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ON THE CENTRAL CLASS FIELD modm OF GALOIS
EXTENSIONS OF AN ALGEBRAIC NUMBER FIELD

SUSUMU SHIRAI

Introduction

Let k& be the rational number field, K/k be an Abelian extension
defined mod 7 whose degree is some power of a prime ¢, and let U be
the module of K belonging to m in the sense of Frohlich [1, p. 239].
Denote by K (resp. K*) the maximal central (resp. genus) 4-extension of
K/Ek contained in the ray class field mod % of K. Frohlich [1, Theorem
3] proved that if (m, 16) = 8, then the Galois group of K over K* is
isomorphic to the Schur multiplicator of the Galois group of K over k,
and using this theorem, he gave a complete characterization of all fields
whose Galois groups over the rational number field are of nilpotency
class two.

In the present paper, we generalize the above result to the case
where the base field & is an arbitrary algebraic number field of finite
degree and K/k any finite Galois extension.

§§1,2 contain a generalization of the conductor and the Geschlechter-
modul, which, the author thinks, plays an important role in a study of
nilpotent extensions. In §8 we define the central class field mod m of
a Galois extension and prove our main theorem which may be viewed
as a direct generalization of the principal genus theorem for a cyclic
extension (Theorem 29). In §§4,5, and 6 we apply our main theorem
to some cases.

The author wishes to express his hearty thanks to Professor Y. Furuta
for his valuable advice and encouragement.

§1. The Galois conductor of a local Galois extension

Throughout this section, %k is always a field complete with respect
to a discrete prime divisor p of a global field, and some basic notation
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is listed below.
k> the multiplicative group of all non-zero elements of k.
Uy the group of all elements a in £* such that ¢ =1 mod p?, in
particular, U is the unit group of k.
Let K/k be a finite Galois extension. Then:
N the Norm of K to k.
G(K/k) the Galois group of K over k.
Ve the ¢-th ramification group of K/k with Vg) = G(K/k).
7 (K/k) the last ramification number of K/k, in other words, Vg &/
# 1 and V%;K/k)-bl) =1.
vx(®)  the Hasse’s function for K/k.
It is well-known that Hasse [9] proved that if K/k is a finite Galois
extension, then

(1) N, Ugsnt-0+n C U@ for 1= 0

and moreover, if K/k is Abelian and p(K/k) the p-exponent of the con-
ductor of K/k, then

(2) K[k = oxp(v(K/k) + 1
and
(3) Ny, UgEna-0+ = [J® for ¢ = wK/k) .

In this direction we define the Galois conductor of a finite Galois
extension.

DEFINITION. Let K/k be a finite Galois extension, and let p(K/k)
be the least integer ¢ such that ¢, (i — 1) = ¥(K/k), namely, the least
integer ¢ such that V§g-0+b =1, Then we define the Galois conductor
of K|k to be {(K/k) = p»¥/®, Needless to say, this coincides with the
ordinary one when K/k is Abelian.

LEMMA 1. Let K/k be a finite Galois extension. Then:

(1) If oxi(7"(K[kK)) is an integer, then w(K[k) = ¢z (V" (K[K)) + 1,
and if not, wK/k) = log(¥ (K/E)] + 2,1 1 being the Gauss symbol.

(ii) K/k is unramified if and only if w(K/k) = 0.

(iii) K/k is tamely ramified if and only if w(K/k) < 1.

Proof. Immediate from the definition.
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LEMMA 2. Let K/k be a finite Galois extension, and let D(K/k) be
the different of K/k. Then

T(K/k) —_— @(K/k).§B?KIk(#(K/k)-l)+l ,
here B denotes the prime ideal of K.
Proof. Let N, be the order of V{,. Then we have

PRILu(E /) ~1) (K /6) e (E/k)~1)
pE="3  NJNy= 3 NN+ 5 1N,
i= i=0 1= (K/k)+1
and hence

e u(K/k) = ’”g“ N + oxn(E k) — 1) — v (K/K)

v (K/k)

= 2, Ne— D+ ogn(K/k) —1) + 1,

t=0

where e = N, is the ramification index of P over p. According to
Hilbert’s formula, the $-exponent of (K /k) is given by > 7&K/ (N, — 1).
This completes the proof.

LEMMA 3. Let LD K Dk be a tower of Galois extensions. Then:

(i) wE/k) < pLIk).

QD) If p(L/E) < orp(@B/0) + m — 1) + 1 with m = 0, then u(L/k)
< uK/k) + m.

Proof. From V{medm-b+ =1 we have V{gk@m-b+ =1 py
Herbrand’s theorem on ramification groups (see Serre [17]).

(ii) Let 4, = (K/k) + m, then 4 = u(K/k), o/t — 1) + 1 = (L/K),
and hence V{jt-b+b =1, By Herbrand’s theorem, the image of
VEreto-b+b - ynder the natural homomorphism of G(L/k) onto G(K/k),
is V§gwGo-0+l — 1 This implies Vzete-+0 < G(L/K). Therefore

Viguio-D+D — Yiepptio-b+D) — ],

LEMMA 4. Let LD K Dk be a tower of Galois extensions, and
suppose that L/K is Abelian. Then:

(1) pL/K) £ prppL/k) — 1) + 1.

(D) If wL/k) < pK/k) + m with m 20, then w(L/K) < oruuE/H)
+m—1) + 1.

