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Abstract. For any permutation o on N = {1,2,...,n}: (i) Green’s relations are
characterized in the centralizer C(o) of o (relative to the semigroup PT,, of partial
transformations on N); and (ii) a criterion is given for C(o) to be a regular semi-
group (inverse semigroup, union of groups).

1. Introduction. Let PT, denote the semigroup of partial transformations on
N = {1,2,...,n}, and let S, denote the symmetric group of permutations on N, the
group of units of PT,. For y € PT,, the set

C(y) ={ax € PT, : ay = ya}

is a subsemigroup of PT,, called the centralizer of y.

Centralizers of partial transformations are studied in [3], where the elements of
C(y) are characterized. It is shown in [7] that for a permutation o € S,, C(o) can be
embedded into a wreath product of two semigroups determined by the number and
length of cycles in o. Centralizers in some subsemigroups of PT,, have also been stu-
died. A structure of centralizers in the symmetric group S, is presented in [8]. A
representation and order of centralizers in the symmetric inverse semigroup I, are
given in [4] and [5]. A construction of centralizers in the full transformation semigroup
T, is presented in [1]. Many results from the above references are collected in [6].

In this paper, we study centralizers of permutations in PT,,. Section 2 introduces
notation, definitions, and some preliminary results. In Section 3, Green’s relations
in C(o) (for any o € S,) are determined. Section 4 characterizes the permutations
o € S, whose centralizer C(o) is a regular semigroup (inverse semigroup, union of
groups). In particular, we find that C(o) is an inverse semigroup if and only if it is a
union of groups. As an illustration, the egg-box structure of a specific centralizer is
presented (Section 5).

2. Preliminary results. For « € PT,, the domain and range of « will be denoted
by dom « and ran «, respectively. The kernel of «, denoted by ker «, is the equiva-
lence relation on dom « defined by x (ker o) y <= xa = ya. Denoting by
dom a/ker o the partition of dom « induced by ker «, we have |[dom a/ker «| =
[ran «|. This common cardinality of dom «a/ker @ and ran « is called the rank of
a and denoted rank «. For example, for
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doma = {1,2,3,5,6,7}, rana = {1,3,4}, kera = | 135]|26]| 7| (we identify ker «
with dom «/ker «), and rank o = 3.

Throughout the paper, we shall use the following characterization of the ele-
ments of C(o) (o € S,,), which is a special case of [3, Theorem 5].

THEOREM 2.1. Let 0 € S,, and a € PT,. Then o € C(o) if and only if for every
cycle (xoxy...Xr_1) in o such that some x; € dom «, the following conditions are
satified:

1) {x0.X15- - X1} S dom «;
(1) there is a cycle (yoy1...Ym—1) in o such that m divides k and for some index |,

X0 =), X106 = Yjt1, X200 = )jy2, - - vy

where the subscripts on ys are calculated modulo m. O

Let 0 € S, be a permutation with cycle decomposition ¢ = a; ---a, (1-cycles
included). For « € C(o), define a partial transformation 7z, on the set 4 =
{ay, ..., a;} of the cycles in o by:

(1) dom ¢, consists of all cycles a = (xgx;...x,_1) € 4 such that some x; is in
dom «;
(2) foreacha = (xgx|...x;_1) € dom t, and each b = (yoyi...Vm_1) € 4

aty = b <= xja = y; for some x; and some y;.

By Theorem 2.1, 7, is well defined. Speaking informally, at, = b if @ wraps cycle
a around cycle b one or more times. As an example, consider the permutation o =
abc = (1 2)(3 4 5)(6 7 8 9) in Sy and a=(l 2345078 9) € C(c). Then

-4 531212
t:abz?
o - b a)’

For a cycle a, £(a) will denote the length of a. For example, if a = (1 2 3), then
La) = 3.
We shall frequently use the following lemma.

