
JFP 29, e15, 43 pages, 2019. c© Cambridge University Press 2019 1
doi:10.1017/S0956796819000121

On the expressive power of user-defined effects:
Effect handlers, monadic reflection,

delimited control

Y A N N I C K F O R S T E R
Department of Computer Science, Saarland University, Germany

Computer Laboratory, University of Cambridge, England
(e-mail: forster@ps.uni-saarland.de)

O H A D K A M M A R
School of Informatics, The University of Edinburgh, Scotland

Department of Computer Science, Balliol College, University of Oxford
Computer Laboratory, University of Cambridge, England

(e-mail: ohad.kammar@ed.ac.uk)

S A M L I N D L E Y
School of Informatics, The University of Edinburgh, Scotland

Department of Computing, Imperial College, London, England
(e-mail: sam.lindley@ed.ac.uk)

M A T I J A P R E T N A R
Faculty of Mathematics and Physics, University of Ljubljana, Slovenia

(e-mail: matija.pretnar@fmf.uni-lj.si)

Abstract

We compare the expressive power of three programming abstractions for user-defined computational
effects: Plotkin and Pretnar’s effect handlers, Filinski’s monadic reflection, and delimited control.
This comparison allows a precise discussion about the relative expressiveness of each programming
abstraction. It also demonstrates the sensitivity of the relative expressiveness of user-defined effects
to seemingly orthogonal language features. We present three calculi, one per abstraction, extending
Levy’s call-by-push-value. For each calculus, we present syntax, operational semantics, a natural
type-and-effect system, and, for effect handlers and monadic reflection, a set-theoretic denotational
semantics. We establish their basic metatheoretic properties: safety, termination, and, where appli-
cable, soundness and adequacy. Using Felleisen’s notion of a macro translation, we show that these
abstractions can macro express each other, and show which translations preserve typeability. We use
the adequate finitary set-theoretic denotational semantics for the monadic calculus to show that effect
handlers cannot be macro expressed while preserving typeability either by monadic reflection or by
delimited control. Our argument fails with simple changes to the type system such as polymorphism
and inductive types. We supplement our development with a mechanised Abella formalisation.

1 Introduction

How should we compare abstractions for user-defined effects?
Approaches to handling computational effects, such as file, terminal, and network I/O,

random-number generation, and memory allocation and mutation, vary between different

https://doi.org/10.1017/S0956796819000121 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000121
mailto:forster@ps.uni-saarland.de
https://orcid.org/0000-0002-2071-0929
mailto:ohad.kammar@ed.ac.uk
mailto:sam.lindley@ed.ac.uk
mailto:matija.pretnar@fmf.uni-lj.si
https://doi.org/10.1017/S0956796819000121

2 Y. Forster et al.

functional programming languages. Whereas strict languages like Scheme and ML allow
these effects to occur everywhere, languages like Haskell restrict the use of effects.
One reason to be wary of incorporating computational effects into a language is that
doing so can mean giving up some of the most basic properties of the lambda calcu-
lus, like referential transparency, and confluence. The loss of these properties leads to
unpredictable behaviour in lazy languages like Haskell, makes it harder to reason about
program behaviour, and limits the applicability of correctness preserving transformations
like common subexpression elimination or code motion.

Monads (Moggi, 1989; Spivey, 1990; Wadler, 1990) are the established abstraction for
incorporating effects into lazy languages. Recently, Bauer & Pretnar (2015) proposed the
use of algebraic effects and handlers (Plotkin & Pretnar, 2009) to structure programs with
user-defined effects. In this approach, the programmer first declares algebraic operations
as the syntactic constructs she will use to cause the effects, in analogy with declaring new
exceptions. Then, she defines effect handlers that describe how to handle these operations,
in analogy with exception handlers. While control transfers immediately to the enclosing
handler without resumption following an exception, a computation may continue in the
same position following operation. In order to support resumption, handler has access to
the continuation at the point of effect invocation. Thus, algebraic effects and handlers
provide a form of delimited control. Delimited control operators have long been used to
encode effects (Danvy, 2006). There are many variants of such control operators, and their
inter-relationships are subtle (Shan, 2007), and often appear only in folklore. Here, we
focus on a specific pair of operators: shift-zero and dollar (Materzok & Biernacki, 2012)
typed with simple types1 whose operational semantics and type system are the closest to
effect handlers and monads.

We study the three different abstractions for user-defined effects: effect handlers, mon-
ads, and delimited control operators. Our goal is to enable language designers to conduct
a precise and informed discussion about the relative expressiveness of each abstraction. In
order to compare them, we build on an idealised calculus for functional-imperative pro-
gramming, namely call-by-push-value (CBPV) (Levy, 2003), and extend it with each of
the three abstractions and their corresponding natural type systems. We then assess the
expressive power of each abstraction by rigorously comparing and analysing these calculi.

We use Felleisen’s notion of macro expressibility (1991): when a programming lan-
guage L is extended by some feature, we say that the extended language L+ is macro
expressible when there is a local syntax-directed translation (a macro translation) from
L+ to L that keeps the features in L fixed. Felleisen introduces this notion to study the rel-
ative expressive power of Turing-complete calculi, as macro expressivity is more sensitive
in these contexts than notions of expressivity based on computability. We adapt Felleisen’s
approach to the situation where one extension L1+ of a base calculus L is macro express-
ible in another extension L2+ of the same base calculus L. Doing so allows us to formally
compare the expressive power of each of the different abstractions for user-defined effects.

In the first instance, we show that, disregarding types, all three abstractions are macro
expressible in terms of one another, giving six macro translations. Some of these transla-
tions are known in less rigorous forms, either published, or in folklore. One translation,

1But neither answer-type-modification (Asai, 2009; Kobori et al., 2016) nor answer-type-polymorphism
(Asai & Kameyama, 2007).

https://doi.org/10.1017/S0956796819000121 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000121

On the expressive power of user-defined effects 3

Fig. 1. Existing and conjectured macro translations.

macro expressing effect handlers in delimited control, improves on previous concrete
implementations (Kammar et al., 2013), which rely on the existence of a global higher-
order memory cell storing a stack of effect handlers. The translation from monadic
reflection to effect handlers is new.

We also examine whether these translations preserve typeability, and the contrary:
whether the translations of some well-typed programs are untypeable. This untypeability is
sensitive to the precise choice of features of the type system. We show that the translation
from delimited control to monadic reflection preserves typeability. A potential difference
between the expressive power of handler type systems and between monadic reflection and
delimited control type systems was recently suggested by Kammar & Pretnar (2017), who
give a straightforward typeability-preserving macro translation of delimited dynamic state
into a calculus of effect handlers, whereas existing translations using monads and delim-
ited control require more sophistication (Kiselyov et al., 2006). We show that there exists
no macro translation from effect handlers to monadic reflection that preserves typeability.
The proof relies on the denotational semantics for the monadic calculus. This set-theoretic
denotational semantics and its adequacy for Filinski’s multi-monadic metalanguage (2010)
is another piece of folklore which we formalise here. We conjecture that a similar proof,
though with more mathematical sophistication, can be used to prove the non-existence of a
typeability-preserving macro translation from the monadic calculus to effect handlers. To
this end, we give adequate set-theoretic semantics to the effect handler calculus with its
type-and-effect system, and highlight the critical semantic invariant a monadic calculus
will invalidate.