Proof. (i) From V{wam-v+ =1 we have Vyg®n-b+ =1,
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Since L/K is Abelian, we have, by Hasse’s formula (2),
orx(uL/K) — 1) =¥V (L/K) £ o u((L/k) — 1),

and hence p(L/K) < ogu(u(L/k) — 1) + 1.
(ii) Immediate from ().

LEMMA 5. Let K/k be a finite Galois extension, and let k’'/k be an
Abelian extension. If pk'[k) < m, then p(K- K [K) £ ogp(m — 1) + 1.

Proof. Since k'/k is Abelian, we have, by Hasse’s formulas (3)
and (1), N, Ugwnem-0+0 = [Jm D N, Ugxsm-0+0  gnd hence, by the trans-
lation theorem in local class field theory,

Nz k) D U=+

Since K-k’'/K is also Abelian, this completes the proof.

LEMMA 6. Let K/k be o finite Galois extension, then
NiaUgess-os0 = U for i 2 uE/H) .

Proof. The proof depends on the solubility of the local Galois
group G(K/k). Let K,= k,K, be the inertia field of K/k, and let K,
C --- C K, = K be the distinct ramification fields of K/k. Then K,/k
is Gaioisian, each K;,,/K; Abelian, and evidently, ¥ (K/K;) = 7 (K/k)
for 0 <7 <r. Let i= uK/k), then ¢g,(t — 1) = 7 (K/k) = ¥V (K/K)).
Since V' (K/K;) = ¢x/x,;..(?" (K;,:/K,)) by Herbrand’s theorem, we have

SDK,/k(i -1 = GDI?;H/K,('V(KJH/KJ)) = #(an/Kj) —1.

Thus, by Hasse’s formula (3),

(PR pyp(i-1)+1) — JT(PRjxG-1)+1)
ZVKH1/K1[]K,l+j1+l - UK; 4

for j =0,1, ..., — 1. This shows N, Ug:t-0+D = M,
For later use, we treat here the —1 dimensional cohomology group
of U}?klk“‘”“) with ¢ = w(K/k), which appears in our main theorem.
The next exact sequence on cohomology groups was proved by Furuta

[6].

PROPOSITION 7 (Furuta [6, Prop. 6]). Let G be a finite group, H be
o normal subgroup of G, and let A be a G-module. Then the sequence
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Inj vV
H-Y(H, 4) 255 H-(@, 4) N5 H-(G/H, NyA) —> 0
18 exact, where Inj denotes the injection map, Ny the trace map, namely,
Ny(@) = > ,exo0 for an element a of A, and NH the corresponding
induced map.

LEMMA 8. Let K/k be a finite Galois extension, and let T be the
inertia field of K/k. If K/T is Abelian, then the sequence

H-(GE | T), Usgrei-+) 1, F-yG(K /), Dgrnci=n+v)

—>0
s exact for i = wK/k). In particular, if GK/T) is cyclic, then
1 H-Y(G(K | k), Ugrni-0+D)y = ( for i = u(K/k),

where 1: Ugrri-0+ KX denotes the inclusion map and 1% the induced
cohomology map.

Proof. Let 1= u(K/k), then we have, by Lemma 4, wXK/T)
< or(t—1) + 1. Since ¢p(t —1) =¢—1, we have, by Lemma 6,
Ny, Ugrnc-0+b = U@, It is known that U{’ is cohomologically trivial
as a G(T/k)-module. Then Proposition 7 leads to the exact sequence
in Lemma 8. The latter half follows from the following commutative
diagram :

H“‘(G(K/T), ng”‘“‘l)“)) _E‘l) H_I(G(K/k), U}g’x/k(i—-l)-rl))

1»1 lla
Inj

0=H'YGK/T),K*) — H'GEK/k),K) .

LEMMA 9. If K/k is both totally and tamely ramified, then Ugxrc-b+D
with © = wW(K/k) is cohomologically trivial as a G(K/k)-module.

Proof. In this case, w(K/k) =1 and ¢g,; () = et for ¢ = 0, here
e = [K: k], the extension degree. For i =1, take a e Ugxrt-D+b N X,
then vy (e — 1) =% — 1+ 1/e, v, denoting the normalized exponential val-
uation of k, and hence a € UP. Thus

U?{’K!k(i—l)*‘l) n kx c UI(GZ) p— NK/knglk(i—1)+1)

This implies HY(G(K k), U=+ -*D) = 0. On the other hand, it is well-
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known that the Herbrand’s quotient of U is one, and hence the.
Herbrand’s quotient of U{x¢-b+D i3 also one. This completes the proof.

LEMMA 10. Let K/k be o finite Galois extension. If the first rami-
fication group of K/k is cyclic, then

V'HY(G(K k), Ugrr-D+D) = 0 for i = uW(K/k) .

Proof. Let T,V be the inertia field, the ramification field of K/k,
respectively. Since G(V/T) is cyclic, we have, by Lemmas 3 and 4,

rVIT) < orpp(V/E) — 1) + 1 < or((K/k) — 1) + 1
= (PT/k(i —D+1 ’

and hence, by Lemma 9, H {(G(V/T), Uyrr¢-b+d)y = 0, Moreover it is
known that U$® with ¢ = 0 is cohomologically trivial as a G(T'/k)-module.
Therefore, according to Prop. 7, we have H YG(V/k), U§rni-b+d) = (,
Again, by Lemma 4,

#(K/V) = (PV/k(/l(K/k) -1+1 = §0V/k(7: —-14+1,

and hence Prop. 7 leads to that
Inj: HY(GK|V), Ugeni-0+1)  H-YG(K | k), Ugxnt-n+D)

is epimorphic. Then our assertion in Lemma 10 follows from the fol-
lowing commutative diagram :

HY(G(K[V), Ugens-n+0) 2 F-y(G(R /1), Usgmna-n+v)

/| o

I
0=HYGK/V),K*) —> HYGEK]/k),K".
We consider more special cases which correspond to the cases
where (m,16) + 8 and (j(K/Q),16) = 8 in Theorem 3 of Fréhlich [1].
Let @, be the 2-adic number field, T'/Q, be a finite unramified ex-
tension, ¢, be a primitive 2*-th root of unity, and let K, = T(,).

