
OSCILLATION CRITERIA FOR MATRIX 
DIFFERENTIAL EQUATIONS 

H. C. HOWARD 

1. Introduction. We shall be concerned at first with some properties of 
the solutions of the matrix differential equation 

(1.1) Y"{x) + P(x)Y(x) = 0 

where 
P(x) = (Pv(x))> hj, = 1, 2, . . . ,w, 

is an n X n symmetric matrix whose elements are continuous real-valued 
functions for 0 < x < <», and Y(x) = (ytj(x)), Y"'(x) = (y" ij(x)) are n X n 
matrices. I t is clear such equations possess solutions for 0 < x < oo, since 
one can reduce them to a first-order system and then apply known existence 
theorems (6, Chapter 1). 

We shall be primarily interested in giving sufficient conditions for solutions 
F of (1.1), or for solutions F of generalizations of (1.1), to oscillate, in the sense 
that the equation 

determinant Y(x) = \Y(x)\ = 0 

possesses an infinite number of roots in a < x < °° for all a > 0. We shall 
also give sufficient conditions for non-oscillation of solutions of matrix equations, 
that is, for a solution F to be such that the equation |F(x) | = 0 has a finite 
number of roots in (0, <»). 

The subject of oscillation criteria for matrix differential equations is not a 
new one. The reader is referred to the recent book of Atkinson (1), and in 
particular Chapter 10 and the Notes on Chapter 10, for an exposition of the 
subject of matrix oscillation criteria, together with many references to the 
literature. I t may be noted here that the definitions given in much of the 
pertinent literature for * 'oscillation" and "non-oscillation" of solutions are 
different from the ones used here. Indeed, in Reid's work (11-14) and other 
papers (7, 9, 16-18) in which there is a calculus of variations background, a 
vector solution y of a differential system is said to be non-oscillatory in an 
interval I, if y(xi) = 0 (y ^ 0) implies y(x2) ^ 0, for any x2 ^ X\, x2 G I. 
Barrett (2, 3) has obtained results similar in content to those given here, 
while Hunt (8) has combined results of Barrett (4) and Reid (14), to discuss 
certain types of oscillation problems for higher-order scalar equations, which 
are shown to be equivalent to a system of matrix equations. 
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I acknowledge with pleasure a number of discussions with Dr. Lincoln Bragg 
concerning Theorem 1, which have resulted in significant improvements of the 
theorem. 

Standard matrix notation will be used. If 

A (pc) s (atj(x), i, j = 1, . . . , n, 

then A*(x) and A~1(x) denote the transpose and inverse of A (x), respectively, 
while A(x) > 0 means that A (x) is a positive semi-definite matrix, and 
A (x) > B{x) means A (x) — B(x) is a positive semi-definite matrix. Dropping 
the equality sign in the symbol > of the last line will mean that the matrices 
are positive definite. Finally, Aw(x) is the matrix whose ijth element is 
a>ij{k)(x)> k = 1, 2, . . . , while 

I A (x) dx 

is the matrix whose ijth. element is 

J dij(x) dx. 
a 

We shall be concerned with real-valued functions exclusively. 
We define now what we mean when a matrix possesses property D. 

Definition. The matrix A (x) has property D if and only if 

inf $ (%*A (#)£)—»<» as x —> o°, 

where £ represents a column vector of unit length. 

2. An oscillation theorem. In this section we prove the following 
oscillation theorem for equation (1.1). 

THEOREM 1. Suppose 
(1) Y(x) is a solution of (1.1) such that W{Y{x), Y(x)) = 0 at some point 

Xo, 0 < XQ < oo where 

W(U(x), V(x)) s U*(x)V'(x) - (JJ*(x))'V(x), 

(2) H(x) = I P(t) dt possesses property D (pa > 0). 

Then Y(x) is an oscillatory solution of (1.1). 

Proof. The proof is by contradiction. Suppose the solution of Hypothesis 1 
is such that |F(x) | possesses a last zero before x%, x2 > 0. Then the matrix 
S(x) = — Y,(x)Y~1(x) is well defined for x > x% and equation (1.1) becomes 

(2.1) S'(pc) = -Y,,(x)Y~1(x) + (Y,(x)Y-1(x)y = P(x) + (S(x))2. 
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Introducing the matrix T(x) by 

(2.2) S(x) = 7 » + f P(t) dt, x > X2, 
J X\ 

we have from (2.1) 

(2.3) T'(x) = (T(x) + H(x))\ x > x2. 