LEMMA 2.2. If 0 € S, a = (XoX1...X5_1) and b = (yoy1. - -Ym—1) are cycles in o,
and «, B € C(o), then:

(D) tap= talp;

(2) if at, = b then L(b) divides £(a);

(3) b eran i, if and only if { yo.y1,. . ym-1} C 1AN 04

(4) aty = bty if and only if x,@ = yju for some x; and some y;.

Proof. Immediate by the definition of 7z, and Theorem 2.1. O

3. Green’s relations. If S is a semigroup and a,b € S, we say that a £ bif S'a =
S'b,a R bif aS' = bS', and a J b if S'aS' = S'bS', where S! is the semigroup S
with an identity adjoined. We define H as the intersection of £ and R, and D as the
join of £ and R, i.e., the smallest equivalence containing both £ and R. These five
equivalences are known as Green’s relations [2, p. 45]. The relations £ and R

https://doi.org/10.1017/5S0017089599970301 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089599970301

GREEN’S RELATIONS 47

commute, and consequently D = LoR = RoL. If Sis finite then D = J. Fora € S,
we denote the equivalence classes of a with respect to £, R, J, H, and D by L,, R,,
Ju, H,, and D, respectively.

Green'’s relations in the semigroup PT,, are well known [2, Exercise 17, p. 63].

LemMma 3.1. If a,8 € PT,, then the following hold.
(1) «a LB<=rana = ran .
(2) R B« kera = ker 8.
(3) aH B <= ran«a = ran B and ker « = ker .
(4) a DB < ranka = rank 8. O

A description of Green’s relations in C(o) (o € S,) will involve #, (¢ € C(0)). The
following lemma clarifies the relation between the range and kernel of « and z,.

LeEmMmA 3.2. If o € S, and a,B € C(0), then

(1) ran« = ran B <= ran f, = ran tg,
(2) ker a = ker B = ker t, = ker t;.

Proof. Statement (1) follows from (3) of Lemma 2.2 and Theorem 2.1. To show
(2), suppose ker @« = ker B. Let a = (xgx;y...x5,_1) and b = (yoy1...ym—1) be cycles
in o. Then,

(a, b) € ker t, < at, = bt,
<= xja = yja for some x; and some y; (by (4) of Lemma 2.2)
< x;f = y;B (since ker a = ker p)
<= atg = btg (by (4) of Lemma 2.2)

< (a, b) € ker tg. O

The implication in (2) cannot be reversed. For example, if o = ab = (1 2)(3) € S3,
then for a = (} 2 j) and g = (; 2 j) in C(0), we have t, = (Z Zj) and 75 = (g f)
Thus ker 1, = ker t5 = | a|, but ker @ = | 1|2 | is different from ker = | 12 |.

There is no corresponding result for ranks. It is possible to have «,8 € C(o) with
rank o = rank g but rank #, # rank ¢4 as well as with rank 7, = rank f4 but rank
o # rank B.

For o € S,, @ € C(0), and b € ran t,, we denote by #;'(b) the set of all cycles
a € dom ¢, such that at, = b.

The following theorem characterizes Green’s £ relation in C(o).

THEOREM 3.3. Let o € S, and let a,B € C(0). Then, a L B (in C(0)) if and only if
the following conditions are satisfied:

(1) rant, = ran tg
(2) forevery c € ran t, = ran tg:
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(@) if a € t;'(c), then there exists b € tg'(c) such that €(b) divides {(a);
(b) ifa € tg'(c), then there exists b € t;'(c) such that €(b) divides £(a).

Proof. Suppose o L B. Then o £ Bin PT,, and so (1) holds by (1) of Lemma 3.1
and (1) of Lemma 3.2. To show (2)(a), suppose ¢ € ran ,, = ran fgand let a € 1;'(c).
Since o L B, we have @ = yf for some y € C(0) and so, by (1) of Lemma 2.2, ¢, =
t,tp. Since at, = c, there is a cycle b in o such that ar, = b and btg = c. Thus £(b)
divides £(a) (by (2) of Lemma 2.2) and b € 75'(c). The condition 2(b) follows by
symmetry.

