements. In this manner we construct in succession the block side
diagonals of D parallel to the main block diagonal such that all the G matrices
are zero. D is now completely specified.

Now, for @ < {, note that because of the special forms of U, and F, 441,
we have U, £y .ar1 = Faor1. And also observe that since the last row of £, o1
is the first row of U,i1, Faer1 Usri™! = N,, say, is a matrix consisting en-
tirely of zeros except for its extreme lower left corner element, which is a

one. Now put U = U, + U, 4 ...+ U,. Then

C(p1(\)) N, 0o o0 ... 0 1
l 0 Cps(\)) N» 0 ... 0
UWADW-1[-1 = : S
0 0 0 0 ... Ci.0V)

The proof is now complete since UWADW-1U clearly has the required
characteristic polynomial and is non-derogatory since the (# — 1) X (n — 1)
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subdeterminant of N, — UWADW=1~! obtained by deleting column 1 and
row # is a non-zero constant.

The next lemma uses notation explained in (2, pp. 144-145).

LemMMA 6. Let A = C(p(\)) € GL(n, K), where K # GF(2). Let gy, g3 € K*.
Then 1t 1s posstble to choose gs, g4 € K and a veclor d with elements in K so
that U € GL{(n, K) extsts satisfying: (1) the last column of U is e,”; (i) if
n > 2, UAA, (g1, g2 g5 8, U™ = C(ON — [A] g) (N — o) (v — 1)"72); (i) of
n =1, UAAn(gb 82, €3y L4y d) Ut = C()\ — |A| g1); (IV) ’if n > 3, ge gu F 0;
W)Y ifn=2and g1 = g;, then go = 0 4f and only if p(\) = (A — |[A])(A—1).

Proof. This is a specialization of Lemma 2 of (2). The matrix U is the
matrix ST whose existence is asserted in (2, Lemma 2). Let —us be the
coefhicient of A in p(N\). When # > 3 to get go, g1 we require that the coefficient
of Nin (M — 4] g) (A — g) (A — 1)™2 be

(—)"A] (g2 + g1g4 + g1 gs(n — 3)) — az gs.

This is a linear equation in two unknowns g3, gs. Set go = 1 and solve for g,.
If g, = 0, set instead g» equal to any other non-zero value in K. Then solve
for g,; it must now turn out that g4 # 0. When # = 2 we determine g, from
—|Al g1 — g3 =|A| gz — a2 g5 If go =0 and g1 = g3, we get a» = 4] + 1.
This implies that p(\) = (A — [A]) (M — 1).

LemMa 7. Let A = Ay + Ay € SL(n, K) where A ;is a () X j(G) companion
matrix and [A;| # 1 for i = 1,2. Let (1) » 2, (1) > 7(2). Suppose » — 1 4s
not an elementary divisor of A. Let 81, 82, 83 € K* be such that one of (i), (i),
(iit), (iv) holds: (i) 1 5 6y 5 61 = 83 % 1; (i) 85 = 85 = 1 £ 6y; (iii) 61, bs,
83, 1 are all different; (iv) 81 = 83 = 1 £ 85. Then we may find D € GL(n, K)
such that D and AD are both mon-derogatory with characteristic polynomaials
A =8)(N —8) (0 — 8 (0 — 1) (A — [A4fd) (A — [A2]d2) (N —83) (A—1)"?
respectively.

Proof. Use Lemma 6 to construct matrices Ui, Ay (81, g2 83, g4, d) €
GL(j(1), K) satisfying (i), (ii), (iv), (v) of Lemma 6. Note that if j(1) = 2
and &, = 8;, then gy # 0 since g = 0 implies A, = C((A — |4+)) (A — 1)),
hence A — 1 is an elementary divisor of 4, contrary to hypothesis. If j(1) =2,
set g4 = 1. Use Lemma 6 to construct matrices

U,, A]'(2) (52, hs, 1, hy, d/) S GL(]‘(Z), K)

satisfying the five conditions of Lemma 6. Note that if 7(2) = 2 and &, = 1,
then ks £ 0, since £y = 0 implies 4, = C((A — [42]) (X — 1)), so that A — 1
is an elementary divisor of 4, contrary to hypothesis. If 7(2) < 2, set by, = 1,
and if 7(2) = 1, set ks = 1. Now put