Now 

d(W(Y, Y))/dx = (Y*)'Y'+ Y*Y" - (Y*)"Y - (Y*)'Yf 

= Y*(-PY) - (-Y*P*) Y = 0 

since P is symmetric. Thus W(F, F) = const. = 0 since W = 0 at x = x0. 
Therefore 

( y ' y - i ) * = (F - 1 )* (F ' )* = (F*) - 1 (F* F ' F - 1 ) = YfY~*. 

Hence S is a symmetric matrix and, by (2.2), T is also symmetric, since P is 
symmetric. 

But the eigenvalues of a real symmetric matrix are real, so the eigenvalues 
of (T + H)2 are real and non-negative, being the square of the eigenvalues of 
(T + H). Thus from (2.3) we see that V'(x) is positive semi-definite, so 
T(x) > T(x2), x > x2. 

By Hypothesis 2, there exists a point x3 > x2 such that T(x) + iJ(x) > 7 
for x > #3. Indeed, there exists a point x'3 > x2 such that T(x2) + H{xrz) > 7, 
since as x —•> °° , i7(x) possesses property D. It remains to choose x3 > x'3 such 
that iJ(x) > H(x'z), for x > x3, which is possible since H(x) possesses property 
D. Hence 

T(x) + H{x) > T{x) + H(x\) > T(x2) + H(x\) > I for x > xz. 

Thus we can write, for x > x3, 

T(x) +H(x) >I = gl(x)I. 

Hence T'(x) > gi2(x)I and 

r(x)> r{xz) + y^gl\t)dtji, 
so 

7 » + H(x) > g2(x)I, where g2(x) s 1 + f g l
2 (0 eft; 

indeed 

r(*) + H{x) > r(*8) + #(*) + ( £gi\t) dt) i > ( I + J V ( 0 *) / 

for x > x3. By induction, we have 

T{pc) + H(x) > gn+i(x), x > xz, 
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where 

gn+i(x) = 1 + I gnif) dt for n > 1, 

and gi(x) = 1. 
We note that the gn increase, pointwise, with n. Indeed, for x > xi9 

gn+l(x) - gn(x) = (gn\t) - gn-l\t)) dt, 

so gn > gn-! > 0 implies gn+i > gn > 0; moreover 

g2(x) = 1 + (x - x3) > gi(x) s 1 > 0, 

to start this induction. Now suppose that the gw are bounded on an interval 
[x3, x4], x* > Xz + 1. Then limwgn(x) = f(x) exists and satisfies 

(2.4) /(*) = 1 + ff(t) dt, f{x,) = 1. 

But the only C1 solution of this problem is f(x) = 1/(1 + Xz — x) which is 
unbounded as x ^ Xz 

+ 1. Hence the gn —> » on any interval [x3, x4], 
x4 > x3 + 1. But from T(x) + i?(x) > gn(x)I we reach a contradiction since 
the elements of T and H are continuous for x > x3 and hence bounded on any 
compact set fx3, x^]. Thus the last inequality is impossible. This proves the 
theorem. 

3. Other oscillation theorems for linear equations. In this section 
we shall outline the proof of a more general oscillation theorem for equations 
like (1.1), as well as the proof of an oscillation theorem for the equation 

(3.1) (QY'Y +PY = 0 

where Q is a positive definite symmetric n X n matrix whose elements belong 
to C1 for 0 < x < oo, and P is a symmetric n X n matrix with continuous 
elements for 0 < x < <». 

First we strengthen Theorem 1. 

THEOREM 2. Suppose 
(1) Y(x) is a solution of (1.1) satisfying Hypothesis 1 of Theorem 1, 
(2) there exists a positive definite scalar matrix G (whose positive element 

g Ç C1 for 0 < x < » ) such that 

(3) I ( l / g ( 0 ) * - > °° asx-> oo, 
vu 

(4) 2/ze matrix 

K(x) s f {G(0P(0 - HG'WGr1^)} * + JG'(*) 

/zas property D (xi > 0). 
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Then Y(x) is an oscillatory solution of (1.1). 