Conversely, suppose (1) and (2) hold. We shall construct y € C(o) such that « =
yB. First, we set dom y = dom «. To define the values of y, let a = (xox1...x,_1) be
a cycle in o with ¢ € dom 1, and let ¢ = (yoy1...Vm—1) = aty. By Theorem 2.1, m
divides k and for some index j,

Xod = )j, X106 = Yjt1, X20 = jp2, - - v

where the subscripts on ys are calculated modulo m. By (1) and (2)(a), ¢ € ran fz and
there is b = (wow;...w,_;) € dom tg such that btg = ¢ and p divides k. By Theorem
2.1, m divides p and for some index i,

woB = yi, wiB = Yitt, Wi = Yito, ...,

where the subscripts on ys are calculated modulo m. Let u € {0,1,...,p—1} be an
index such that w,8 = y;. Since p divides k, we may define

X0y = Wy, X1Y = Wuti1, X2V = Wyq2, -+«

where the subscripts on ws are calculated modulo p. By the construction of y and
Theorem 2.1, we have « = yB and y € C(o0). By symmetry, there is § € C(o) such
that 8 = Sa, which concludes the proof. O

To illustrate Theorem 3.3, let 0 = abed = (1 2)(3 4 5)(6)(7) € S7 and consider «
=(‘ 23456 7)and,6= (1 23456 Z)inC(o).Calculatingta= (" boed )

6 6 77 7 6 6 77 6 6 617 ¢c d ¢ ¢
and 15 = (j[ b i’), we see that (1) of Theorem 3.3 holds, but (2) does not hold.
Indeed, a € 1,7 '(c) and £(a) = 2, but the only element of t‘gl(c) is b, for which £(b)
= 3. Hence, @ and B are not in the same L-class in C(o). Note, however, that o £ 8
in PT, since ran @ = ran B.

For any integers i and m, m > 1, we denote by (i),,, the unique integer j such that
i=j(modm)and 0 <j<m—1.

Unlike the £ relation, Green’s R relation in C(o) is simply the restriction of the
R relation in PT, to C(o) x C(o).

THEOREM 3.4. Let o € S, and let a,8 € C(0). Then a R B (in C(0)) if and only if
ker @ = ker B.

Proof. If « R B in C(0), then « R B in PT, and so ker « = ker B by (2) of
Lemma 3.1. Conversely, suppose ker « = ker . We shall construct y € C(o)
such that ey = B. First, we set dom y = ran «a. To define the values of y, let
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b= (yoy1...Yym1) €ran t, and let a = (xox;...x,_1) be a cycle in dom ¢, such that
at, = b. By Theorem 2.1, m divides k and for some index j,

Xo =), X106 = Yjt1, X200 = )jg2, - o vy

where the subscripts on ys are calculated modulo m. Since ker @ = ker 8, we have
ker t, = ker tg by (2) of Lemma 3.2, which implies dom #, = dom 4. Thus a € dom
tgand let ¢ = (zozy...z,_1) = atg. By Theorem 2.1, p divides k and for some index i,

xoB = zj, X1B = zit1, X0 =zig2, ...,

where the subscripts on zs are calculated modulo p. Note that ker « = ker 8 implies
m = p. (Indeed, if, say, m < p, then xoa = x,¢ = y;, implying z; = xof = x,,8 =
Z(itm), which is a contradiction since for m < p, z; # Z(,;er)p.) Thus we may define

Yiv = Zzi, YVi+1VY = Zit1, VitV = Zig2s o+ -

where the subscripts on ys and on zs are calculated modulo m (= p). By the con-
struction of y and Theorem 2.1, y € C(o). It remains to show that oy = . Since
dom y = ran @ and dom « = dom S, we have dom (ay) = dom B. Let w € dom (ay)
= dom pB. Then there is d = (wow;...w,_;) € dom £, such that w = w, for some
index s. Let b = (yoyi...Ym—1) = dto, a = (XoX1...X,_1), and ¢ = (2921 ...2,-1) be
the cycles used in the construction of y. Let y, = wa (v € {0,1,...,m—1}) and let u
be the unique number in {0,1,...,m—1} such that v = (j+u),,. Then wy(ay) = y,y =
Z(i+u), Note that x,& = y;+, = ¥, = we. This and the fact that ker « = ker g
give wB = x,8 = Z(+u),, which shows that ay =p. By a similar construction,
we obtain § € C(o) such that 8§ = «, which concludes the proof. O