THEOREM 11. Let R =T, + &Y, and let ¢ be a generator of the
cyclic Galois group G(R/T). Assume v = 3. If Npgpe=1 for ecUP,
then

€ (Ng, K)) "
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The proof is elementary but slightly complicated. The details will
appear elsewhere.

Ramification groups of R/T are as follows, where V® = V{,.

order ramification groups number of V&
ou—2 VO =YD =V© 3

ov-3 Ve =y 2

Qu—4 V® = ... =V® 4

Qv—k+1 V@-sn — ... = YV@k-2) k-3

2 V@er-3+) — ... = V@2 ov-3

1 Ver-241 4zk=y)

Therefore v (R/T) = 2*%, and u(R/T) = v by Hasse’s formula (2).
LEMMA 12.
orr(t — 1) =27 —v 4+ 1) for i=v.
Proof. Let i =Zv. Then ¢(t —1) = o(v — 1) = 7(R/T). Hence

o(i-1 i-1)

) o(
i= 5 N/No=v+ 3
j=

TS UN =y - D -2,
here N; denotes the order of V).

LEMMA 13. If v = 3, then

IH(G(K,/Qy), Ugpat=20) =0 for i =2 wK,/Q) =v,1# 3.

Proof. Let i = n(K,/Q,) =v. We have the following commutative
diagram in which the first row is exact by Lemma 8:

H(GUE, | T), Ugeet=0+0) 5 H-AG(K,|Qy), Uggsoest=+9) — 0

1»l ly

H(G(K,/T), K?) I, H(G(K,/Q),KY) .

Thus it is enough to show that the image of 1* of the left hand side
is 0 when 7 # 3. By Lemma 12,

SDE/QQ(?: - 1) +1= gDE/T('L. — 1) +1
=27 —v+1D+1227+123>2=ukK,/R),
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and hence, by Lemma 6,

NKV/RUgfqug(i-l)+l) — Ugmqa(i-l)+l) ,

Therefore we have the following commutative diagram in which the
rows are exact by Prop. 7:

HYGK, | T), Ugmiat=+0) —> H-Y(G(R/T), U§nest=2"1) — 5 0

. \ lﬂ

0 = H(G(X,/R),K}) - H'(G(K,|T),K}) » H(G(R/T), Ng,;rK}) = 0 .

We know that ¢gz,,(i —1) +1=3 if and only if ¢ =v = 3. Hence, if
1=y and ¢ + 3, then Theorem 11 shows that the image of 1* of the
right hand side is 0, from which it follows that the image of 1* of the
left hand side is also 0. This completes the proof.

Remark. If k is a field complete with respect to an archimedean
prime divisor, then we define, as usual,

1 when k is real and K imaginary,
0 otherwise.

WK h) = {

Artin’s conductors. Let K/k be a finite Galois extension with the
Galois group G = G(K/k), and let y be a character of G. Artin defined
the conductor of y whose p-exponent is given by

=55 D — V)

where N, = Card (V{),) and x(V§, = N;* Z,e,,@k 2(0) is the “mean
value” of y on V{,.

It is known that if y is of degree one and Z, the subfield of K cor-
responding to Kery, then u(y) is equal to the p-exponent of the con-
ductor of Z,/k as a cyclic extension:

() = W Z,/k) .
In connection with the above result, we have, in general,

PROPOSITION 14. Let y be the character of a representation A of
G, and let Z, be the subfield of K corresponding to Ker A. Then
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v() = p(Z, [ k) .

Proof. In virtue of Serre [17, p. 158, Prop. 4], we may assume
that y is faithful. Then Z, = K. Since x(V{),) is the multiplicity of
the unit character contained in the restriction of A4 on V§,, (1)
= x(V{¥,) if and only if Kery D V{¥,, and hence this is equivalent to

(K/k)
V@, =1, namely, 7" (K/k) <i. Thus v(y) = VZ -%L On the other hand,
=0 0
since it is known that »(y) is a non-negative integer, we have
PRIk () —1) ]\]Z
v(y) = ; N

Hence ¢g,,0(x) — 1) = 7" (K/k), which shows v(y) =u(K/k).
We note that there exists an irreducible character y of degree greater
than one such that v(y) > w(Z,/k) by a suitable choice of K/k.

§2. The Galois conductor of a Galois extension of an algebraic number field

In this section, we define the Galois conductor of a Galois exten-
sion of an algebraic number field of finite degree.

From now on, %k is always an algebraic number field of finite de-
gree, and a completion at a prime divisor p of & is denoted by k,.