Figure 1 summarises our contributions and conjectured results. Untyped calculi appear
on the left and their typed fragments on the right. Unlabelled arrows between the typed cal-
culi signify that the corresponding macro translation between the untyped calculi preserves
typeability. Arrows labelled by ∗ are new untyped direct translations. Arrows labelled with
non-existence signify that no macro translation exists between the calculi, not even a partial
macro translation that is only defined for well-typed programs.

The non-expressivity results are sensitive to the precise collection of features in each
calculus. For example, extending the base calculus with inductive types and primitive
recursion would create gaps in our non-existence arguments, and we conjecture that extend-
ing the calculi with various forms of polymorphism would make our untyped translations
typeability-preserving. Indeed, Piróg et al. (2019), building on our work, have recently
proved that typed macro translations do exist between a polymorphic call-by-value lambda
calculus extended variously with effect handlers and delimited control. In addition to stan-
dard data type polymorphism, they rely on polymorphic operations (Kammar et al., 2013)

https://doi.org/10.1017/S0956796819000121 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000121

4 Y. Forster et al.

and a novel form of answer-type polymorphism (Asai & Kameyama, 2007). Kiselyov &
Sivaramakrishnan (2018) also observe the need for some form of answer-type polymor-
phism in their typed embedding of effect handlers into a general delimited continuations
library. To avoid implementing answer-type polymorphism in practice, they rely on an
encoding in terms of a universal type.

Adding features to each calculus blurs the distinction between each abstraction. This
sensitivity means that in a full-blown language, such as Haskell, OCaml, or Scheme,
the different abstractions are often practically equivalent (Schrijvers et al., 2019). It also
teaches us that meaningful relative expressivity results must be stated within a rigorous
framework such as a formal calculus, where the exact assumptions and features are made
explicit. The full picture is still far from complete, but our work lays the foundation for
drawing it.

We supplement our pencil-and-paper proofs with a mechanised formalisation in the
Abella proof assistant (Gacek, 2008, 2009) of the more syntactic aspects of our work.
Specifically, for each calculus, we formalise a Wright & Felleisen style progress-and-
preservation safety theorem (1994) and correctness theorems for our translations.

This article is a revised and extended version of a previous paper (Forster et al., 2017).
The core contributions are as follows:

• Syntax and semantics of formal calculi for effect handlers, monadic reflection,
and delimited control, where each calculus extends a shared CBPV core and their
metatheory:

– Set-theoretic denotational semantics for effect handlers and monadic reflection;
– Denotational soundness and adequacy proofs for effect handlers and monadic

reflection;
– A termination proof for monadic reflection (termination proofs for the other

calculi appear in existing work);
• Six macro translations between the three untyped calculi, and variations on three of

those translations;
• Formally mechanised metatheory in Abella2 comprising:

– Progress and preservation theorems;
– The translations between the untyped calculi; and
– Their correctness proofs in terms of formal simulation results;

• Typeability preservation of the macro translation from delimited control to monadic
reflection; and

• A proof that there exists no typeability-preserving macro translation from effect
handlers to either monadic reflection or delimited control.

Moreover, this article extends these contributions with the following new contributions:

• Extensions to the mechanised metatheory in Abella2 with:

– A formalisation of the kind system;
– The variations on the translations into delimited continuations; and
– The typeability preservation proof;

• An experience report on using Abella,

2https://github.com/matijapretnar/proofs

https://doi.org/10.1017/S0956796819000121 Published online by Cambridge University Press

https://github.com/matijapretnar/proofs
https://doi.org/10.1017/S0956796819000121

On the expressive power of user-defined effects 5

Table 1. Metatheory summary

Core metatheory
MAM EFF MON DEL

Safety �Theorem 1 �Theorem 6 �Theorem 11 �Theorem 17
Termination Theorem 2 Theorem 7 Theorem 12 Corollary 21
Compositionality Theorem 3 Theorem 8 Theorem 13
Soundness Theorem 4 Theorem 9 Theorem 14
Adequacy Theorem 5 Theorem 10 Theorem 15
Finite denotation property Lemma 16
Continuation monad Lemma 18

Simulation results

source
target

EFF MON DEL

EFF �Theorem 26 �Theorem 24

MON �Theorem 25 �Theorem 22

DEL �Theorem 23 �Theorem 19

Other translation results
TYPED DEL→TYPED MON

Typeability preservation �Theorem 20

TYPED EFF→TYPED DEL & TYPED EFF→TYPED MON

Inexpressivity Theorem 27

as well as updating related work, and providing additional explanations to the metathe-
oretic development and the technical details involved in the termination, adequacy, and
non-existence proofs. Table 1 summarises our metatheoretic results and the coverage of
their Abella formalisation.

We structure the remainder of the paper as follows. Sections 2–5 present the core cal-
culus and its extensions with effect handlers, monadic reflection, and delimited control, in
this order, along with their metatheoretic properties (Table 1). Section 6 presents the macro
translations between these calculi, their correctness, and typeability preservation. Section 7
reports on our experience of using Abella for mechanising proofs. Section 8 concludes and
outlines further work.

We compare the expressive power of the various abstractions in Section 6. Our pos-
itive translation results appear in Sections 6.1–6.6, which only depend on Parts 1–4 of
Sections 2–5. The negative translation results of Section 6.7 depend on the more technical
denotational metatheory (Parts 5–6 of Sections 2–5) which may be skipped on first reading.

2 The core calculus: MAM

We seek a functional-imperative calculus where effects and higher-order features inter-
act well. Levy’s CBPV calculus fits the bill (2003): it allows us to uniformly deal with
call-by-value and call-by-name evaluation strategies, making the theoretical development
relevant to both ML-like and Haskell-like languages. In CBPV, evaluation order is explicit,

https://doi.org/10.1017/S0956796819000121 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000121

6 Y. Forster et al.

Fig. 2. MAM syntax.

and the way it combines computational effects with higher-order features yields simpler
program logic reasoning principles (Plotkin & Pretnar, 2008; Kammar & Plotkin, 2012).
We extend CBPV with type system, obtaining a variant of Kammar & Plotkin’s multi-
adjunctive intermediate language (2012) without effect operations or coercions. We call
the resulting calculus the multi-adjunctive metalanguage (MAM). Later, each of Sections
3–5 introduces a different extension of MAM for each notion of user-defined effect.

2.1 Syntax

Figure 2 presents MAM’s raw term syntax, which distinguishes between value terms V
(data) and computation terms M (programs). We let P, Q range over the union of value and
computation terms. We assume a countable set of variables ranged over by x, y, . . ., and
a countable set of variant constructor literals ranged over by �. The unit value, products,
and finite variants/sums are standard. A computation can be suspended as a thunk {M},
which may be passed around. Products and variants are eliminated with standard pattern
matching constructs. When eliminating variants, we will use a tuple notation when working
abstractly, as in the figure, and a comma-separated list when working concretely, as in
the example below. Thunks can be forced to resume their execution. A computation may
simply return a value, and two computations can be sequenced, as in Haskell’s do notation.
A function computation abstracts over values to which it may be applied. In order to pass
a function λx.M as data, it must first be suspended as a thunk {λx.M}. For completeness,
we also include CBPV’s binary computation products, which subsume projections from
products in call-by-name languages.

Example 1. Representing booleans as variants, we may define negation as follows:

not= {λb.case b of {injTrue x→ return (injFalse ())

, injFalse x→ return (injTrue ())}}

2.2 Operational semantics

Figure 3 presents MAM’s standard structural operational semantics, in the style of Felleisen
& Friedman (1987). To reuse the core definitions as much as possible, we refactor the
semantics into β-reduction rules and a single congruence rule. As usual, a β-reduction
reduces a matching pair of introduction and elimination forms.