COROLLARY 3.5. Let 0 € S,, and let o,8 € C(0). Then, « H B (in C(0)) if and only
if ran t, = ran tg, ker a = ker B, and (2) of Theorem 3.3 is satisfied.

Proof. Follows from Theorem 3.3, Theorem 3.4, and the fact that H = LNR. O
The next theorem characterizes Green’s D relation in C(0).
THEOREM 3.6. Let 0 € S, and let o, € C(0). Then, «DB (in C(o0)) if and only if

the following conditions are satisfied.

(1) rank t, = rank #g.
(2) The sets ran t, and ran tg can be ordered, say,

rant, : ¢, C2, ..., Cy,
ran tg i di, da, ..., dy,
in such a way that for each i, 1 <i < u, €(c;) = £(d;) and.

(@) ifa € t,'(¢)), then there exists b € t5'(d;) such that €(b) divides £(a);
(b) ifa € t5'(d)), then there exists b € t;'(¢;) such that £(b) divides €(a).

Proof. Suppose oDB. Since D = RoL, there is § € C(o) such that «Ré and §LS.
Then ker t, = ker t; (by Theorem 3.4 and (2) of Lemma 3.2) and ran ¢; = ran 4 (by
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Theorem 3.3), which implies rank #, = rank 75 = rank f4. Select an ordering of

ran ty : c1,C2, ..., Cy.

Since aR$, ay = 6 for some y € C(0), which gives t,t, = t; by (1) of Lemma 2.2.
Moreover, by the proof of Theorem 3.4, y can be selected in such a way that dom ¢,
= ran t,, ran t,, = ran f; and for each ¢; € dom ¢, = ran t,, the cycle ¢;t, has the
same length as ¢;. Since 7, maps ran ¢, onto ran f; and |ran f,| = |ran f;|, we also
have that ¢, is one-one. Therefore, setting d; = ¢;t, (1 < i < u), we obtain the cor-
responding ordering of

rantg=rants=rant, :dy, d, ..., d,,
with £(c;) = £(d;) for each i. Let i € {1,.. .,u}. Then, for every cycle a in o,
ac t;l(c,-) = aty, = ¢;
<= (aty)t, = d; (since ¢;t, = d; and ¢, is one-one)
< ats = d; (since 15 = tyt,)
= act;(d).

Thus 15 (¢;) = t5(d;) and so (2) is satisfied by the fact that §£8 and Theorem 3.3.

Conversely, suppose that (1) and (2) are satisfied. For i € {1,...,u}, let ¢; =
(xioX1. . .Xir—1) and d; = (vioyar-..Yir—1)- Let v,y € PT, be transformations with
dom y = ran «, dom y’ = ran B, and values determined by x;;¥ = y;and y;»/ = x;
(1 <i<u,0=<j<r;_q).Then, by Theorem 2.1, y,y’ € C(o). Setting § = ay, we have
8y' = ayy’ = a, which gives «RS. By the definitions of y and §, we have that ran s
= {d,.....d,} = rantgand thatforeachi 1 <i<u, 1,7 '(¢;) = l;l(di). This, (2), and
Theorem 3.3 imply §£8, which, coupled with aRS, gives aDB. O

Recall the example given after Theorem 3.3: o = abed = (1 2)(3 4 5)(6)(7) € S7,
a =(‘ 23456 7>and,3= (' 23456 Z)inC(o).Calculatingta = (” boe ")

6 6 777 6 6 776 6 67 c dc ¢

and 15 = (j’i f’ y j’), we have rank ¢, = rank tg = 2. Moreover, ordering ran f, : ¢, d

and ran tz : d, ¢ we see that (2) of Theorem 3.6 is also satisfied. Hence oDg in C(0).
In a finite semigroup S, the D-classes are partially ordered by the following
relation:
D, < Dye=S'aS' C S'bS",

where a, b € S. The relation < is a partial ordering since in a finite semigroup

D = J. When studying the structure of a finite semigroup, it is important to deter-

mine not only the £, R, H, and D-classes, but also the partial ordering of D-classes.
The next theorem determines the partial ordering of D-classes in C(0).