D = [A]’(l) (517 g9, 03, g4, d) D, :]
0 Aj (8a, B, 1, by, d7)
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where the last row of D is (0,1,0,0,...,0) if 7(2) > 1 and 8, 5 1; other-
wise the last row of Dy is (|447% 0, ..., 0). Then the conditions of Lemma 5
are satisfied and hence we may choose the other elements of Dj; so that AD
is non-derogatory and has the required characteristic polynomial. Since D is
triangular, it is clear that D has the required characteristic polynomial. It is
only necessary to show that D is non-derogatory. This will be accomplished
by showing that the greatest common divisor of the (# — 1) X {(n — 1) sub-
determinants of A\, — D is one. Let Da|8] denote the subdeterminant of
A, — D obtained by deleting row « and column g, and let D]«|8]\~; denote
this subdeterminant evaluated when A = 1. In case (i) consider

D) + 17 1) + 1] = (A — &2 (x — )%

D[2]1] = —go(A — §2) (A — 1)" % 5 0; D[n|3hhoi= £ (1 — 6:)2(1 — 8)hs % 0
(when j(1) > 2 and j(2) > 1), Dln — 1|8hai= (1 — 8)2(1 — 82) = 0
(when j(1) > 2and j(2) = 1), or D[njn] = (A — §;)2(A — &) whenn = 4. In
case (i) consider D[1]1] = (A — 1)"1; and

Din|2har = £ — 81){41|"2gs Bz hra #= 0.
In case (iii) consider D[1]1] = (A — &) (A — &) (A — 1)"3;
D22 = N — o) (A — 8) (A — 1)™%
D)y +15(1) + 11 = (N = 8) (A — &) (A — 1)*5;
Dn3har = =1 — ) (1 — 82) (1 — 85)hy # 0
(when j(1) > 2,7(2) > 1), or

Dln — 18hai = =1 —6)(1 —6)(1 — ;) =0

(when j(1) > 2, j(2) =1), or D4J4] = (3 — 8) (X — 82)(\ — 83) (when
71y = j(2) = 2). In case (iv) consider D[j(1) 4+ 1|7(1) + 1] = (Ax — 1)1,
Dn|lha = %g2 g 7(1 — 85) 52 0 (when j(2) > 1) or

Din — 1]1])\=1 =g g1 —8) #0

(when j7(2) = 1). In all four cases we have computed sufficiently many sub-
determinants of A, — D to show that D is non-derogatory.

The rest of this paper is devoted to finishing the proof of Theorem 1 when
K = GF(4) or when K = GF(5). We may, by Lemma 1, assume that A — 1
is not an elementary divisor of 4. We may also assume that 7 # 1 since in
(1, §§ 5, 6) it was shown how to construct a matrix D € SL(xn, K) possessing
a linear elementary divisor A — a with « € K such that AD is similar to
D. Hence (18) and (19) can be satisfied when r = 1. If 4 is a companion
matrix, the required proof to complete Theorem 1 is supplied by § 3, case 3
above. If A = A; + A, when 4, € GL(j(z), K) is a companion matrix,
1 = 1,2, we may assume that j(1) > j(2), by use of the following device.
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Since the inverse of a companion matrix is similar to a companion matrix,
let Bi, B; be companion matrices similar to 4,71, 4171, respectively. Put
B = By 4 B,. I, for 4, j(1) < j(2), then, for B, 7(1) > j(2), and more-
over (|Bi], |Bal) = (|4.4], |44]) since {4.4] |45 = 1. Since B is similar to 471,
if B = SDS—1D~! where S, D have arbitrary prescribed determinant, the same
will hold for 4 also. In general we may suppose 4 = A 4+ ...+ A, where
A; € GL(j{#), K) is a companion matrix. Thus when m = 2 we may take
7(1) > 7(2). We shall take advantage of the simplifying assumption explained
in (1, §8 5, 6). By rearranging the 4 ,, we can order the integers (1), ..., j(m)
in any manner that is convenient at the moment and by considering A4~!
instead of 4 we can eliminate some cases. By virtue of these remarks we
need consider only the following possibilities when K = GF(4): 7 =8 or
= 8% m = 2, [As] = 6, [4a] = 6% j(1) > j(2); m = 3, |As] =|ds| = |yl =,
(1) > 7(2) > 73). And when K = GF(5) we need consider only the follow-
ing possibilities: 7 = 2,3,4; m = 2, [41] = 2, [4:] = 3, 7(1) > j(2); m = 2,
|44 = |4.] =4, j(1) >j2); m =38, |4i =2, |4y =2, [4:] =4, and
7(1), 7(2) ordered in any convenient manner;
m =4, |4 = |4 = |4 = 4] = 2,
and 7(1),7(2),7(8),7(4) ordered in any convenient manner.