DEFINITION. (i) Let K/k be a finite Galois extension, p be a prime
divisor of %k, and let P be a prime factor of p in K. Then w(Ky/k,)
defined in §1 does not depend on the choice of  over p, and u(K,/k,)
= 0 when p is unramified in K. We set

f(K/k) = l;[ [(Ky/ k) = l—! prEme

where p runs through all finite and infinite prime divisors of k, and
we call this the Galois conductor of K|k.

(ii) Let K/k be a finite Galois extension, and let m = [], p* be a
module of £ which may contain infinite prime divisors. Set

Ar(m) = [[ Preamp-D+1
B

where p denotes the restriction of 8 on k& and B runs through all finite
and infinite prime divisors of K. Since ¢, = 0 for almost all p, gg,.(m)
is really a module of K. Put' FK/k) = gx(f(K/k)), and call it the
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generalized Geschlechtermodul of K/k, which is equal to the ordinary
one when K/k is Abelian. Furthermore, if K/k is an Abelian extension
of prime power degree, then gg,,(m) coincides with M (i) in [1, p. 239].

We often omit the subscript of gx,(m) and write briefly g(m) or
gx(m).

LEMMA 15. Let K/k be a finite Galois extension, and let m be a
module of k. Then gx,(mi(K/E)) = mFK/k).

Proof. Let m = [[,p%. Then the P-exponent of the left hand side
18 @rgm,(ty, + p(Kg/k,) — 1) + 1, which is, by the definition of w(Ky/k,),
equal to Z,.e(PB/p) + goxw,cp(‘u(K,;/kp) — 1) + 1,e(B/p) being the ramification
index of B over p, and hence this is the P-exponent of the right hand
side.

LEMMA 16. Let L D K Dk be a tower of Galois extensions, and
let m be a module of k. Then gr,x(gx/i(M)) = gr(m).

Proof. Immediate from the fact that the Hasse’s function is transi-
tive.

Next, we express some Lemmas in §1 in terms of {(K/k) or gg,(m).

By Lemma 1, we have

LEMMA 17. Let K|k be a finite Galois extension. Then p is ramified
in K if and only if p|{(K/k).

Lemma 2 gives

PROPOSITION 18. Let K/k be a finite Galois extension, and let D(K /L)
be the different of K/k. Then

HK k) = DK /k)-FK/K) .

According to Lemmas 3,4, and 5, we have the following three
Lemmas.

LEMMA 19. Let LOK Dk be a tower of Galois extensions, and let
(K/k)|m. Then:

(i) HEK/BI|FL/E).

(D) Iff(L/K)|gg(m), then {(L/k)|m. Inparticular,if (L/K)|FEK/k),
then {(L/k) = {(K/k).

LEMMA 20. Let L D K Dk be a tower of Galois extensions, L/K

https://doi.org/10.1017/50027763000021632 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000021632

CENTRAL CLASS FIELD 71

be Abelian, and let {(K/k)|m. Then:

(1) T(L/K)|gx/(f(L/E)).

() If f(L/k)|m, then F(L/K)|gg,m). In particular, if F(L/k)
= f(K/k), then (L/K)|FK/k).

LEMMA 21. Let K/k be o finite Galois extension, and let k'/k be
an Abelian extension. If §(k'[k)|m, then {(K-k'/K)|gx,(m).

For later use, we treat here subgroups of the group of total norm
residues.

Let K/k be a finite Galois extension, m be a module of &k, and let
S(m) be the group of all numbers a in & such that a = 1 mod m, and
S(gx(m)) is similarly defined in K.

LEMMA 22. Notation being as above, we have
S@x(m) N £* D S(m) .

Proof. Let m = [],p%», P be any prime factor of p in K, and let
e(B/p) be the ramification index of L over p. Take a e S(m). Since
1,(B/P) = 0xrg,(3, — 1D + 1, the P-exponent of a — 1 is equal to or more
than ¢gg,(i, — 1 + 1. This implies a € S(gx(m)).

Let K/k be a finite Galois extension, m = [], p* be a module of %,
and let H be the group of total norm residues of K/k. Denote by H, the
group of all numbers a in H such that

@ € N gy, UgEsmG-DD for all 4,> 0.
In virtue of Hasse’s formula (1), we note H, C S(m).
LEMMA 23.
S(gxg(m)) N k* D H, .
Proof. By Lemma 22, the left hand side contains S(m).

LEMMA 24. Let K/k be a finite Galois extension, and let {(K/k)|m.
Then

HNSm=H,.

Proof. Take ac H N S(m), then a =1 mod m. Thus {(K/k)|m and
Lemma 6 give our assertion.
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§3. The central class field mod m

In this section, we define the central class field mod m of a finite
Galois extension, and prove our main theorem. The following notation
will be used.

S(m), S(gx(m)), H, H, as given in §2.

Z the ring of rational integers.

E, the unit group of k.

k(m) the ray class field mod m of %k, K(gz(m)) similarly defined in K.

(A4) the principal ideal group induced from a number group A.
Let K/k be a finite Galois extension. Then:

I the ideal group of K prime to (the finite part of) gr(m).

I, w.xn the subgroup of I, consisting of all ideals whose norms to
k belong to (S(m)).

g - the subgroup of I, generated by all ideals a’~! such that
a€ly. and o€ G(K/k), in other words, D is the augmenta-
tion ideal of the group ring of G(K/k) over Z.

LEMMA 25. Let K/k be a finite Galois extension, m be a module
of k, and let (K/k)|m. Then
HYGK/k),Ijzwm) =0.
This implies that for ael o, Ngwa =1 if and only if aell,,.