THEOREM 3.7. Let 0 € S,, and let o,8 € C(o) with ran t, = {c1,¢2,. . .,¢y}. Then,
D, < Dg if and only if to each sequence

stay € ;' (¢1), @ € 17 (c2), ... ay € 1, (cu), (1)
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we can assign a sequence of elements of ran tg:

&d.db ... & )

s Yy
in such a way that for all sequences s and t as in (1) and for all ij € {1,.. . ,u}:

(i) ;) divides €(d):;
(ii) there is b; € t5'(d) such that €(b;) divides £(a;);
(iti) if df = d}, then i = j.

Proof. Suppose D, < Dg, i.e., « = 3By for some é,y € C(o). By (1) of Lemma
2.2, ty = tstgt,. Consider a sequence s as in (1) and let i € {1,...,u}. Since a;ty = ¢;
and t, = tstgt,, there are cycles b; and 4 in o such that a;ts = b;, bitg = d;, and dft,
= ¢;. Then b; € 15'(d) and, by (2) of Lemma 2.2, £(c;) divides £(c}) and £(b;) divides
£(a;). Thus, assigning &, &5, ..., &, to s, we have that (i) and (ii) are satisfied. To
show (i), assume that s and 7 are sequences as in (1) and that i,j € {1,...,u}. Then,

] A s
df:d]’» = dfly:djly = c=¢ = i=].

Conversely, suppose that to each sequence (1) we can assign a sequence (2) in such a
way that the conditions (i)—(iii) are satisfied. We shall construct 8,y € C(o) such that
o = §By. First, we define dom y to be the set of all elements that occur in any cycle d
in o such that d = d? for some sequence s as in (1) and some v € {1,...,u}. To define
the values of y, let d = d} = (wow;...w,_1) and let ¢, = (20z1...2,—1). By (1), p
divides ¢, and so we may define

wWoy = 2o, wiy =1Z2i, Wy =2Z2,...,

where the subscripts on zs are calculated modulo p. By (iii), y is well-defined. Next,
we set dom § = dom «. To define the values of §, let ¢ = (xgx;...x,_1) € dom ¢,.
Then a € t7'(c,) for some v € {1,...,u}. Select a sequence s as in (1) with a, = a, and
let df = (wowi...wy_1) and ¢, = (2ozi...2,-1) be as in the construction of y. By (ii),
there is b, = (Vo1 ..Ym—1) € 15'(d) such that m divides k. By Theorem 2.1, p divides
q, q divides m, and for some indices i € {0,1,...,p—1} and j € {0,1,...,g—1},

Xo0 = Zj, X100 = Zig1, X2 = Zj32, ..., and yof = wj, yif = Wi, V2B = Wit2, ...,

where the subscripts on zs are calculated modulo p and the subscripts on ws are
calculated modulo ¢. Let r € {0,1,...,m—1} be an index such that y,8 = w;. Since m
divides k, we may define

X068 =y, X18 = Vi1, X28 = Yry2s -+

where the subscripts on ys are calculated modulo m. By the constructions of y and 8
and Theorem 2.1, we have 8,y € C(o) and « = §8y. This concludes the proof. O

Note that taking s = ¢ in (iii), we get that &, d5,..., & are pairwise distinct.
This, coupled with (i), shows that if D, < Dg, then rank ¢, < rank ¢z and rank o <
rank .