We factor the definition of evaluation contexts through computation frames. In MAM,
these consist of pure frames, the elimination frames for pure computation. For each

https://doi.org/10.1017/S0956796819000121 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000121

On the expressive power of user-defined effects 7

Fig. 3. MAM operational semantics.

extension, we will add another kind of effectful computation frame. We use [] to denote
the hole in each frame or context, which signifies which term should evaluate first, and
define substitution frames and terms for holes (C[F[]], C[M]) in the standard way. Later,
in each calculus, we will make use of pure contexts in order to capture continuations, stacks
of pure frames, extending from a control operator to the nearest delimiter. Any term can
be decomposed into at most one pair of evaluation context and β-reducible term, making
the semantics deterministic.

Example 2. With this semantics, we have the following three-step reduction:

not! (injTrue ())�
|

(U)

(λb.case b of {injTrue x→ return (injFalse ())

, injFalse x→ return (injTrue ())})
(injTrue ())

�
|

(→)

case injTrue () of {injTrue x→ return (injFalse ())

, injFalse x→ return (injTrue ())}

�
|

(+)

return (injFalse ())

Syntactic sugar. We use nested patterns in our pattern matching constructs. We abbrevi-
ate the variant constructors to their labels and omit the unit value, e.g., True� True ()�
injTrue (). We allow elimination constructs to apply to arbitrary computations, and not
just values, by setting, for example, M N � x←N ; M x for some fresh x, giving a more
readable, albeit call-by-value, appearance.

Example 3. As a running example, we express boolean state in each of our calculi.
Figure 4(a) shows the code, which toggles the state and returns the value of the original
state, as we would like to write it. Figure 4(b) shows how we do so in MAM, via a standard
state-passing transformation. We then run toggle with the initial value True to get the
expected result:

runState! toggle True�� return (True, False)

https://doi.org/10.1017/S0956796819000121 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000121

8 Y. Forster et al.

Fig. 4. User-defined boolean state.

Fig. 5. MAM kinds and types.

This transformation is not a macro translation from the extension of MAM with global state
to MAM. In addition to the definition of put and get, it globally threads the state through
toggle’s structure, changing core MAM constructs. For example, x←M ; N changes to
(x, s)←M ′; N ′. Each user-defined effect abstraction in Sections 3–5 provides a different
means for macro expressing state.

2.3 Type-and-effect system

Figure 5 presents MAM’s types and effects. As a core calculus for three calculi with
different notions of effect, MAM is pure, and the only shared effect is the empty effect ∅.

We include a kind system, unneeded in traditional CBPV where a context-free distinc-
tion between values and computations ensures types are well-formed. The two points of
difference from CBPV are the kind of effects and the refinement of the computation kind
by well-kinded effects E. The other available kinds are the standard value kind and a kind
for well-formed environments (without type dependencies).

Our type system includes type variables ranging over value types, i.e., types of kind
Val (which in Section 4 we use for defining monads parametrically). The simple types,
finite products, and variants are the standard CBPV value types. Thunk types are annotated
with effect annotations. Computation types include returners FA, which are computa-
tions that return a value of type A, similar to the monadic type Monad m =⇒ m a in
Haskell. Functions are computations and only take values as arguments. For complete-
ness, we include CBPV’s computation products, which account for product elimination
via projection in call-by-name languages.

To ensure well-kindedness of types, which may contain type variables, we use type
environments in a list notation that denotes finite sets of type variables. So the type envi-
ronment �� α1, β, α2 is in fact the set �= {α1, α2, β}. Similarly, we use a list notation
for value environments, which are functions from a finite set of variable names to the set

https://doi.org/10.1017/S0956796819000121 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000121

On the expressive power of user-defined effects 9

Fig. 6. MAM kind and type system.

of value types. So the domain of definition of the value environment �� x : α, f : α→ Fα

is Dom (�)= {x, f }.

Example 4. The value type of booleans bit is given by {False 1, True 1}.

Figure 6 presents the kind and type systems. The only effect (∅) is well-kinded. Type
variables must appear in the current type environment, and they are always value types. The
remaining value and computation types and environments have straightforward structural
kinding conditions. Thunks of E-computations of type C require the type C to be well-
kinded, which includes the side-condition that E is a well-kinded effect. This kind system
has the property that each valid kinding judgement has a unique derivation. Value-type
judgements assert that a value term has a well-formed value type under a well-formed
environment in a type variable environment.

https://doi.org/10.1017/S0956796819000121 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000121

10 Y. Forster et al.

The rules for simple types are straightforward. Observe how the effect annotation moves
between the E-computation type judgement and the type of E-thunks. The side-condition
for computation type judgements asserts that a computation term has a well-formed
E-computation type under a well-formed environment for a well-formed effect E under
a type variable environment. The rules for variables, value and computation products, vari-
ants, and functions are straightforward. The rules for thunking and forcing ensure that the
computation’s effect annotation agrees with the effect annotation of the thunk. The rule
for return allows us to return a value at any effect annotation, yielding a may-effect sys-
tem: the effect annotations specify which effects may occur, without prescribing that any
particular effect must occur. The rule for sequencing comes from our choice to omit any
form of effect coercion, subeffecting, or effect polymorphism: the three effect annotations
must agree. More sophisticated effect systems allow greater flexibility (Katsumata, 2014).
We leave the precise treatment of such extensions to later work.

Example 5. The values from Figure 4(b) have the following types:

not : U∅(bit→ Fbit)
get : U∅(bit→ F(bit× bit))
put : U∅(bit→ bit→ F(bit× bit))

toggle : U∅(bit→ F(bit× bit))
runState : U∅(U∅(bit→ F(bit× bit))

→ bit→ F(bit× bit))

as expected.

2.4 Operational metatheory

We now establish the basic properties of MAM.

Theorem 1 (MAM safety). Well-typed programs do not go wrong: for all closed MAM

returners �;	∅M : FA, either M�N for some �;	∅ N : FA or else M = return V for
some �; 	 V : A.

We have mechanised the standard inductive progress-and-preservation proof using
Abella.

We now extend existing termination results for CBPV (Doczkal, 2007; Doczkal &
Schwinghammer, 2009). We say that a term M diverges, and write M�∞ if for every
n ∈N there exists some N such that M�n N . Because the operational semantics is deter-
ministic, N is unique, and if M�i Ni for all 1≤ i≤ n, then Ni�Ni+1 for all 1≤ i < n. We
say that M does not diverge when M
�∞.

Theorem 2 (MAM termination). There are no infinite reduction sequences: for all MAM

terms ; 	∅M : FA, we have M
�∞, and there exists some unique ; 	 V : A such that M��

return V.

Proof
We use Tait’s method (1967), i.e., a unary logical relation, to establish totality. In detail,
we define a (unary) relational interpretation of types and establish a basic lemma. The full
definition follows the logical structure, except for the following case. In order to define the

https://doi.org/10.1017/S0956796819000121 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000121

On the expressive power of user-defined effects 11

relation on returners FA, we need a monadic lifting. We use the lifting from Hermida’s
thesis (1993), defined to contain the returners that reduce to a return value for all closed
substitutions. Forster et al. (2019) have since formalised in Coq a similar termination proof
for CBPV; see their manuscript (Figure 12 on page 6) for more details. �

We define contextual equivalence of MAM terms, which we will use to state our
inexpressivity result (Theorem 27). First, we define the subclass of ground types.