Proof. Let S be the union of the infinite primes of K and the
finite primes dividing gz(m), Jr be the idele group of K, and let

JS=HK§'HU€B’

BeS pes

here Uy is the unit group of K;. Then we have the following exact
Sequence :

1—Jg—Jrg—> 10 —1.

This gives the following exact sequence of cohomology groups:

#
HYGEB), T ) —> HYGE ), T x) —> HGEE), Ly
#
s HYGE R, Ts) —> HYGE[R), Tg) -

Using semi-local theory and the fact that P is unramified over ¥ when
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Be&S, it is easy to see that
H(GK/k),Js) = %H“(Gag,fﬁé) =~ H'(G(K/k),Jx) ,

where Gy denotes the decomposition group of ¥ over k¥ and the sum
runs over non-conjugate primes in S. Similarly,

HY(GK k), Js) = >, H(Gy, K5)

BES

and

H(GK k), J) =~ 3 H Gy, K3) + 3 H'(Gy, K) .
BeS BesS

Therefore we conclude that 1*, is isomorphic and 1{ injective, which
implies H NG(K/k), Iizwm) = 0.

Let L D K D k be a tower of Galois extensions. Then L is called
a central extension of K/k if G(L/K) is contained in the center of
G(L/k), and is called a genus extension of K/k if it is obtained from
K composing an Abelian extension over k.

LEMMA 26. Let m be a module of k, and let K/k be a finite Galois
extension with {(K/k)|m. If L,,L, are central (resp. genus) extensions
of K|k with {(L;/k)|m for ¢ = 1,2, then the composite field L,L, is also
a central (resp. genus) extension of K|k with {(L,L,/k)|m.

Proof. By Lemma 20, we have {(L;/K)|gz(m), and hence L,
C K(gg(m)). This shows {(L,L,/K)|gx(m). Then our assertion follows
from Lemma 19.

DEFINITION. Let K/k be a finite Galois extension with {(K/k)|m.
Then we denote by Km (resp. K¥) the maximal central (resp. genus)
extension L of K/k with f(L/k)|m, which is equal to the maximal central
(resp. genus) extension of K/k contained in the ray class field mod gx(m)
by Lemmas 19 and 20, and call it the central class field (resp. the genus
field) mod m of K/k.

LeEmMMA 27. If K[k is a finite Galois extension with {(K/k)|m, then
K¥* = K -kE(m)
and so

GKE/K) = Ngpdogimy | Ngjilogam N (S)) .
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Proof. By Lemma 21, we have {(K-k(m)/K)|gxz(m), K- k(m) C K(gz(m)),
and hence K-k(m) C K¥. To prove the converse, let A be the maximal
Abelian extension contained in K(gz(m)), then K* = K-A. By Lemma
19, (K(gz(m))/k)|m, and hence {(A/k)|m. This shows A C k(m). The
latter half follows from the ‘“Abschliessungssatz” in class field theory:

GK}/K) = G(k(m)/K N k(m)) = (S() - N g/l m/ (S())
=~ Neilgon | Nridogem N (S) .

LEMMA 28. If K/k is a finite Galois extension with {(K/k)|m, then

GR/E®) = Ly i/ T2ty - (S(gx ()
= HN S(m))/ N K/kS(QK(m))) .

Proof. By Lemma 27 and the translation theorem in class field
theory, K} corresponds to the ideal group Iy (., of K. Moreover it
can be checked that Km corresponds to the ideal group I, -(S(gz(m))).
This indicates the first isomorphism. To prove the second isomorphism,
for aelj . zxm> Set Nxua = (@),aeS(m). Then acH, since {(K/k)|m.
Conversely, take a ¢ H N S(m). Since p is unramified in K when ptm,
v,(a) is a multiple of the degree of p in K, where », denotes the nor-
malized exponential valuation at p, and hence (@) is a norm from
Iyom,zx- Therefore Ng, is an epimorphism of Iy .,z to (H N S(m)).
Assume Ng,a e (NgS(@z(m))). Then there exists a number a e S(gz(m))
such that Ng,a(e) =1. We have, by Lemma 25, ael,  (S(gz(m))),
and the proof is complete.

Furthermore we have

(H N Sm)/(NgSgx(m)) = H N S(m)/[H N S(m) N E1-NgS(gx(m)
~ H N Sm)/[S(m) N E]-Ng,iS@@x(m))
~ H N S(m)/N gS(gx(m)) ,
[Sm) N E4)-NgS(@x(m) /N x1S(gx(m))

and hence the sequence

1-E, 0N Sm)/E; N NgixS(@gr(m)) — H O S() /N g, S(gx ()
-G, JEK¥) —1

is exact, because Ng,;,S(gxz(m)) C S(m) by Hasse’s formula (1).
Continuously we give a relationship between H N S(m)/Ng,.S(gx(m))
and the Schur multiplicator of G = G(K/k). Let
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m= ];[ pr, gm) = 1:8] B, py= ?Kgslkp(in -D+1,
Jx be the idele group of K, and let

I x(g(m)) = ﬂSH )Ués”‘”’- [N Ks5 ,

lg(m Blg(m)

here we wrote U{’ instead of U{), and []’ denotes the restricted direct
product of K} with respect to UJ. Then we have, by the approxima-
tion theorem, J; = K*.Jx(g(m)), and S(g(m)) = K*NJx(g(m)). Thus the
sequence
1 —> S(gm) —> J(g(m)) —> Cx —>1
is exact, where Cy is the idele class group of K. Passing to cohomology,
we have the following exact sequence:
H(G, T x(g(m)) 2> HY(G, C)
%3
—> S(gm) N &% /N guS(g(m) —> HAG, J x(g(m))) .