To illustrate Theorem 3.7, consider o = abcde = (1 2)(3 4)(5 6 7)(8)(9) € So,

7 8
6 —

_ (123 4567809 _ (123 456 9\ : ; _
and « (88__888_9>andﬂ <34__75 8)1nC(0).Smceta
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a b g 4 i), we have ran ¢, = {d, e} and two sequences of type (1): s:a,eand ¢: c,

d —
e. Since tg = (¢ * ¢ ¢ ¢) with ran 13 = {b, ¢, d}, we can construct the corre-
sponding sequences of type (2): & : b, d and d' : ¢, d that satisfy (i)—(iii). Therefore,
D, < Dg. Note that it is impossible to construct a sequence d;, d, of elements of ran

15 that would work for both s and z.

4. Regularity. An element « of a semigroup S is called regular if a = axa for
some x in S. If all elements of S are regular, we say that S is a regular semigroup. An
element & in S is called an inverse of ain S'if @ = ad'a and d’ = d'ad’. Since regular
elements are precisely those that have inverses (if ¢ = axa, then ¢ = xax is an
inverse of a), we may define a regular semigroup as a semigroup in which every ele-
ment has an inverse.

If a D-class D in S contains a regular element, then every element in D is reg-
ular, and we call D a regular D-class. In a regular D-class, every L-class and every
R-class contains an idempotent (an element e with e = ee). If an H-class H contains
an idempotent, then H is a maximal subgroup of S.

If every element of a semigroup S has exactly one inverse, then S is called an
inverse semigroup. An alternative definition is that S is an inverse semigroup if it is
regular and its idempotents commute. If every element of S is in some subgroup of
S, then S is called a union of groups. In other words, unions of groups are semi-
groups in which every H-class is a group. (Unions of groups are also called com-
pletely regular semigroups [2, Proposition 4.1.1].) Both inverse semigroups and
unions of groups are regular semigroups.

The following lemma describes regular elements in C(o).

LEMMA 4.1. Let 0 € S,,. Then a transformation a € C(0) is regular if and only if
for every b € ran t,, there is a € t7'(b) such that £(a) = £(b).

Proof. Suppose « € C(o) is regular, i.e., « = afa for some g € C(o0). Let b € ran
1o and select ¢ € 1;'(b). Since 1, = 1,14t, (by (1) of Lemma 2.2) and ¢z, = b, there is
a cycle a in o such that ¢z, = b, btg = a, and at, = b. Then a € ;'(b) and, by (2) of
Lemma 2.2, £(c) > £(b) > £(a) > €(b), implying £(a) = £(b).

Conversely, suppose that the given condition is satisfied. We shall define g €
C(o) such that @« = «ofa. First, set dom B = ran «. To define the values of B, let
b = (yo¥1---Ym—1) € ran t,. Then, by the assumption, we can find a cycle ¢ =
(xox1...x,_1) in dom ¢, such that at, = b and k = m. By Theorem 2.1, for some
index j,

X0 =)y, X1 = Yjt+1, X0 = )Vj42, - v

where the subscripts on ys are calculated modulo m. Since kK = m, we may define
YiB = xo, Yis1B=x1, VB = X2,

where the subscripts on ys and on xs are calculated modulo m (= k). By the con-
struction of 8 and Theorem 2.1, we have 8 € C(o) and ¢ = «aBw«. This concludes the
proof. O

Using Lemma 4.1, we characterize the permutations o € S, for which C(o) is a
regular semigroup.
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THEOREM 4.2. Let o € S,,. Then C(0) is a regular semigroup if and only if

for all cycles a, b € C(0) : £(b) divides £(a) = £(b) = £(a). 3)

Proof. Suppose C(o) is a regular semigroup. Let ¢ = (x¢x;...x,_1) and b =
(yoyi..-Ym—1) be cycles in o such that m divides k. Consider « € PT, with
dom « = {x¢,x1,...,Xx_1} and with values defined by

Xo = Yo, X =y1, X0 =2, ...,

where the subscripts on ys are calculated modulo m. By Theorem 2.1, o € C(0).
Since dom 7, = {a} and ran t, = {b}, we have m = k by the fact that « is regular
and Lemma 4.1.