(ground types) G ::= 1 |G1 ×G2 | {�i Gi}i
We also introduce some convenient notational conventions. For uniformity’s sake, we
let types X range over both value and E-computation types, and recall that phrases P, Q
range over both value and computation terms. Judgements of the form �; � 	E P : X are
meta judgements, ranging over value judgements �; � 	 V : X when P= V (in which case
E=∅), and E-computation judgements �; � 	E M : X when P=M .

The standard next step is to define well-typed program contexts X[]—terms with zero,
one, or more occurrences of a hole, denoted by [], not to be confused with evaluation
contexts C[], which always contain exactly one hole. Defining program contexts and
their type judgements directly is straightforward but tedious and lengthy. Such a definition
would have four kinds of judgements, depending on whether the hole takes a value or
a computation, and whether the whole context is of value or computation type. For our
purposes, we can exploit a folklore simplification that relies on the following observations.

We only need program contexts X[] indirectly, to plug two terms P, Q of the appropriate
type, obtaining pairs 〈X[P], X[Q]〉 in which both components have the same type. Consider
the set of all such pairs:

	[P, Q]� {〈X[P], X[Q]〉|X[] is a well-typed enclosing context}

Example 6. Taking P� (not! True) and Q� (return False) we want to include:〈
x← not! True;

not! x ,
x← return False;

not! x

〉
〈{not! True}, {return False}〉

in the set 	[(not! True), (return False)].

To define the contextual equivalence of P and Q, we quantify over all pairs 〈M , N〉 in
	[P, Q] of closed ground returners FG, and require that M and N reduce to the same value.
So, besides pairing M and N , we also need to know their shared type X (and effect E when
they are computations), their free variables and their type, i.e., an environment �, and the
type environment � containing the free variables in X and �. However, nowhere do we
need to refer to the context X[] we plugged them into. As we need to know �, �, E, and
X in addition to P and Q, instead of defining 	[P, Q], we will define 	[�; � 	E P, Q : X].

Moreover, P and Q may be open terms, cause effects, and the enclosing context may
capture some of their free variables. Hence, we consider not only pairs of plugged contexts
but also tuples 〈�, �, E, M , N , C〉 in which �; � 	E M , N : C are computation terms aris-
ing by plugging a context with P and Q, respectively, and similarly tuples 〈�, �, V , W , A〉
where �; � 	 V , W : A are value terms. We can then quantify over the tuples in which �

https://doi.org/10.1017/S0956796819000121 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000121

12 Y. Forster et al.

and � are empty, and C= FG is a ground returner type, as those represent closed, ground
contexts.

To present the full definition, we require some additional standard auxiliary definitions.
We say that environment �′ extends environment �, and write �′ ≥ � when �′ extends � as
a partial function from identifiers to value types, i.e., when Dom (�)⊆Dom (�′) and for all
(x : A) ∈ �, we have (x : A) ∈ �′. Consider any two computations of the same type C0 under
the same environments �0, �0, that is, �0; �0 	E0 M0 : C0 and �0; �0 	E0 N0 : C0. Define
	[�0; �0 	E0 M0, N0 : C0] to be the smallest set with the following closure properties:

• For all �′ ⊇�0, �′ 	k �′ : Context with �′ ≥ �0, we have
〈
�′, �′, E0, M0, N0, C0

〉
∈	;

• 	 is closed under the typing rules, for example:

– For all 〈�, �, E, M , N , C〉 ∈	, we also have: 〈�, �, {M}, {N}, UEC〉 ∈	3;
– For all 〈�, �, V1, W1, A1〉 , 〈�, �, V2, W2, A2〉 ∈	, we also have:

〈�, �, 〈V1, V2〉 , 〈W1, W2〉 , A1 × A2〉 ∈	

and so on.

Example 7. Going back to Example 6, we have that:〈
·, ·, ∅,

⎛
⎝ x← not! True;

not! x

⎞
⎠ ,

⎛
⎝ x← return False;

not! x

⎞
⎠ , Fbit

〉

〈·, ·, {not! True}, {return False}, U∅bit〉
are in the set 	[·; · 	∅ (not! True), (return False) : Fbit]. For an example involving open
terms and type-variables, take the tuple:

〈
α, ·, ∅,

⎛
⎜⎜⎜⎝

u← True;

s← not! u;

runState! toggle s

⎞
⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎜⎜⎜⎝

u← True;

s← not! u;

y← not! s;

return (s, y)

⎞
⎟⎟⎟⎟⎟⎟⎠

, F(bit× bit)

〉

from the set:

	[α; s : bit	∅ (runState! toggle s) ,

⎛
⎝ y← not! s;

return (s, y)

⎞
⎠ : F(bit× bit)]

In line with the motivation for this definition, we call the components 〈M , N〉 of each
tuple in 	[�0; �0 	E0 M0, N0 : C0] context plugged with M0 and N0. We will use the nota-
tion 〈X[M0], X[N0]〉 for such contexts plugged with M0 and N0, but emphasise that we have
not defined contexts X[−] on their own, only plugged contexts.

3Closure under typing rules necessitates including tuples representing value judgements in 	 as well as those
representing computation judgements.

https://doi.org/10.1017/S0956796819000121 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000121

On the expressive power of user-defined effects 13

We now say that �0; �0 	E0 M0, N0 : C0 are contextually equivalent when, for all:

〈·, ·, ∅, X[M0], X[N0], FG〉 ∈	[�0; �0 	E0 M0, N0 : C0]

and V , we have:

X[M0]�∗ return V ⇐⇒ X[N0]�∗ return V

We similarly define contextual equivalence for values. We write �; � 	E P�Q : X when
P and Q are contextually equivalent.

2.5 Denotational semantics

MAM has a straightforward set-theoretic denotational semantics. Presenting the semantics
for the core calculus simplifies our later presentation. To do so, we first recall the following
established facts about monads, specialised and concretised to the set-theoretic setting.

A monad is a triple 〈T, return,�=〉 where T assigns to each set X a set TX , return
assigns to each set X a function returnX : X→ TX , and �= assigns to each function
f : X→ TY its Kleisli extension: a function �= f : TX→ TY , and the three assignments
satisfy the monad laws, with the convention that�= f is a post-fix operator:

((return x)�= f)= f (x) (a�=returnx)= a ((a�= f)�=g)= a�=(λx.(fx�=g))

for all f : X→ TY , x ∈ X , a ∈ TX , and g : Y→ TZ.

Example 8 (see Moggi 1989). Let R be any set. The R-continuation monad is given by:

KRX � R(RX) return x� λk : RX .k(x) (m�= f)� λk : RY .m (λx : X .k ((f x) k))

As is well-known, these definitions satisfy the monad laws.

A T-algebra for a monad 〈T, return,�=〉, following Marmolejo & Wood (2010), is
a pair C= 〈|C|,�=C

〉
where |C| is a set, called the carrier, and �=C assigns to every

function f : X→|C| its Kleisli extension�= f : TX→|C| satisfying:(
(return x)�=Cf

)= f (x),
(
(a�=g)�=Cf

)= a�=C(λy.(g(y)�=Cf))

for all x ∈ X , f : X→|C|, a ∈ TY , and g : Y→ TX of the appropriate types.

Example 9. For each set X , the pair FX � 〈TX ,�=〉 forms a T-algebra called the free
T-algebra over X .

Example 10. (Paré’s theorem 1974). Let 2 := {True, False} be the set of boolean values.
For each set Y , the powerset PY is the carrier of an algebra for the 2-continuation monad.
For every function f : X→PY , and element a ∈ 2(2X), we assign the subset:

(a�= f)�

⎧⎨
⎩y ∈ Y

∣∣∣∣∣∣a
⎛
⎝λx : X .