Using semi-local theory, we have

HYG, Jx(g(m)) =~ > HYGy, UE®) +$; H'(Gqy, K3) ,

Blm

where Gy is the decomposition group of R over k& and the sums run
over non-conjugate primes in K. Therefore we obtain, by Lemmas 23
and 24,

Ker ¢t = S(g(m)) N k* N H,/Ng,S@g(m) = H, /N g,S(@(m))
= H N S(m)/Ng;,S@m)) .

Similarly,

H™ (G, Jg(g(m))) = ; H~(Gy, US®) + § H(Gy, K¥)
= 3T H Gy, Ug®) .
Blm

Denoting by Proj, the projection of H-'(G,Jx(g(m))) to H Gy, ULP),
we have the following commutative diagram :
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L
T ——

H(G, TN =25 H(G,Jx) —> H(G,Cp)
Projgl lPl‘Ojs
H'(Gyy US®) —> HGy, K3) 41

s

HGy, 2) 5 HG,2),

where 1:U§® — K} denotes the inclusion map and +, ¢, are the Tate
isomorphisms in class field theory. From this, we obtain

Im j* = w(; InjgyeVg 1¥H Gy, Ug*m) .
jm
Thus we have proved the following main

THEOREM 29. Let m = [[,p% be a module of k, and let K|k be a
finite Galois extension with {(K/k)|m. Denote by K, the central class
field mod m and by K¥ the genus field modm of K/k. Then we have
the following exact sequence

1 —’Ek N S(m)/Ek N NK/kS(gK(m))
— H(G(K k), Z)|F(K k), — GKK,/K¥) -1,

where
FE K0 = 37 Injogous ¥ 1'H(Gy, UE®) ,

Mg = SDKg;/k,(’ip -D4+1,

U§® the pg-th unit group of Kg,

Gy the decomposition group of P over k,

1# the cohomology map induced from the inclusion map 1:UY®
_>K§>é,

Y the Tate isomorphism of H %Gg,Z) to H Gy, K3),

and the sum runs over non-conjugate prime factors of m in K.

COROLLARY 30. If K/k is a cyclic extension with {(K/k)|m, then we
have

and
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E.NSm=E,N NK/kS(gK(m)) .
Lemma 10 gives

THEOREM 31. Let K/k be a finite Galois extension with {(K/k)|m.
(i) If all first ramification groups of K/k are cyclic, then the
sequence

1-FE,NSm)/E, N NK/kS(QK(m)) — Hﬂs(G(K/k)’ Z)
— GK. /K —1

18 exact.
(ii) If K/k is tamely ramified, then the above sequence is exact.
(dii) If K/k is unramified, then the above sequence is exact even
if m=# 1.

From Lemmas 10 and 13, we obtain

THEOREM 32. Let m be a positive integer such that (m,16) + 8,
and let K be the m-th cyclotomic field of the rational number field Q.
Then

GK np..|K) = HYGEK|Q), 2) ,
where p., denotes the real prime divisor of Q.

This is a generalization of Frohlich [1, Theorem 3] to a cyclotomic
field of the rational number field.

Remark. (i) Hasse [8] proved the so-called principal genus theorem
as follows: Let K/k be a cyclic extension with f(K/k)[m, and let ¢ be
a generator of G(K/k). If Ng,ae(S(m)), namely, a€ .,z then there
exists an ideal b in I ., such that a-b'""e (S(gx(m))), namely, a e Ig .,
(S(gx(m))). Thus our main Theorem 29 combined with Lemma 28 may
be viewed as a direct generalization of the principal genus theorem to
a Galois extension. For other generalizations of this theorem, see
Herbrand [10], Iyanaga [11], Kuniyoshi and Takahashi [12], Noether [14],
and Terada [19], [20].

(ii) For a finite extension K/k, Frohlich [2],[3] defined the genus
field K* of K/k to be the maximal unramified extension of K which is
obtained from K by composing an Abelian extension of &, and studied
the genus number [K*:K] in the case where the base field % is the
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rational number field. Furuta [4] gave an explicit formula for the genus
number in number fields. Masuda [13] freated an EL-Abelian and
central extension of a Galois extension K/k, and expressed its Galois
group over K in idele language. Using this result, Furuta [5] obtained
an explicit formula for the central class number of K which is the ex-
tension degree of the maximal unramified central extension of K/k over
K. Moreover Furuta [6] gave a cohomological expression of the Galois
group of the maximal EL-Abelian and central extension contained in an
Abelian extension M of K over the maximal genus extension contained
in M, and determined the reduction formula for the central class field
tower contained in an EL-Abelian extension of K/k. Frohlich [1]
studied fields of class two over the rational number field as in Intro-
duction, and in its conclusion, he stated, “The methods used in this
paper can be generalized, so as to become applicable to a study of fields
at most (C2) over an arbitrary algebraic number field. But they be-
come extremely cumbersome, and it is desirable to replace them by less
elementary, but more powerful, tools.”