Conversely, suppose (3) holds. Let @« € C(o) and let € ran ¢,. Select an a €
17 '(b). By (2) of Lemma 2.2 and (3), we have £(h) = £(a). It follows by Lemma 4.1
that « is regular. O

For example, for o = (1 2)(34 5)(6 7 8) and p = (1 2)(3 4)(5 6 7 8) in Sy, the
centralizer C(o) is a regular semigroup whereas C(p) is nonregular. Note that for
any permutation o € S, (other than the identity) with at least one 1-cycle, C(0) is
nonregular.

In an inverse semigroup, only one H-class in each L£-class (R-class) is a group.
In contrast, in a union of groups, every H-class is a group. We note that in the class
of centralizers of permutations, inverse semigroups and unions of groups coincide.

THEOREM 4.3. For any o € S, the following conditions are equivalent:
(a) C(o) is an inverse semigroup;

(b) C(o) is a union of groups,

(c) for all cycles a,b in o, if £(b) divides €(a) then b = a.

Proof. To show (a) = (c), suppose C(o) is an inverse semigroup and let a =
(xox1...xk—1) and b = (yoyi---Ym—1) be cycles in o such that m divides k. By
Theorem 4.2, m = k. Suppose a # b. Define ¢, € PT, by: dom ¢ =
{X05 Xk 1:V05e - 5Vi—1}, dom & = {yo,.... -1}, Xig=yi, Ve = Yy, and
yi€ = ; (0 <i<k—1). By the construction and Theorem 2.1, ¢ and & are idempo-
tents in C(o) with ¢§ = ¢ # & = &g, which is a contradiction (since idempotents
commute in an inverse semigroup). Hence b = a.

To show (b) = (c), suppose C(o) is a union of groups and let « and b be cycles
in o as above. Again, kK = m and suppose a # b. Define @ € PT, by: dom o =
{x0,- . »Xr—1} and x,@ = y; (0 < i < k—1). By the construction and Theorem 2.1, o €
C(0) and o> = 0, where 0 is the zero (empty) transformation. Since H, is a group,
we have o> € H,, and so «H0. This is a contradiction (by Corollary 3.5). Hence
b= a.

Suppose (c) holds. Then, by Theorem 2.1, for every « € C(0), « is a permutation
on its domain and ¢, fixes each element of its domain. It follows that for some inte-
ger p > 1, o = ¢ is an idempotent such that dom ¢ = dom «, x¢ = x for each
x € dom ¢, and ¢, = 1,. By Corollary 3.5, aHe, which shows that C(o) is a union of
groups. Further, the fact that elements of C(o) are permutations on their domains
implies that idempotents in C(o) are one-one. Since one-one idempotents in PT),
commute, we have that C(o) is also an inverse semigroup. [J
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5. Example. In this section, we shall use the results of Section 3 and Section 4
to present the structure of the centralizer C(o) for

o =abc=(12)34)(5678). 4)

We shall visualize each D-class as an egg-box diagram, with each R-class R, (row)
labelled by ker « (see Theorem 3.4) and each L-class L, (column) labelled by ran ¢,
(see Theorem 3.3). In each H-class H (cell), we shall place a representative o of H
together with ¢,, with « being an idempotent if H is a group. Idempotents will be
indicated by asterisks.

To simplify notation, we shall write both o € C(0) and ¢, as sequences of ima-
ges. For example, for o = (} 23 s e i) and 1, = (Z 4 ;), we shall write o =
12--3434andt, = a-b.

If @ € C(0) with rank &« = k and rank ¢, = m, we say that the D-class D,, is of
rank (k, m). This definition is justified by Theorem 3.6, which implies that if «Dg,
then rank o = rank g and rank ¢, = rank #g.

By Theorem 2.1, the possible ranks of D-classes in C(o) for the permutation (4)
are: (8,3), (6,2), (4,2), (4,1), (2, 1), and (0,0).