⎧⎨
⎩
True y ∈ f (x)

False otherwise

⎞
⎠= True

⎫⎬
⎭

Then 〈PY ,�=〉 is a K2-algebra.

https://doi.org/10.1017/S0956796819000121 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000121

14 Y. Forster et al.

Fig. 7. MAM denotational semantics for types.

We parameterise MAM’s semantics by an assignment θ of sets θ (α) to each of the type
variables α in �. Given such a type variable assignment θ , we assign to each

• Effect: a monad ⟦�	k E : Eff⟧θ , denoted by
〈
T⟦E⟧θ , return⟦E⟧θ ,�=⟦E⟧θ 〉;

• Value type: a set ⟦�	k A : Val⟧θ ;
• E-computation type: a T⟦E⟧θ -algebra ⟦�	k C : CompE⟧θ ; and
• Context: the set ⟦�	k � : Context⟧θ �

∏
x∈Dom (�) ⟦�(x)⟧θ .

Figure 7 defines the standard set-theoretic semantics over the structure of types. The pure
effect denotes the identity monad, which sends each set to itself, and extends a function
by doing nothing. The extended languages in the following sections will assign more
sophisticated monads to other effects. The semantics of type variables uses the type
assignment given as parameter. The unit type always denotes the singleton set. Product
types and variants denote the corresponding set-theoretic operations of cartesian prod-
uct and disjoint union, and thus the empty variant type 0� {} denotes the empty set.
The type of thunked E-computations of type C denotes the carrier of the T⟦E⟧θ -algebra
⟦C⟧θ . The E-computation type of A returners denotes the free ⟦E⟧θ -algebra. Function and
product types denote well-known algebra structures over the sets of functions and pairs,
respectively (Barr & Wells, 1985, Theorem 4.2).

Terms can have multiple types, for example, the function λx.return x has the types
1→ F1 and 0→ F0, and type judgements can have multiple-type derivations. We thus
give a Curry-style semantics (Reynolds, 1998) by defining the semantic function for type
judgement derivations rather than for terms. For readability, we often write ⟦P⟧ and omit
the typing derivation for P.

The semantic function for terms is parameterised by an assignment θ of sets to type
variables. It assigns to each well-typed derivation for a:

• Value term: a function ⟦�; � 	 V : A⟧θ : ⟦�⟧θ→ ⟦A⟧θ ; and
• E-computation term: a function ⟦�; � 	E M : C⟧θ : ⟦�⟧θ→

∣∣⟦C⟧θ ∣∣.
Figure 8 defines the standard set-theoretic semantics over the structure of derivations.

Each definition takes an environment γ ∈ ⟦�⟧θ .
We begin with values. The semantics of variables looks the appropriate value up in this

environment. The unit value denotes the unique element of the singleton ⟦1⟧. A pair of
values denote the pair of their denotations. A variant constructor denotes the injection of
a value into a disjoint union by pairing the value with the constructor label. Thunking
denotes the element of the carrier the computation denotes.

https://doi.org/10.1017/S0956796819000121 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000121

On the expressive power of user-defined effects 15

Fig. 8. MAM denotational semantics for terms.

Moving to computations, each pattern match denotes the function defined by case
splitting on the denotation of the matched value. Forcing a value denotes treating its
denotation from the algebra carrier as a computation. Returning a value denotes apply-
ing the unit of the monad to the denotation of said value. The semantics of sequencing
uses the Kleisli extended function (�=⟦C⟧f) : TX→ ∣∣⟦C⟧∣∣ given by the algebra structure.
Function abstraction denotes the set-theoretic function definition, and application denotes
set-theoretic evaluation. Pairing and projection terms denote the set-theoretic pairing and
projections.

2.6 Denotational metatheory

We now develop the basic properties of our denotational semantics. Our goal is to estab-
lish adequacy of the semantics: that well-typed terms under the same assumptions that
have equivalent denotations are observationally equivalent. In our set-theoretic setting,
the proof-recipe is well-established using the following compositionality and soundness
theorems:

Theorem 3 (MAM compositionality). The meaning of a term depends only on the mean-
ing of its sub-terms: for all MAM contexts 〈X[P], X[Q]〉 plugged with P and Q in
	[�; � 	E P, Q : X], if ⟦P⟧= ⟦Q⟧ then ⟦X[P]⟧= ⟦X[Q]⟧.

Proof
Straightforward induction on the set 	 of plugged contexts. �

In order to be able to express our simulation results in Section 6, we adopt a relaxed
variant of simulation: let�cong be the smallest relation containing�β that is closed under
the term formation constructs, and so contains � as well, and let �cong be the smallest
congruence relation containing�β .

Theorem 4 (MAM soundness). Reduction preserves the semantics: for every pair of well-
typed MAM terms �; � 	E P, Q : X , if P�cong Q then ⟦P⟧= ⟦Q⟧. In particular, for every
well-typed closed term of ground type ;	∅ P : FG, if P�∗ return V then ⟦P⟧= ⟦V⟧.

Proof
First check that �β preserves the semantics by calculating the denotations of both
sides of each rule. Next, take any β-reduction M�β N , and consider a pair of plugged

https://doi.org/10.1017/S0956796819000121 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000121

16 Y. Forster et al.

contexts 〈X[M], X[N]〉. Because�β preserves the semantics, by appeal to compositional-
ity ⟦X[M]⟧= ⟦X[N]⟧. Therefore,�cong is contained in denotational equivalence, which is
also a congruence, hence �cong implies denotational equivalence. �

It now follows that the semantics is adequate:

Theorem 5 (MAM adequacy). Denotational equivalence implies contextual equivalence:
for all well-typed MAM terms �; � 	E P, Q : X , if ⟦P⟧= ⟦Q⟧ then P�Q.

Recall the convention from page 17 for uniformly treating values and computation. With
this convention, the adequacy theorem is stated for both values and computation terms.

Proof
Consider any two denotationally equivalent terms P and Q, a closed ground context
plugged with them 〈X[P], X[Q]〉, and assume X[P]�∗ return V . By the Compositionality
Theorem 3, X[P] and X[Q] have equal denotations. By the Safety Theorem 1 and
Termination Theorem 2, X[Q]�∗ return V ′ for some value return V ′. And so by the
Soundness Theorem 4:

⟦return V⟧= ⟦X[P]⟧= ⟦X[Q]⟧= ⟦return V ′⟧

Conclude by verifying that, for ground returners, denotational equality implies syntactic
equality. �

As a consequence, we deduce that our operational semantics is well-behaved: for all
well-typed computations �; � 	E M , M ′ : C, if M�cong M ′ then M �M ′.

3 Effect handlers: EFF

Algebraic effects and handlers provide a basis for modular programming with user-defined
effects (Kammar et al., 2013; Kiselyov et al., 2013; Bauer & Pretnar, 2015; Hillerström
& Lindley, 2016; Leijen, 2017; Lindley et al., 2017). Programmable effect handlers arose
as part of Plotkin & Power’s denotational theory of computational effects (2002), which
investigates the consequences of using the additional structure in algebraic presentations
of monadic models of effects. This account refines Moggi’s monadic account (1989) by
incorporating into the theory the syntactic constructs that generate effects as algebraic
operations for a monad (Plotkin & Power, 2003): each monad is accompanied by a col-
lection of syntactic operations, whose interaction is specified by a collection of equations,
i.e., an algebraic theory, which fully determines the monad. To fit exception handlers into
this account, Plotkin & Pretnar (2009) generalised exception handlers to effect handlers,
handling arbitrary algebraic effects and, following Levy’s CBPV, give a computational
interpretation of algebras for a monad. By allowing the user to declare operations, effects
can be described in a composable manner. Bauer & Pretnar (2015) demonstrate how, by
defining algebras for the free monad with these operations, users can give the abstract
operations different meanings, in similar fashion to Swierstra’s use of free monads (2008).