I t is to be noted that Hypothesis 2 of Theorem 1 has been replaced here by a 
weaker requirement. 

Proof. As before, the proof is by contradiction, and is very similar to the 
proof of Theorem 1. This time the assumption that |F(x) | possesses a last 
zero, and the substitution 

(3.2) S{x)G~l{x) = -Y,(x)Y~1(x), 

leads to the equation 

(3.3) Sf(x)G~1(x) = G-2(x)[S2(x) + G'(pc)S(x)] + P(x). 

Completing the square (which is possible since G is a scalar matrix and there­
fore commutes with any compatible matrix), we obtain 

(3.4) S'(x) = G-1 (*)[$(*) + hG'(x)]* + G(x)P{x) - i(G /(x))2G"1(^), 

this equation holding for all x sufficiently large. One obtains, finally, an equation 
in T similar to (2.3), namely, 

(3.5) Tf(x) = G-l(x)[T(x) + K(x)}\ * - > « . 

Once again it is easy to check that T is a symmetric matrix and that T'(x) > 0. 
From this point a contradiction is reached using precisely the same type of 

reasoning as in Theorem 1. In place of (2.4) one has 

(3.6) /(*) = 1 + (Xf-3dt, /(*,) = 1, 
with solution 

«•>-'/('-Li)-
Noting Hypothesis 3, the remaining details are readily supplied. This proves 
the theorem. 

Finally, we have a theorem concerning the oscillatory behaviour of some of 
the solutions of equation (3.1). 

THEOREM 3. Suppose 
(1) Y is a solution of (3.1) such that W(Y(x), Y(x)) = 0 at some point 

xo, 0 < x0 < °°, where 

W(U(pc), V(pc)) s U*(x)Q(x)V'(x) - {U:¥{x)),Q{x)V{x)) 

(2) G it) is a positive definite scalar matrix such that 
(3) the matrix 

L(x) - f \G{t)P{t) - \Q{t){G{t)fG-\t)} at + |<2(x)G'(x) 
•J XI 

has property D (xi > 0), 

https://doi.org/10.4153/CJM-1967-011-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1967-011-7


MATRIX DIFFERENTIAL EQUATIONS 189 

(4) (G(t)Q(t))~l > q(t)I where q > 0 and 

q(t) dt —» oo as x —» œ . 

77££?z F(x) is aw oscillatory solution of (3.1). 

Proof. Once again the proof is by contradiction. This time we make the 
substitution 

(3.7) SMG-'ix) = -QWFWF-Hx) 

for x > x2, with the last zero of the equation | Y(x)\ = 0 lying to the left of x2, 
by assumption. A calculation gives 

(3.8) Sf(x)G~1(x) = S(x)G-2(x)G'(x) + P{x) + S(x)Q(x)S(x)G-2(x)1 

X ^ X2 . 

A factorization of the right member yields 

(3.9) S'(x) = {S(x) + $Q(x)G'(x)}{(Q(x)G(x))-i}{S(x) + ÎQ(x)G'(x)\ 

+ G(x)P(x) - \Q{x)(G'(x)YG-i(x), x > x2. 

The substitution 

S(x) = T(x) + f \G{t)P{t) - lQ(t)(G'(t))2G-\t)} dt 

gives 

(3.10) T'(x) = ( r (x) + L(pc))(Q(x)G(pc))-1(T(x) + L(x)) for x > *2. 

As in the proof of Theorem 1, one shows that W(Y1 Y) = const. = 0, and 
as a consequence of this, that Q(x) Yf (x) Y~~l(x) is symmetric; hence S(x) 
and T(x) are also symmetric, since P and Q are assumed to be symmetric. But 
we may rewrite (3.10) in the following manner: 

(3.11) T'(x) = (T(x) + L(pc))*R*(x)R(x)(T(x) + L(x)), x > xif 

since by assumption (QG)"1 is positive definite and symmetric, so there exists 
a non-singular matrix R such that {QG)~l = R*R (see (5) or (10)). Thus 

(3.12) T'(x) = [R(x)(T(pc) + L(x))]*[R(pc)(T(pc) + L(pc))], x > x2, 

so V is a positive semi-definite matrix for x > x2. Hence T(x) > T(x2) and 
using Hypothesis 3, as in previous theorems, we conclude that 

T(x) +L(x) >I = gi(x)I 

for x > x3, say, where x3 is sufficiently large. From (3.12), we obtain 

(3.13) T'(x) > gi2(x)q(x)Iy x > xz. 

y 
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Hence, arguing as before, we have, for x > xz, 

T(x) + L(x) > g2(x)I s ( l + f q{t)gl\t) dtj I 

and by induction 

T(x) + L(x) > gn+1(x)I = ( l + f q(t)gn\t)dt) I. 