Rank (8, 3). There is one D-class of this rank, say D;, namely the group of units
of C(o) (see Fig. 1). Every member of D; maps cither a onto a, b onto b, and ¢ onto ¢
or a onto b, b onto a, and ¢ onto ¢. We have 2-:2-4 = 16 possibilities for the former
case and the same number for the latter, giving the total of 32 elements in D;.

abe

12345678*

1|2|3|4]5|6|7|8
|1[213}4516/78] i

Figure 1. D; (group of units, 32 elements).

Rank (6, 2). There is one D-class of this rank, say D, (see Fig. 2). Look at the H-
class in the lower right-hand corner. Each member of this H-class maps b onto b and
¢ onto ¢. This can be done in 2-4 = § ways. Since all H-classes in the same D-class
have the same cardinality, D, has 8-8 = 64 elements.

ac be
* *
|13I24|5|6|7|8| 12125678 34345678
aac bbce
* *
14|23|5]6|7|8] 12215678 43345678
aac bbe
P——— * R
[1]2]5]6]7]8] 12 5678 34 5678
a—c b—c
- - —_—— *
|314]5]6]7]8| 125678 345678
—ac —bc

Figure 2. D, (regular, 64 elements).
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Rank (4, 2). There are two D-classes of this rank, say D3 and D4, one regular
and one nonregular (see Figs 3 and 4). Each H-class in D5 has 8 elements and each
‘H-class in D4 has 4 elements.

ab
*
157|268(3]4] 12341212
aba
*
|1681257[34] 12342121
aba
12343434*
1|2|357]|468
[112(357}46] 4
12344343*
1|2|368|457
I112/368}457] 1
1234 — — - -*
1|2|3|4
l11213}4] o0

Figure 3. D5 (regular, 40 elements).

ab ab

l13|24|57)68] | 12 1a2a3b434 343b4b1a212
l14]23]57)68| | 12 2ala4b34 3 43 3b4b1a2 12
[1]2|57|68] 12—a—_3b434 34—1):1(1212
[3]4]57]|68] ——E:lll212 ~~i‘2‘:;434

Figure 4. D4 (nonregular, 32 elements).

Rank (4, 1). There is one D-class of this rank, say Ds, with a single H-class

(see Fig. 5).

|51617]8|

C

————-5678*
—-—cC

Figure 5. Ds (regular, 4 elements).
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@ b
* *
1357|2468 12121212 34343434
aaa bbb
* *
1457|2368 12211212 43344343
aaa bbb
* *
[1368|2457| 12122121 34344343
aaa bbd
* *
1468[2357| 12212121 34433434
aaa bbb
_—— * R
|157|268| 12 1212 34— —3434
a—a b—b
-— e * R
|168|257| 12 2121 34 4343
a—a b—b
- - -—— *
|357|468| 121212 343434
—aa —bb
- - - — *
368|457 122121 344343
—aa —bb
1212 —— — —* 3434 — — — —*
13|24
13|24 o o
1221 ————* 4334 — — — —*
1423
[14]23] va— v
12— ———-—~ * 34— —————
[1]2] " .
——12—-=—=- 34— — — _*
|3]4] Cal i
Figure 6. D (regular, 48 elements).
a b
|57|68| ————1212 ———— 3434

— —a

- —b

Figure 7. D; (nonregular, 4 elements).

Rank (2, 1). There are two D-classes of this rank, say Dg and D, one regular
and one nonregular (see Figs 6 and 7). Each H-class in each of these two D-classes
has 2 elements.

Rank (0, 0). There is one D-class of this rank, containing the zero transforma-
tion as the only element.

Thus the semigroup C(o) has 225 elements (189 regular and 36 nonregular) and
8 D-classes (6 regular and 2 nonregular). Using Theorem 3.7, we can determine

the partial ordering of D-classes (see Fig. 8). Regular D-classes are marked with
asterisks.
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Figure 8. Global structure of C(o).
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