3.1 Syntax

Figure 9(a) presents the extension EFF, Kammar et al.’s core calculus of effect han-
dlers (2013). We assume a countable set of elements of a separate syntactic class, called

https://doi.org/10.1017/S0956796819000121 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000121

On the expressive power of user-defined effects 17

Fig. 9. EFF. (a) Syntax extensions to Figure 2, (b) Operational semantics extensions to Figure 3.

Fig. 10. User-defined boolean state in EFF. (a) Term. (b) Types.

operation names and ranged over by op. For each operation name op, EFF’s operation
call construct allows the programmer to invoke the effect associated with op by passing
it a value as an argument. Operation names are the only interface to effects the language
has. The handling construct allows the programmer to use a handler to interpret the opera-
tion calls of a given returner computation. Handlers are specified by two kinds of clauses.
A return clause describes how to handle a final return value. An operation clause describes
how to invoke an operation op. The variable p binds the value from the operation call in
the body of the operation clause and is entirely analogous to an exception variable in an
exception handler. However, unlike exceptions, more general effects, like reading from
or writing to memory, may resume. Therefore, the body of an operation clause can also
access the continuation k at the operation’s calling point.

Example 11. Figure 10(a) expresses user-defined boolean state in EFF. The handler HST

is parameterised by the current state. When the computation terminates, we discard this
state. When the program calls get, the handler returns the current state (s) and leaves it
unchanged. When the program calls put, the handler returns the unit value and updates the
state to the newly supplied value (s′).

3.2 Operational semantics

Figure 9(b) presents EFF’s extension to MAM’s operational semantics. Computation frames
F now include the handling construct, whereas the pure frames P do not, allowing a han-
dled computation to β-reduce under the handler. We add two β-reduction cases for the

https://doi.org/10.1017/S0956796819000121 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000121

18 Y. Forster et al.

Fig. 11. EFF’s kinding and typing (extending Figures 5 and 6).

added construct. When the returner computation inside a handler is fully evaluated, the
return clause proceeds with the return value. When the returner computation inside a han-
dler needs to evaluate an operation call, the definition of pure contexts H ensures H is
precisely the continuation of the operation call delimited by the handler. Put differently, it
ensures that the handler in the root of the reduct is the closest handler to the operation call
in the call stack. The operation clause corresponding to the operation called then proceeds
with the supplied parameter and current continuation. Re-wrapping the handler around this
continuation ensures that all operation calls invoked in the continuation are handled in the
same way.

Example 12. With this semantics, the user-defined state from Figure 10 behaves as
expected:

runState! toggle True�∗ (handle True with HST) False�∗ True

More generally, the handler HST expresses dynamically scoped state (Kammar & Pretnar,
2017). For additional handlers for state and other effects, see Pretnar’s tutorial (2015).

3.3 Type-and-effect system

Figure 11 presents EFF’s extension to the kind and type system. The effect annotations in
EFF are functions from finite signatures, assigning to each operation name its parameter
type A and its return type B. We add a new kind for handler types, which describes the
kind and the returner type the handler can handle, and the kind and computation type of
the handling clause.

In the kinding judgement for effects, the types in each operation’s arity assignment
must be value types. The kinding judgement for handlers requires all the types and effects
involved to be well-kinded.

Computation type judgements now include two additional rules for each new computa-
tion construct. An operation call is well-typed when the parameter and return type agree

https://doi.org/10.1017/S0956796819000121 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000121

On the expressive power of user-defined effects 19

with the arity assignment in the effect annotation. An instance of the handling construct
is well-typed when the type and effect of the handled computation and the type and effect
of the construct agree with the types and effects in the handler type. The set of handled
operations must strictly agree with the set of operations in the effect annotation. The vari-
able bound to the return value has the returner type in the handler type. In each operation
clause, the bound parameter variable has the parameter type from the arity assignment for
this operation, and the continuation variable’s input type matches the return type in the
operation’s arity assignment. The overall type of all operation clauses agrees with the com-
putation type of the handler. The second effect annotation on the handler type matches the
effect annotations on the continuation and the body of the operation and return clauses.

Example 13. Figure 10(b) types the boolean state terms.

3.4 Operational metatheory

We follow MAM’s development.

Theorem 6 (EFF safety). Well-typed programs do not go wrong: for all closed EFF return-
ers �;	∅M : FA, either M�N for some �;	∅ N : FA or else M = return V for some
�; 	 V : A.

The straightforward progress-and-preservation proof is in the Abella formalisation.

Theorem 7 (EFF termination). There are no infinite reduction sequences: for all EFF

terms ; 	∅M : FA, we have M
�∞, and there exists a unique ; 	 V : A such that M��

return V.

The proof follows that of Theorem 2, replacing the monadic lifting with a folklore
monadic lifting for algebraic effects (Kammar, 2014; Kammar & McDermott, 2018).

We define ground types, plugged contexts, �, and �cong for EFF as in MAM.

3.5 Denotational semantics

We now give a set-theoretic denotational semantics for EFF. First, recall the following
concepts in universal and categorical algebra. A signature � is a pair consisting of a set
|�| whose elements we call operation symbols, and a function arity� from |�| assigning
to each operation symbol ϕ ∈ |�| a (possibly infinite) set arity(ϕ). We write (ϕ : A) ∈�

when ϕ ∈ |�| and arity�(ϕ)= A. Given a signature � and a set X , we inductively form the
set T�X of �-terms over X :

t ::= x | ϕ 〈ta〉a∈A (x ∈ X , (ϕ : A) ∈�)

The assignment T� together with the following assignments forms a monad

return x� x t�= f � t[f (x)/x]x∈X (f : X→ T�Y)

The T�-algebras
〈
C,�=C

〉
are in bijective correspondence with �-algebras on the same

carrier. These are pairs
〈
C, ⟦−⟧〉 where ⟦−⟧ assigns to each (ϕ : A) ∈� a function ⟦ϕ⟧ :

https://doi.org/10.1017/S0956796819000121 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000121

20 Y. Forster et al.

Fig. 12. EFF denotational semantics (extending Figures 7 and 8).

CA→C from A-ary tuples of C elements to C. The bijection is given by setting�=Cf to
be the �-homomorphic extension of f : X→|C| to T�X :(

x�=Cf
)
� f (x)

(
ϕ 〈ta〉a∈A�=Cf

)
� ⟦ϕ⟧ 〈ta�= f 〉a∈A

EFF’s denotational semantics is given by the following extension to MAM’s. Given a type
variable assignment θ , we assign to each handler type a pair ⟦�	k R : Handler⟧θ = 〈C, f 〉
consisting of an algebra C and a function f into the carrier |C| of this algebra.