The proof is now concluded as in Theorems 1 and 2. 

I t may be noted in Theorems 1-3 that no assumption is made concerning 
the positive definiteness or positive semi-definiteness of the coefficient matrix P . 

4. Oscillation theorems for a system of matrix equations. By much 
the same type of reasoning as we have used previously, one can obtain oscilla­
tion criteria for a matrix system. Indeed, suppose one has the pair of matrix 
equations 

U'(x) = A(x)U(x) + B(x)V(x), 
( 4 . 1 ) \V'(x) = C(x)U(x) - A(x)V(x). 

If we assume A, B, and C are matrices with continuous elements for 
0 < x < oo, then fundamental existence theorems (6, Chapter 1) tell us that 
non-trivial solutions exist for 0 < x < oo with the property that 

(4.2) U*(x)V(pc) - V*(x)U(x)\x==X0 = 0 , 0 < xo < oo. 

Indeed, one might demand that U(x0) = / , V(x0) = 0, for example. 
Now the symmetry of U* V at a single point implies the symmetry of U* V 

everywhere on the positive real axis if B and C are symmetric. For by com­
puting d[U*V — V*U]/dx and substituting for the derivatives from (4.1), one 
finds that U*V - V*U = const. = 0 by the use of (4.2). Moreover, if V~l 

exists we have from U*V = V*U that UV"1 = (F*)" 1 ^* = (UV~1)*, so 
UV~l is also symmetric. We now have the following theorem. 

THEOREM 4. Suppose 
(1) U and V are solutions of (4.1) such that (4.2) holds, 
(2) G{t) is a positive definite scalar matrix such that if 
(3) the matrices Ay B, and C of (4.1) are symmetric, with — C positive definite, 

and A and C are commutative matrices, and 
(4) the matrix 

N(x) = f {G(t)B(t) + [A(t) + iG'(t)G-\t)](G(t)C-\t))[A(t) 

+ hG'(t)G-\t)}} dt + [hG'{x) + G(x)A(x)](-(r\x)) 

has property D, (xi > 0), 
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(5) (-G-HOCXO) > c{t)I where c > 0 and 

I c(t)dt—>c° asx—>co. 

Then V is an oscillatory solution of (4.1). 

Proof, The proof is by contradiction. If the equation | V(x)\ = 0 possesses a 
last zero before x2 > 0, then we know that S(x)G~1(x) = U(x) V~x(x) is well 
defined for x > xi and is also symmetric. A computation gives 

(4.3) S,(x)G~1(x) = S(x)G-2(x)G'(x) + A(x)S(x)G-1(x) + B(x) 

+ S(x)G~1(x)(-C(x))S(x)G-1(x) + S(x)G~1(x)A(x). 

I t is readily checked that the right-hand side may be factored to give 

(4.4) S,(x)G~1(x) = {S(x) - G2(x)[±G'(x)G~2(x) + A(x)G-1(x)]C-1(x)} 

X {G-1(x)(-C(x))G-1(x)}{S(x) - C-l(x)[W(x)G-2(x) 

+ A(x)G-1(x)]G2(x)} 

+ B(x) + {%G~2(x)G'(x) +A(x)G~1(x)}{G(x)C~1(x)G(x)} 

X Î |G-2(x)G'(x) + A (x)G-1 (x)} for x > x2. 

By making the substitution 

(4.5) S(x) = T(x) + N(x) 

(after multiplying (4.4) through by G) and noting the symmetry of S and N 
(the commutativity of A and C is used here), we have 

(4.6) T{x) = {T{x) + N(x)):¥(-C(x)G-1(x))(T(x) + N(pc)). 