§4. The Z-class field mod m

DEFINITION. Let ¢ be a rational prime, m be a module of an al-
gebraic field number field k£ of finite degree, and let K/k be a finite ¢-exten-
sion with {(X/k)|m. Denote by K'm,, (resp. K} ,) the maximal central (resp.
genus) /-extension L of K/k with {(L/k)|m, which is equal to the max-
imal central (resp. genus) /-extension of K/k contained in the ray class
field mod gz(m) of K by Lemmas 19 and 20, and call it the ¢-class field
(resp. the ¢-genus field) mod m of K/k.

In the case where k is the rational number field and K/k an Abelian
f-extension, Frohlich [1, Theorem 3] treated the Galois group of the ¢-
class field mod 7 of K/k over the /-genus field mod 7. In this section,
we generalize this result to the case where &k is an arbitrary algebraic
number field and K/k a finite Z-extension.

LEMMA 33. Let K/k be o finite {-extension with {(K/k)|m, and let
k(m), be the maximal f-extension contained in the ray class field k(m).
Then

K, = K- k(m), .
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Proof. Similar to the proof of Lemma 27.

LEMMA 34. Notation being as above, we have

A

R..NKx=K¥,, K,, Kx=Kk,,
and so
GR,./K¥) = GK,/K¥) .
Proof. By Lemmas 27 and 33, we have
K¥ = K-k(m) = K-k(m),- k(m) = K} ,-k(m) .

Thus [K¥:K#, divides [k(m):k(m),] and hence is prime to £. Since
K* > K, ,NK*>K#, we have K, ,N K* = K*,. Next, since G(K,/K¥)
is a homomorphic image of the Schur multiplicator H-*G(K/k), Z),
[If,,,:K’,';] is some power of /4, and hence [K’m:f(m,,-K’f,‘,] is so. On the
other hand, since [If'mzlf'm,l] is prime to ¢, [Km:Km,e-K;',‘] is also prime
to ¢. Thus K, ,-Kf = K,.

From the above Lemma and Theorem 29, we obtain

THEOREM 35. Let K/k be a finite ¢-extension with {(K/k)|m. Then
the sequence

1-FE,N S(m)/Ek N NK/kS(QK(m))
— HG(K k), Z)|FK k), — G(K,,./KE) — 1
18 exact, where F(K|/k), is as in Theorem 29.

COROLLARY 36 (Frohlich [1, Theorem 3]). Let K be o finite Abelian
4-extension of the rational number field Q, and let m be a rational module
such that {(K/Q)|m and (m,16) + 8 when (j(K/Q),16) = 8. Then

GK /KL ) ~ HY(GK/Q), Z) .

Proof. When ¢ =+ 2, all inertia groups of K are cyclic. Then
Lemma 8 gives F(K/Q), = 0. When ¢ =2, Lemmas 8 and 13 show
F(K/Q), = 0 under the hypotheses.

§5. The ¢-class field tower mod m

Let m be a module of an algebraic number field k = K, of finite
degree, K, be the maximal /-extension contained in the ray class field
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k(m), and let K, be the ¢-class field mod m of K,_,/k. Then the sequence
of fields

k=K,CcK,c...-cK, ,CcK,C--.

will be called the ¢-class field tower modm of k. It is obvious that
f(K,/k)|m for n = 0. Conversely,

LEMMA 37. Let ki = Uz o K,, and let K'|k be a finite £-extension
with {(K'[k)|m. Then k™ D K’, in other words, k™ is the composite
field of all finite 4-extensions over k whose Galois conductors divide m.

Proof. Let k=K, C K;C --- C K, = K’ be the subfields corres-
ponding to the lower central series of G(X’/k). Clearly K;C K,. Sup-
pose Ki , C K, ,. From f(Ki/k)|m, we obtain {(Ki/Ki_)|ggi-.(m) by
Lemma 20. Since K;/K;_, is Abelian and gg,_,/x; ,(gx;_,(m) = gg,_,(m),
we have, by Lemma 21, {(K;-K;_,/K;_))|gx,_,(m). It can be easily checked
that G(K;-K;_,/K;_,) is contained in the center of G(X;-K,_,/k). Therefore
K.CcK,-K, ,C (?ﬁ\_l)m = K,, which completes the proof.

Continuously we generalize a famous result of Golod-Safarevié [7]
on the unramified /-class field towers to the case of the tamely ramified
¢-class field towers. The following notation will be used.

d,M) the ¢-rank of a module M.

I, the ideal group of % prime to m.

K the number group of % prime to m.

14 the subgroup of %’ consisting of all numbers a such that (a) € I,
where ( ) denotes the principal ideal.

0 the ¢-rank of the ideal class group of k.

r =17 + 7, —1, where r, is the number of real and r, the number of
complex prime divisors of k.
0 is equal to 1 if k£ contains an ¢-th root of unity and to 0 if not.

LEMMA 38. &) N IL-(Sm)) = (V-Sm)) .
Proof. Immediate.

LEMMA 39. Let m=1, -+ p; Nyjgps =1 mod ¢ fori=1,..-,¢, and
let K, be the maximal f-extension contained in the ray class field. k(m).
Then
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d(GEK,\ )=t + p—dV/V N E'Sm)).
In particular,
d(G&K,\[k) =t —(r+0).
Proof. In the exact sequence
1— I (DL (S(w) — L /15 (S(m)) — I /15 (K) — 1,
all groups are elementary. Thus

A(GK,/k) = a1, /1},-(S) = A/ I%,- (k) + a5+ (K)/ I (S(m))
= p + A (B)/I;,-(S(m))) .