Figure 12 presents how EFF extends MAM’s denotational semantics. Each effect E gives
rise to a signature whose operation symbols are the operation names in E tagged by an
element of the denotation of the corresponding parameter type. This signature gives rise
to the monad E denotes. When E=∅, the induced signature is empty and gives rise to
the identity monad, and so this semantic function extends MAM’s semantics. Handlers of
E-computations returning A-values using E′-computations of type C denote a pair. Its first
component is an ⟦E⟧θ -algebra structure over the carrier

∣∣⟦C⟧θ ∣∣, which may have nothing
to do with the ⟦E′⟧θ -algebra structure ⟦C⟧θ already possesses. The second component is a
function from ⟦A⟧θ to the carrier

∣∣⟦C⟧θ ∣∣.
The denotation of op V at effect type E, where op : A→ B ∈ E, is the algebraic term

op⟦V⟧θ (γ) 〈b〉b∈⟦B⟧θ . The denotation of the handling construct uses the Kleisli extension
of the second component in the denotation of the handler. The denotation of a handler
term defines the T�-algebras by defining a �-algebra for the associated signature �. The
operation clause for op allows us to interpret each of the operation symbols associated with
op. The denotation of the return clause gives the second component of the handler.

3.6 Denotational metatheory

We repeat the recipe for proving adequacy.

Theorem 8 (EFF compositionality). The meaning of a term depends only on the mean-
ing of its sub-terms: for all pairs of well-typed plugged EFF contexts MP, MQ in
	[�; � 	E P, Q : X], if ⟦P⟧= ⟦Q⟧ then ⟦MP⟧= ⟦MQ⟧.

The proof follows the same line as MAM’s Theorem 3: by induction on plugged contexts.

Theorem 9 (EFF soundness). Reduction preserves the semantics: for every pair of well-
typed EFF terms �; � 	E P, Q : X , if P�cong Q then ⟦P⟧= ⟦Q⟧. In particular, for every
well-typed closed term of ground type ;	∅ P : FG, if P�∗ return V then ⟦P⟧= ⟦V⟧.

https://doi.org/10.1017/S0956796819000121 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000121

On the expressive power of user-defined effects 21

Fig. 13. MON. (a) Syntax (extending Figure 2). (b) Operational semantics (extending Figure 3).

Our proof is identical to MAM’s soundness Theorem 4, with two more cases for�β . We
combine the previous results, as with MAM:

Theorem 10 (EFF adequacy). Denotational equivalence implies contextual equivalence:
for all well-typed EFF terms �; � 	E P, Q : X , if ⟦P⟧= ⟦Q⟧ then P�Q.

Therefore, EFF also has a well-behaved operational semantics: for all well-typed
computations �; � 	E M , M ′ : C, if M�cong M ′ then M �M ′.

4 Monadic reflection: MON

Moggi (1989) conceptualises computational effects as monads, which he uses to give
a uniform denotational semantics for a wide range of different effects. Spivey (1990)
and Wadler (1990) introduce programming abstractions based on monads, allowing new
effects to be declared and used as if they are native. Examples include parsing (Hutton
& Meijer, 1998), backtracking and constraint solving (Schrijvers et al., 2013), and mecha-
nised reasoning (Bulwahn et al., 2008; Ziliani et al., 2015). Libraries now exist for monadic
programming even in impure languages such as OCaml,4 Scheme,5 and C++ (Sinkovics &
Porkoláb, 2013).

Languages that use monads as an abstraction for user-defined effects typically employ
other mechanisms to support them—usually an overloading resolution mechanism, such as
type-classes in Haskell and Coq, and functors/implicits in OCaml. As a consequence, such
accounts do not study monads as an abstraction in their own right and are intertwined with
implementation details and concepts stemming from the added mechanism. Filinski’s work
on monadic reflection (1994; 1996; 1999; and 2010) provides a more canonical abstrac-
tion for incorporating monads into a programming language. In his calculi, user-defined
monads stand independently.

4.1 Syntax

Figure 13(a) presents MON’s syntax. The where {return x=Nu; y�=f =Nb} construct
binds x in the term Nu and y and f in Nb. The term Nu describes the unit and the term Nb

describes the Kleisli extension/bind operation. We will explain the choice of the keyword
where when we describe MON’s type system. Using monads, the programmer can write

4http://www.cas.mcmaster.ca/~carette/pa_monad/
5http://okmij.org/ftp/Scheme/monad-in-Scheme.html

https://doi.org/10.1017/S0956796819000121 Published online by Cambridge University Press

http://www.cas.mcmaster.ca/~carette/pa_monad/
http://okmij.org/ftp/Scheme/monad-in-Scheme.html
https://doi.org/10.1017/S0956796819000121

22 Y. Forster et al.

Fig. 14. User-defined boolean state in MON.

programs as if the new effect was native to the language. We call the mode of programming
when the effect appears native the opaque view of the effect. In contrast, the transparent
mode occurs when the code can access the implementation of the effect directly in terms
of its defined monad. The reflect construct µ(N) allows the programmer to graft code
executing in transparent mode into a block of code executing in opaque mode. The reify
construct [N]T turns a block of opaque code into the result obtained by the implementation
of the effect.

Example 14. Figure 14(a) expresses user-defined boolean state in MON using the standard
State monad. To express get and put, we reflect the concrete definition of the corresponding
operations of the state monad. To run a computation, we use reification to get the monadic
representation of the computation as a state transformer and apply it to the initial state.

4.2 Operational semantics

Figure 13(b) describes the extension to the operational semantics. The ret transition uses
the user-defined monadic return to reify a value. To explain the reflection transition, note
that the pure context H captures the continuation at the point of reflection delimited by an
enclosing reification, with an opaque view of the effect T . The reflected computation N
views this effect transparently. By reifying H, we can use the user-defined monadic bind
to graft the two together.

Example 15. With this semantics, we have

runState! toggle True�� return (True, False)

as expected.

This example fits with the way in which monadic reflection is often used, but is not
as flexible as the effect handler version because get and put are concrete functions rather
than abstract operations, which means we cannot abstract over how to interpret them. To
write a version of toggle that can be interpreted in different ways is possible using monadic
reflection but requires more sophistication.

https://doi.org/10.1017/S0956796819000121 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000121

On the expressive power of user-defined effects 23

Fig. 15. MON’s kinding and typing (extending Figures 5 and 6).

4.3 Type-and-effect system

Figure 15 presents the natural extension to MAM’s kind and type system for monadic reflec-
tion. Effects are a stack of monads. The empty effect is the identity monad. A monad T
can be layered on top of an existing stack E by

E≺ instance monad (α.C) where {return x=M ; y�=f =N}
The intention is that the type constructor C[−/α] has an associated monad structure given
by the bodies of the return M and the bind N , and can use effects from the rest of the
stack E. To be well-kinded, C must be an E-computation, and T must be a well-typed
monad: return should be typed C[A/α] when substituted for some value V : A, and �=
typed as a Kleisli extension operation.

Example 16. Figure 14(b) types the boolean state terms.