5. The case K = GF(4). Let K = GF(4) and first suppose m = 2,
41| =6, 14, = 62 (1) > j(2). Let 6, = 63 = 6, 83 = 6% Then by Lemma 7,
part 1, we may find non-derogatory D € GL(n, GF{4)) with characteristic
polynomial (A — 8)2(\ — 62){(x — 1)*% such that AD is non-derogatory and
has characteristic polynomial (A — #2)(\ — 8)2(\ — 1)"=%, Thus D and 4D
are similar, D has a linear elementary divisor, and |D| = 8, finishing the case
7 =80, m= 2. Now let §; = 6% 8, = 63 = 1. Then by Lemma 7, part (ii), we
may find D € GL(n, GF(4)) such that D and AD are non-derogatory and
both have (A — 62)(A — 1)* ! as characteristic polynomial. Since [D| = 6°
and D has a linear elementary divisor, this completes the case m = 2.

Let m =3, |[Ay = |4yl = 144 =6, (1) »72) >7B). I j1) =1, 4 is
scalar and § 2 supplies the result. So let j(1) > 2. Let u = 1 or —1 (mod 3),
to be specified later. Use Lemma 6 to choose

Uy, Aoy (0%, g2, 04, g1, d) € GL(j(1), GF(4))
with gs # 0 such that
U, Al Aj(l) Ul = C(()\ — 61+”> ()\ — 9") ()\ - 1)j<1)_2).
Use Lemma 6 to choose Us, A;i(1, ke, 1, ks, d') € GL(§(2), GF(4)) with
By # 0, ]’L4 # 0 such that U, A, Aj(z) Ut = C(()\ - 0)()\ - 1)j(2)_1). Use
Lemma 6 to choose Us, Ajp(67% ko, 1, ke, d”) € GL(G(3), GF(4)) with
ks 5= 0 such that Us 4; Ay Uyt = C((0 — 817#) (A — 1)7®-1) Put

Ayy Dy Dis
(22) D= 0 Aj(z) D23 .
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Here the last row of Dy is (6%, 0, ..., 0) and the last row of Dy is (0, 1, 0,
0,...,0) when j(3) > 2 and (?) when j(3) = 1. Then by Lemma 5 we
may construct the remaining elements of D such that AD is non-derogatory
and has (A — ##)2(A — 67#) (A — 1)*3 as its characteristic polynomial. This is
also the characteristic polynomial of D. Now

DI2[1] = —gos(h — 67#) (\ — 1)»5 = 0;

Di) +7(2) + 7)) +52) + 1] = (A — 6> (A — 1)7%;
and D[n|3] (when j(3) > 1) or D[n — 1]3] (when j(3) = 1) is a polynomial
in A not vanishing when A = 1. Hence D is non-derogatory and has a linear
elementary divisor, so that (18) holds with |S| = ¢, |D] = 6 By choosing

w=1or —1 we get |D| =6 or 6 as required. This completes the case
K = GF(4).

6. The case K = GF(5). First let |44 = 2, |44 =3, j(1) > j(2). If
(1) = 7(2) =1, then 4 is similar to C((A — 2) (A — 3)) which falls into case
1 of § 3. So suppose j(1) > 2. Let §; = 8, = §, 62 = 25, where § = 1, 2, or 4.
Then by Lemma 7, part (i) or (iv), we may find D € GL (%, GF(5)) such
that D and AD are both non-derogatory with characteristic polynomial
(A —0)2(A — 26)(x — 1)"3. As D has the linear elementary divisor x — 23,
we can satisfy (18), (19) with |[D| = 26% = 2, 1, or 3. (This supplies a second
proof for the case 1 = 1, |4:] = 2, |4:] = 3.) Now set §; = 2, 8, = 4, §; = 3.
By Lemma 7, part (iii), we get D € GL(n, GF(5)) such that both D and AD
are non-derogatory and both have (A — 2)(A — 3)(A — 4)(A — 1) as
characteristic polynomial. So we can satisfy (18) with 7 = 4. This finishes
the case (|44, [4:]) = (2, 3).