But — C is a positive definite matrix and G is a positive definite scalar matrix ; 
so we may write — CG""1 = R*R for some non-singular matrix R. Thus 

(4.7) T'(x) = [T(x) + N(x))*R(x)*][(T(pc) + N(x))R(x)] 

for x > x2. Precisely as in the proof of Theorem 3, one can show that V has 
non-negative eigenvalues and, by use of Hypothesis 4, that T + N > / for all 
x sufficiently large. The remainder of the proof is similar to the last part of 
Theorem 3 and is omitted. 

I t should be noted that an analogous theorem with the roles of U and V 
interchanged exists. Because the proof is similar to the proof of Theorem 4 we 
only state the result. 

THEOREM 5. Suppose 
(1) Hypotheses 1 and 2 of Theorem 4 hold, 
(2) the matrices A, B, and C of equation (4.1) are symmetric, with B positive 

definite, and A and B are commutative matrices, 
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(3) the matrix 

N(x) = f {G(t)(-C(t)) + [ÏG-\t)G'(t) - A{t)]m)B-\tmG~\t)G'(t) 

-A(t)]}dt+ lW(x) - A(x)G-\x)](B-\x)) 

has property D (xi > 0), 
(4) G~l{t)B(t) > b(t)I where b > 0 and 

J b (/) dt —> °° as x —» oo . 
x\ 

Then U is an oscillatory solution of (4.1). 

5. Non-oscillation theorems. In this section we shall obtain a non-
oscillation criterion for matrix equations. The technique used is a modification 
of the one used to obtain oscillation criteria in the preceding sections. We first 
prove two lemmas that will be useful. 

LEMMA 1. Suppose 

(1) Y(x) is a solution of equation (3.1) {where the only restrictions now on Q 
will be that it is non-singular and symmetric for 0 < x < oo ), 

(2) | Y(xo)\ 9^ 0, | F(xi) | = 0, with x\ the first root of the equation \ Y(x)\ = 0 
to the right of x0 > 0. 
Then there exists a unit vector £ such that 

limsup \£*Q{x)Y'(x)Y-\x)t\ = oo. 

Proof. Since Y{x) is non-singular for x0 < x < x\, we write 

Q(x)Y,(x)Y-1(x) = A(x), 

for those x, and obtain 

Y'(x) = Q-1(x)A(x)Y(x) EEE B{x)Y{x). 

But, by (6, p. 82), 

(5.1) |F(x) | — |F(xo)|exp (j tr B(t)dt) 

for xo < x < Xi. From this we see that 

(5.2) limsup \trB(x)\ = oo ; 
x->xi~ 

for otherwise [tr B(x)\ would be bounded for x0 < x < xi, and the assumption 
|F(#i) | = 0 could not hold. 

Next we note that 

n C n \ 

(5.3) tr B(x) = 2 ) Z qji(x)a{J(x) \ 
i=i \ j=i ; 
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where aTS{x) is a typical element of A (oc) and qtu(x) is a typical element of 
Q~l(x). But in the neighbourhood of x = Xi, the elements of Q~l(x) are all 
bounded, since they have been assumed continuous for 0 < x < o° ; hence at 
least one of the atj(x) satisfies 

lim sup \atj(x)\ = <». 

There are several cases to be considered to complete the proof. If there 
exists an unbounded atj lying on the main diagonal, akjc say, then one can take 
as £ the unit vector with zeros everywhere except for a one in the &th component. 
One then has 

i*Q(x)Y'(x)Y-i(x)l; = atk(pc) 

and the result follows. If no such unbounded diagonal element exists, suppose 
there exists precisely one unbounded off-diagonal element, atj say. Then one 
takes as £ the unit vector with zeros everywhere except for 1/V2 in the ith. 
and j th components. One then has 

(5.4) fQ(x)Y'(x)Y-i(x)ï = h[au(x) + atj(x) + aJt(x) + a„(x)] 

and the result follows since atj is the only unbounded term on the right side 
of (5.4), by assumption. If there is more than one unbounded off-diagonal 
element, then either there exists exactly one "pair" of unbounded terms, atj 

and a,ji say, or there does not exist such a pair. In the latter case one proceeds 
as in the case of a single unbounded off-diagonal element. In the former case it 
might appear that while atj and ajt were each unbounded, their sum atj + ajU 

or some linear combination of atj and ajU might be bounded. But one notes 
from (5.3) that atj and ajt occur in tr B(x) in the form 

(5.5) qjidij + qijdji. 