By Lemma 38, we have

L () 15 (S() = (B)- I, (S(m) /I, - (S(m)
~ (&) (&) N L-(Sm) = (&) /(V-S(m)) =~ ¥'[V-S(m)

and hence the exact sequence in which all groups are elementary:
1-V/VNESm) ~V-Sm)/kE*-Sm) > K|k S(m) - K |V-S(m) —» 1.

Since d,(k'/k"-S(m)) is equal to the /-rank of the group of prime residue
classes mod m, we have

t=d,F/V-Sm)) + d(V/V N k*-S(m))
and hence
d(GE\ k) =t + p—aV[V N E*-Sm)) .

The latter half follows from d(V/V N E*-S(m)) < d,V/E*) =p +r + 0,
for which see Safarevi¢ [16, p. 131].

THEOREM 40. Let m =1, -+« p;, Nyjgpy =1 mod ¢ for ¢=1,--.,¢.
If

t+opzd(V/VNESm)+2+2Vr+d5+1,

then the ¢-class field tower k™ which is tamely ramified is infinite. In
particular, if t =r + 6 + 2 + 2vr + 6 + 1, then k™ is infinite.

Proof. In virtue of Lemma 1, K,/k is tamely ramified. Thus we
have, by Lemma 8 and Theorem 35, the exact sequence
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1—E; N Sm)/Ey N NgiS(@x(m))
— H(G(K,[k), Z) — G(K,,,/K,) — 1.
It is clear that
(B, N S)/Ey N NgpSge(m)) < dy(Be N S) < d(BEy) =7 + 9,
and it is well-known that (see, Roquette [15])
d(H NGK,/k),2) > +d* - d, where d = d(G(K,/k)) .

By Lemma 39, d =2 + 27 + 6 + 1, and hence 1d* —d =r + 5. There-
fore

|G(K /K| = 0 mod ¢ for n =0,
here | | denotes the number of elements.

Remark. If t =0, then V =V N k*S(m). Thus the condition in
Theorem 40 coincides with Roquette [15, Remark to Theorem 3] in case
of the unramified ¢-class field towers.

§6. The central class field tower mod m

Let m be a module of an algebraic number field £ = K, of finite
degree, K, = k(m) be the ray class field mod m of %k, and let K, be the
central class field mod m of K, ,/k. Then the sequence of fields

k=K,CK,c..-CcK, ,CK,C---

will be called the central class field tower mod m of k. The extension
degree z, = [K,,,: K,] will be called the central class number mod m of
K, over k. It is obvious that {(K,/k)|m for n = 0, and the same pro-
cedure as the proof of Lemma 37 yields

LEMMA 41. Let k'™ = s, K,, and let K'|k be a finite nilpotent
extension with (K'/k)|m. Then k™ D K’, in other words, k™ s the
composite field of all finite nilpotent extensions over k whose Galois con-
ductors divide m.

Finally we generalize a result of our previous paper [18] to the
case of the central class field tower mod m.
It follows from [18, Lemma 4] the following

LEMMA 42. Let G be a finite nilpotent group of class n > 1, and let
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(4) G=G,0G,D.-.-2G,.,DOG, =1
be the lower central series of G. Then
|H G |G _ry Z)| |Gy |*C6V 1 = 0 mod |H™¥G, 2)|,

where A(M) denotes the rank of a module M, that is, the minimal number
of generators of M.

Now, let k™ = (7., K, be the central class field tower mod m. We
denote by G the Galois group of K, over k. Suppose z,_, + 1. Then
G is a finite nilpotent group of class n, and the lower central series
(4) of G corresponds to the sequence of fields

k=K, cK, c...cK, , CK,.
Thus |G,_,| = [K,: K, ] = 2,_;,. By Theorem 29, we have
[H™ (G, 2)| = 2,-[Ex N S(m): By N NS @, ()] | F (K, [ )l
and

[H G/ Gr1y )| = 241+ [E, N S(m): By N Ng, S @x,_,(m))]
NP (K i/ B)al -

Therefore, if # > 1, then we have, by Lemma 42,
2D \F(Ky1 /Bl =0 mod 2, | F(K, /)l
where G/G, is isomorphic to the ideal class group mod m of %.

Next, set n = 1. Then G is an Abelian group of order z,, Hence
it follows from [18, p. 392] that

Zp@O-D = mod |[H %G, 2)| .
Therefore, by Theorem 29,

Zpa@=b = mod z,-|F(K,/ k)| .
Thus we have proved the following

THEOREM 43. Let z, be the central class number mod m of K, over
k, and let dbe the rank of the ideal class group modm of k. Then

zp@-bar~t = (0 mod 2, for n>1.

COROLLARY 44. Let zy= 42 ---£3,¢,>0 for i=1,.-..,t be the
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factorization of z, tn Z. Then
k= g ..
where k™ is the ¢,-class field tower mod m of k in §5.

Proof. D : Immediate from Lemma 41.
C: Let k™ =z, K,. According to Theorem 43, the distinct prime
factors of [K,:kl =22, -2, are £,4, --+,4, and a finite nilpotent
group is a direct product of all its Sylow subgroups. Thus we have, by
Lemma 37, K, C k™ --- k™.

Furthermore by the same procedure as the proof of [18, Theorem 5],
we obtain

THEOREM 45. Notation being as above, we have
AG(Kr/KR) = (@ + D -d(GK,/K,_)) + gj dVH (G, UGP)) + 7, + 71,

for n>1
and

d(G(K;/K)) = d-z forn=1,

where the sum runs over non-conjugate prime factors of m in K.
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