Now let (4] = [4y] =4, j(1) > j(2). Let j(1) > 1 and let 6 = §; = §,
82 = 46 where 6 is 1, 2, or 3. Then by Lemma 7, part (i) or (iv) we get
D € GL(n, GF(5)) with D and AD both non-derogatory and having the
same characteristic polynomial (A — §)2(A — 48) (A — 1)*3. Thus again (1),
(19) arc satisfied, with 7 = 48% = 4, 2, or 3. This completes the case

lAd] = 4o = 4, j1)>1,  j{1) >j@).

If 7(1) =j7(2) =1, 4 is scalar and § 2 supplies the result. This finishes all
m = 2 cases.

We now supposc m = 3 and (J44], |42, |[4s]) = (2, 2,4). Using (1, Lemma
4) construct a standard matrix D; € GL(G(1), GF(3)) with elementary
divisors A — 2, (A — 1)@= guch that the elementary divisors of 4, D; are
A —4, (A — 1)~ Similarly construct D, € GL({H(2), GF(5)) with cle-
mentary divisors A — 4, (\ — 1)@~ guch that 4, D, has elementary divisors
A— 3, (Z — 1)1 Construct Dy € GL(G(3), GF(5)) with elementary divi-
sors A — 3, (A — 1)/®=1 guch that A;D; has clementary divisors N — 2,
(A — 1)/®=1 Set D = Dy + Dy 4+ D;s. Then D and AD have the same
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elementary divisors, including a linear elementary divisor, and |D| = 4. So
(18), (19) can be satisfied when 7 = 4.

If not both (1) =1, j(2) = 1, we arrange 4, A5 so that j(1) > 1. Con-
struct by (1, Lemma 4) a standard matrix D1 € GL{j(1), K) with elementary
divisors A — 2, A — 3, (A — 1)7~2 such that Ay, D; has elementary divisors
A—4, A — 3, (A — 1)’z Similarly construct D, € GL(7)(2), GF(5)) with
elementary divisors A — 4, (A — 1)7®~1 guch that the elementary divisors of
Ay Dy are (A — 3), (A — 1)I®»~1 Construct D; ¢ GL((3), GF(5)) with
elementary divisors A — 3, (\ — 1)7®=1 such that 43 D; has elementary
divisors A — 2, (\ — 1)9®=1 Set D = D; + D, + D;. Then D and AD are
similar and |D| = 2. So (18), (19) are satisfied with = = 2. However, this
computation fails when 7(1) = 7(2) = 1. If also j(3) = 1, then A4 is similar
to C(A —2) + C((A — 2)(\ — 4)), which falls under the already treated
case m = 2. So let j(1) = j(2) =1 s j(3). Use Lemma 6 to construct
Us, Ay (3, g9, 3, g1, d) € GL(G(3), GF(5)) with g» # 0, such that

UsAs Ay U™ = C((A — 2)(N = 3) (A — 1)7@®72),
Set U1 = Uz = Il, and set

2 3 Dy
D = 0 4 Dgg

Here Ds3 = 3 (top row of Uj;). Use Lemma 5 to construct Di; such that 4D
is non-derogatory with (A — 2)(A — 4)(Ax — 3)2(A — 1)"* as characteristic
polynomial. This is also the characteristic polynomial of D. Moreover D is
non-derogatory since 2, 4 are simple eigenvalues of D,

D[43] = —g2(0 = 2)(A — ) (A = D)"=¢ = 0,

and D[n[5]x_1 # 0 (when # > 5). Then, in the usual way, D and AD are
similar and |D| = 2. This shows that (18), (19) can always be solved with
T =2

If not both (1) = 1, j(2) = 1, let j(2) > 1. Use Lemma 6 to construct
U, Ay (2, g9, 1, g4, d) € GL(G(1), GF(5)) with g4 # 0 such that