The symmetry of Q~l tells us that qH = qtj; thus if tr B(x) is unbounded, it is 
unbounded because the sum atj + ajt is unbounded. Hence for this last case 
one takes £ to be the unit vector with zeros in all components except the ith. 
and 7th, where 1/V2 appears, and obtains (5.4) again, this time with atj + ajt 

becoming unbounded and all other terms on the right-hand side remaining 
bounded. This proves Lemma 1. 

LEMMA 2. Suppose 
(1) T(x) is a solution of the matrix differential equation T'(x) = F(x1 T(x)) 

for 0 < a < x < b, where the elements of the matrix F are to be continuous 
functions of x, 

(2) there exists a matrix $(x) whose elements are of class C1 for a < x < b 
such that <£'(x) > F(x, $(x) for a < x < b with <£(a) > T(a). 
Then <£(x) > T(x) for a < x < b. 

https://doi.org/10.4153/CJM-1967-011-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1967-011-7


194 H. C. HOWARD 

Proof. We first show that there is an interval to the right of a where 
*(*) > T(x). This is trivial if *(a) > 7 » . If *(a) = 7 » , then 

&(a) > F(a, $(a)) = F(a, T{a)) = T'(a) 

and the existence of such an interval follows again. Suppose now that the 
inequality $(x) > T(x) cannot be continued over the whole interval a < x < b. 
Then there exists a number c (a < c < b) such that $(c) = T(c) and 
$(x) > T(x), a < x < c. But this implies 

(5.6) &(c) < T'(c). 

For suppose this last matrix inequality fails to hold. Then there exists a 
vector £ ^ 0 such that 

(5.7) W ( < 0 - T'(cm > 0. 

By continuity of the elements of the $ ' and T1 matrices, there must exist an 
interval, I say, to the left of c (and including c as an interior point or the 
right end point) such that for x € J, £*(<£'(#) — T'(x))% > 0. Integrating 
from x in I to £, x < c, we obtain 

(5.8) £* ( -* (* ) + *(<0 + T(x) - T(c))S > 0. 

Thus 

(5.9) ?(T(x) - *(*))$ > 0 , 

(since $(c) = T(c)), a contradiction, since $ > T in (a, c). Now using (5.6), 
we have 

(5.10) $'(6) > F(cf *(*)) = F(c, Tip)) = T'(c), 

in contradiction with (5.6). This proves Lemma 2. We now have the following 
non-oscillation theorem. 

THEOREM 6. Suppose 
(1) Y(x) is a solution of equation (3.1) with \ Y(a)\ 5* 0, a > 0, 
(2) G(x) is a scalar matrix with a positive diagonal element g{x) £ C1 for 

0 < X < oo, 

(3) for every b > a, 

L(*) = P {G(/)P(/) ~ IQC/XG'C/))2^)} dt + iQ(*)G'(x), 
*J a 

where a < x < 6, caw 6e appraised so that one can demonstrate the existence of 
matrices $ and ^ with elements of class C1 and C for a < x < b, respectively, 
with the properties that for a < x < b, 

¥2(#) > (L(x) + ^(x))Q~1(x)(L(x) + $(*)) , $'(*) > G~1(x)^2(x) 

and $(a) = c I, c an arbitrarily large positive number. 
Then | F(x)| 9^ 0 for x > a, that is Y is a non-oscillatory solution of (3.7). 

https://doi.org/10.4153/CJM-1967-011-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1967-011-7


MATRIX DIFFERENTIAL EQUATIONS 195 

Proof. The proof is by contradiction. Suppose Y(x) is an oscillatory solution. 
Then there exists a first zero of the equation |F(#) | = 0 after the point a 
mentioned in Hypothesis 1, at x = 6, say. Thus for x in a < x < b we can 
transform (3.1) into (3.10) as in the proof of Theorem 3. By Lemma 1, 