Us Ay Ay Ut = C((0 — 4) (A — 1)1y,

Use Lemma 6 to construct Us, Ay (1, ke, 1, ky, d') € GL(G(2), GF(5)) with
he # 0, hy # 0 such that Up A2 Ay Us™ = C((M — 2)(A — 1)7®~1). Use
Lemma 6 to construct Us, Aju(4, ke 1, By d”) € GL(7(3), GF(5)) with
ky % 0 such that Us A3 Ay U™ = C((A — 1)7®). Define D by (22). We
let the last row of Dy, be (1,0,0,...,0) if j(1) > 1, and 3 (first row of U,)
if 7(1) = 1. We let the last row of Dy be (0,1,0,0,...,0) if 7(3) > 1, and
(1) if 7(3) = 1. We use Lemma 5 to construct the remaining elements of D
so that 4D is non-derogatory with characteristic polynomial (A—2)(» —4)
X (A — 1)*2. This is also the characteristic polynomial of D. Since 2, 4 are
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simple eigenvalues of D, and D[n — 1|12hh—; ## 0 (if j(8) = 1) or D[n[2],_1# 0
(if 7(3) > 1), it follows that D is non-derogatory also. Thus AD is similar
to D and as D has a linear elementary divisor and |[D| = 3, we can satisfy
(18), (19) when 7 = 3. However, this computation fails if j(1) = j(2) =
Assume j(1) = j(2) = land let A; = C(p(\)). If p(2) = 0, then 4 is similar
to CO\—2) + C((x — 2)p(\)), already treated under case m = 2. Let

$(2) = 0 (hence 7(3) > 1). If (3) = 2, then 4 = 21, + C((\ — 2)?), which
has already been handled in § 3, case 3. So let 7(3) > 2. Use (2, Lemma 2)
to construct Us, Aya (2, g3, 2, g4, d) € GL(G(3), GF(5)) with g, # 0, such
that Us 43 Ay U™t = C((N — 2)2(N — 4) (A — 1)I®=3), (U; is the matrix
ST of (2, Lemma 2).) Then set

4 3 Dq;
D = 0 3 D23 .
0 0 Ay

Here D,; = 3 (first row of U;). Then by Lemma 5 we may construct Dz so

that AD is non-derogatory with (A — 2)2(A — 4)(A — 3)(A — 1)** as charac-
teristic polynomial. This is also the characteristic polynomial of D. More-
over, D is non-derogatory since 4, 3 are simple eigenvalues,

D[4[3] = —ga(h — 4) (A — 3) (A — 1) = 0,

and D{n|dl=1 # 0 (when n > 5). Since |D| = 3, we have now solved (18},
(19) when 7 = 3. This completely finishes all m = 3 cases.

Now let m =4 and |4.] = |4, = [44] = |44 = 2. As in (1, §5), we
need only find an element 8; € GF(5)* and integers e(z) satisfying

<e(@) <j@) —1

such that
(23) 5,7 3AFIDHI(U)—e(D+eD+3e(d+e(®) = 1,

If some j(¢) is >4, let j(2) > 4. Set 6, =1, e(l) =e(3) =e(4) =0,
e(2) = 0,1, 2,3 so as to satisfy (23). Now suppose all j(z) are <3. Suppose
7(2) = 3 and j(4) > 2. Then put §; = 1, e(1) = e(3) =0, e(2) = 0,1, 0r 2,
and e(4) = 0 or 1 so that ¢(2) + ¢(4) =0, 1, 2, or 3 as necessary to satisfy
(23). Now suppose 7(2) = 3 and j(1) = j(38) = j(4) = 1. Hence # = 6 and
the left member of (23) becomes 6,232+¢®, If r+ = 1, take §; = 1, e(2) = 2. If
r=2,take §y =1,¢e(2) = 1. If r = 3, take 6, = 3, ¢(2) = 1. If 7 = 4, take
81 = 1, e(2) = 0. Hence we may assume each j(7) < 2. If there exist at least
three j(7) not one, let j(2) = j(3) = j(4) = 2. Set §; = 1 and take e(2), e(3),
e{4) to be 0 or 1 so that e(2) + 3e(3) + e(4) =0, 1, 2, or 3 (mod 4) as
required to satisfy (23). If exactly two j(¢) are two and exactly two are one,
let j(1) =3j(2) =2, jB) =j4) =1. Then n =6 and (23) becomes
5,237 e+e = 5 [f 7 =1, take 61 =1, e(1) =¢e(2) =0. If r =2, take
81=1, e(l) =1, e(2) =0. If r =3, take 6; =1, ¢(1) =0, e(2) = 1. If
r =4, take §; = 2, e(1) = ¢(2) = 0. Now suppose j(1) = j(2) = j(3) =1,
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j(4) = 2. Then n = 5 and if we put e(4) = 0 and §; = r, (23) will be satis-
fied. Finally if (1) = j7(2) = j(3) = j(4) = 1, then A is scalar and this case
was handled in § 2. This completes the m = 4 case and the proof of Theorem 1.
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