\?Q(x)Y'(x)Y-i(pc)S\ 

must assume arbitrarily large positive values in [a, b)y for at least one properly 
chosen unit vector £, say for £0- The same must be true of |£oT£0| by an inspec­
tion of the transformations used to obtain (3.10) from (3.1) and our knowledge, 
by use of Hypothesis 3, that |£0*££o| is bounded in [a, b]. But from Hypothesis 3, 
we have the existence of a matrix $ such that 

& > G-W > (L+ $)(QG)-l(L + S) 

with $(a) = ci > T(a) since c is an arbitrarily large positive number. Hence, 
by Lemma 2, <£> > T for a < x < b. But |{o*^o| assures arbitrarily large values 
in (a, b), an impossibility since $ Ç C1 in [a, b]. This contradiction proves the 
theorem. 

I t may be noted that there are no hypotheses concerning the symmetry or 
definiteness of the coefficient matrix P or the symmetry of the solution 
matrix F. 

6. Non-linear matrix equations. In this section we shall use the same 
basic techniques and ideas of previous sections to obtain some oscillation 
criteria for the equation 

(6.1) Y"(x) + P(x)f(Y(x)) = 0. 

It is assumed here, in the interests of simplicity, that / is a real-valued 
function with a power series expansion in powers of x with an infinite radius of 
convergence, so that 

CO 

f(Y(x)) =J^ai Y\x), 
0 

Y°(x) = / , at real scalars, is well defined. There are, of course, other ways of 
defining f(Y(x)), Y a matrix, and the reader is referred to (15) for further 
details on the subject. 

We have the following theorems. 

THEOREM 7. Suppose 
(1) F is a symmetric solution of (6.1) existing for 0 < x < <» such that Y 

commutes with Y', 
(2) Whenever Y~l exists, f(Y) F _ 1 is positive definite and 

R(x) s s / (F (* ) )F- i (* ) >g (* )7 , 

g(x) a non-negative scalar function of class C for 0 < x < °o, 
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we obtain 

(3) P(x) is symmetric and positive semi-definite for 0 < x < <», 

(4) K(x)= (Xg(t)P(t)dt 

has property D (xi > 0 a convenient lower limit of integration). 
Then Y is an oscillatory solution of (6.1). 

Proof. The proof is by contradiction, once again. If |F(#) | = 0 has a last 
root before x2 > 0, then S(x) = — Y,(x)Y~1(x) is well defined for x > x2 

and (6.1) becomes 

(6.2) S'(x) = S2(x) + P{x)f{Y(x))Y~l(x). 

Letting 

Six) = T(x) + f P(t)R(t)dt 
v x\ 

(6.3) T'(x) = \T(x) + J P(t)R(t) dtj, x > x2. 

The assumption of the commutativity of F and F' , coupled with the symmetry 
of F and P , by use of (6.1), leads to 

(6.4) Pf(Y)Y~1 = Y-'(f(Y))*P = Y~y(Y)P = f(Y)Y~'P for x > x2. 

Hence P and P are commutative matrices, and since P and R are both sym­
metric, PR is also symmetric. But using YY' = F ' F again and the symmetry 
of F, we conclude that 5 is symmetric. Hence T is also symmetric and positive 
semi-definite since its eigenvalues are non-negative. 

Now note that 

(6.5) P(x)R(x) > g(x)P(x), x > x2. 

Indeed this last inequality is equivalent to 

(6.6) P(x)(R(x) - g(x)I) > 0 . 

But P is positive semi-definite and symmetric, so its eigenvalues are non-
negative real numbers; R(x) — g(x)I is also positive semi-definite and sym­
metric, so its eigenvalues are non-negative real numbers. Since P and R 
commute a theorem of Frobenius (5, p. 100, Problem 11) implies that the 
eigenvalues of the left member of (6.6) are, with proper ordering, just the 
products of the eigenvalues of P and R — gl. Thus the inequality in (6.6) 
must hold. Hence, using Hypothesis 4, we conclude that 

f PRdt 

possesses property D and, as in previous theorems, T + K becomes and 
remains positive definite a s x ^ o°. Thus 

(6.7) (T(x) + K(x))~i(T'(x) + K'(x))(T(x) + K(x))~' > I 
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as x —» oo and a contradiction is reached as in previous theorems, by inte­
grating. This proves the theorem. 

Another oscillation theorem for (6.1) is the following: 

THEOREM 8. Suppose 
(1) Y is a symmetric solution of (6.1) existing for 0 < x < oo such that 

Y'Y = YY'\ 
(2) f(Y) is singular if and only if Y is singular, and 

f'(Y)=df(Y)/dY>g(x)I, 

g(x) a positive scalar function of class C for 0 < x < °° such that 

J (l/g(t)) dt —» oo as x —» oo ; 
XI 

(3) P is symmetric and 

K(x) s (XP(t)dt 

has property D. 
Then Y is an oscillatory solution of (6.1). 

Proof. As before, if the equation |F(x) | = 0 has a last zero before x2 > 0, 
we make the substitution 

(6.8) S(pc) = -Y'(x)(f(Y(x))-\ x > x* 

and obtain 

(6.9) S'(x) = P(x) + S(x)f'(Y(x))S(pc). 

Letting 

S(x) = T(x) + f P(t)dt 
we have 

(6.10) V(x) = (T(x) + K(x))f(Y(x))(T(x) + K(pc)). 

But the commutativity of Y' and Y and our assumption about the form of 
f(Y) mean that Y*f(Y) = / ( 7 ) F ; from this and the symmetry of F we 
conclude that S(x) is symmetric for x > x2. Hence T is also symmetric. 
By Hypothesis 3, T + K becomes and remains positive definite for x —» oo. 
Thus 

(6.11) (T(x) + Z ( x ) ) - U r ( x ) + X ' (x) ) ( r (x) + K(x))~i >f'(Y(x)) 
> g(x) / as x —» oo. 

A contradiction then follows easily from this last line. This proves the theorem. 

7. An application. In a recent paper R. W. Hunt (8) has given conditions 
for the existence of a non-trivial solution of the differential equation 

(7.1) (r(x)yW(x))™ + (-l)n+1p(x)y = 0 
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(where r(x) > 0, p(x) > 0, r, p Ç C[0, oo)) satisfying one of the following 
sets of two-point boundary conditions: 

(7.2) y(0) = y'(0) = . . . = y^«(0) = 0 = y(6) = y'(6) = . . . = y^«(6) , 

(7.3) y(0) = / ( 0 ) = . . . = y<*-»(0) = 0 = y^J ) = y ' ^ ) 
= . . . = y1(*-i>(ft), 

where yi(x) = r(x)y(w)(x) and 6 > 0. W. T. Reid (14) has also discussed 
problems of this sort for equations which include (7.1), by variational methods, 
obtaining oscillation criteria for general quasi-differential equations. 

In particular Hunt has shown that one may represent (7.1) as a system 
(in Hunt's notation) 

(7.4) Y' = £Z , Z' = -FZ, 

with 

E = (*„), etj = ( - ) * ' * " - « - ' / ( * - i)\ {n -j)\r(x), 

F = (ft,), ftj = x<+>-*p(x)/(i - 1)! (j - 1)! 
for i < j , / ^ = fjù E and F are symmetric with E > 0. Moreover the system 
is so constructed that 

Y(x) = JD-1(x)W(w1(x), ...,Un(x)) 
where \D (x) | = 1 and W stands for the Wronskian matrix formed from the 
Ut(x), the WÏ being linearly independent solutions of (7.1) satisfying 

^a-D(O) = 0 , i,j= 1,2, . . . , » . 

Thus F(0) = 0 and a solution of (7.1) which is a linear combination of the ut 

has an nth order zero at b > 0 if and only if | Y(b)\ = 0. 
Returning to Theorem 5, considering the special case A = 0, G = / , making 

the identifications Z7 = F, F = Z, 5 = £ , C s - F , and noting that (4.2) 
holds, we see that the assumption B > 0 may be relaxed to B > 0 and that we 
then have the following theorem concerning equation (7.1) and boundary 
conditions (7.2). 

THEOREM 9. Suppose 
(1) the matrix 

f F(f) it 
has property D, 

(2) E{t) > e(t)I, e > 0, with 

J e(t) dt-> oo 
xi 

w#A x. 
!TAew for any positive number bi, there exists a solution of (7.1) possessing nth 
order zeros at the points 0 and b, where b > b\. 

It may be noted that there is no restriction imposed by this theorem on the 
sign of p(x). 
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