The choice of keywords for monads and their types follows their syntax in Haskell. We
stress that our calculus does not, however, include a type-class mechanism. The type of a
monad contains the return and bind terms, which means that we must check for equality
of terms during type-checking, for example, to ensure that we are sequencing two compu-
tations with compatible effect annotations (for our purposes α-equivalence suffices). The
need to check equality of terms arises from our choice of structural, anonymous, monads—
in Haskell, monads are given nominally, and two monads are compatible if they have
exactly the same name. As our monads are structural, the bodies of the return and the bind
operations must be closed, apart from their immediate arguments. If layered monad def-
initions were allowed to contain open terms, types in type contexts would contain these
open terms through the effect annotations in thunks, requiring us to support dependently
typed contexts. The monad abstraction is parametric, so naturally requires the use of type
variables, and for this reason we include type variables in the base calculus MAM. We
choose monads to be structural and closed primarily in order to keep them closer to the
other abstractions.

https://doi.org/10.1017/S0956796819000121 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000121

24 Y. Forster et al.

Our calculus differs from Filinski’s (2010) in that our effect definitions are local and
structural, whereas his effect definitions allow nominal declarations of new effects only
at the top level. Because we do not allow the bodies of the return and the bind to contain
open terms, this distinction between the two calculi is minor. As a consequence, effect
definitions in both calculi are static, and the monadic bindings can be resolved at compile
time. Filinski’s calculus also includes a sophisticated effect-basing mechanism that allows
a computation to immediately use, via reflection, effects from any layer in the hierarchy
below it, whereas our calculus only allows reflecting effects from the layer immediately
below. However, effect-basing can be simulated in our calculus: the monad stack is stati-
cally known, and, having access to the type information, we can insert multiple reflection
operators and lift effects from lower levels into the current level.

4.4 Operational metatheory

We prove MON’s Felleisen–Wright safety in our Abella formalisation:

Theorem 11 (MON safety). Well-typed programs do not go wrong: for all closed MON

returners �;	∅M : FA, either M�N for some �;	∅ N : FA or else M = return V for
some �; 	 V : A.

As with EFF, MON’s ground types are the same as MAM’s. While we can define an
observational equivalence relation in the same way as for MAM and EFF, we will not do
so. Monads as a programming abstraction have a well-known conceptual complication—
user-defined monads must obey the monad laws. These laws are a syntactic counterpart
to the three equations in the definition of (set-theoretic/categorical) monads. The difficulty
involves deciding what equality between such terms means. The natural candidate is obser-
vational equivalence, but as the contexts can themselves define additional monads, it is not
straightforward to do so. Giving an acceptable operational interpretation to the monad laws
is an open problem. We avoid the issue by giving a partial denotational semantics to MON.

4.5 Denotational semantics

We extend MAM’s denotational semantics to MON as follows. Given a type variable assign-
ment θ , we assign to each monad type and effect a monad ⟦�	m T : E⟧θ = ⟦�	k E : Eff⟧θ ,
if the sub-derivations have well-defined denotations, and this data do indeed form a set-
theoretic monad. Consequently, the denotation of any derivation is undefined if at least
one of its sub-derivations has undefined semantics. Moreover, the definition of kinding
judgement denotations now depends on term denotations.

Figure 16 extends the denotational semantics of MAM to MON. The denotation of the
layered monad construct is only well-defined if the user-defined type constructor, return,
and bind form a monad. For the denotation of computation terms, recall that

T⟦E≺instance monad(α.C)T⟧X =
∣∣∣⟦C⟧(θ[α �→X])

∣∣∣
and therefore, semantically, we can view any computation of type FA subject to the kinding
judgement �	k FA : CompE≺instance monad(α.C)T as an E-computation of type C[A/α].

https://doi.org/10.1017/S0956796819000121 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000121

On the expressive power of user-defined effects 25

Fig. 16. MON denotational semantics (extending Figures 7 and 8).

Compare this semantics with Filinski’s original semantics (1994), in which

⟦µ(N)⟧= ⟦N⟧�=id ⟦[N]T⟧= returnT ⟦N⟧

To explain the difference, bear in mind that our calculus is based on CBPV, whereas
Filinski’s original calculus is based on a pure λ-calculus. Specifically, Filinski interprets
the judgement M : A as M : TA. The corresponding judgement for us is M : FA. The seman-
tics of the pure λ-calculus does not insert monadic returns and binds in the appropriate
places, and so Filinski’s translation inserts them explicitly. In contrast, CBPV inserts
returns and binds (and if the term is pure, they cancel out), and so MON’s semantics need
not add them.

4.6 Denotational metatheory

We define a proper derivation to be a derivation whose semantics is well-defined for all
type variable assignments, and a proper term or type to be a term or type that has a proper
derivation. Thus, a term is proper when all the syntactic monads it contains denote seman-
tic set-theoretic monads. When dealing with the typed fragment of MON, we restrict our
attention to such proper terms as they reflect the intended meaning of monads. Doing so
allows us to mirror the metatheory of MAM and EFF for proper terms.

We define plugged proper contexts as with MAM and EFF with the additional require-
ment that all terms are proper. The definitions of the equivalences � and �cong are then
identical to those of MAM and EFF.

Theorem 12 (MON termination). There are no infinite reduction sequences: for all proper
MON terms ; 	∅M : FA, we have M
�∞, and there exists some unique ; 	 V : A such that
M�� return V.

Our proof uses Lindley & Stark’s ��-lifting (2005).

Theorem 13 (MON compositionality). The semantics depends only on the semantics
of sub-terms: for all pairs of well-typed plugged proper MON contexts MP, MQ in
	[�; � 	E P, Q : X], if ⟦P⟧= ⟦Q⟧ then ⟦MP⟧= ⟦MQ⟧.

The proof is identical to MAM, with two more cases for�β . Similarly, we have:

Theorem 14 (MON soundness). Reduction preserves the semantics: for every pair of well-
typed proper MON terms �; � 	E P, Q : X , if P�cong Q then ⟦P⟧= ⟦Q⟧. In particular, for
every well-typed proper closed term of ground type ;	∅ P : FG, if P�∗ return V then
⟦P⟧= ⟦V⟧.

https://doi.org/10.1017/S0956796819000121 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000121

26 Y. Forster et al.

Fig. 17. DEL. (a) Syntax (extending Figure 2). (b) Operational semantics (extending Figure 3).

We combine the previous results, as with MAM and EFF:

Theorem 15 (MON adequacy). Denotational equivalence implies contextual equivalence:
for all well-typed proper MON terms �; � 	E P, Q : X , if ⟦P⟧= ⟦Q⟧ then P�Q.

Therefore, the proper fragment of MON also has a well-behaved operational semantics:
for all well-typed proper computations �; � 	E M , M ′ : C, if M�cong M ′ then M �M ′.

In contrast to EFF, the semantics for MON is finite:

Lemma 16 (finite denotation property). For every type variable assignment θ = 〈Xα〉α∈�
of finite sets, every proper MON value type �	k A : and computation type �	k C : denote
finite sets ⟦A⟧θ and ⟦C⟧θ .

EFF does not possess the finite denotation property. For example, for the effect E�
{tick : 1→ 1}, we have infinitely many different E-returner denotations:∣∣⟦	k F1 : CompE⟧θ

∣∣= {tickn ⟦()⟧θ
∣∣n ∈N}

Our inexpressivity proof (Theorem 27) will use the facts that: (a) all of these returners are
definable in EFF, and (b) they are observationally distinguishable.

5 Delimited control: DEL

Control operators have a long history of expressing both user-defined effects (Danvy,
2006) and algorithms with sophisticated control flow (Felleisen et al., 1988) such as
tree-fringe comparison, and other control mechanisms, such as coroutines. The delimited
operators enjoy an improved metatheory in comparison with their undelimited counter-
parts (Felleisen et al., 1988). The operator closest in spirit to handlers is S0, pronounced
“shift zero”. It was introduced by Danvy & Filinski (1990) as part of a systematic study of
continuation-passing-style (CPS) conversion.

5.1 Syntax

Figure 17(a) presents the extension DEL. The construct S0k.M , which we will call “shift”,
captures the current continuation and binds it to k, and replaces it with M . The construct
〈M |x.N〉, which we will call “reset”, delimits any continuations captured by shift inside M .
Once M runs its course and returns a value, this value is bound to x and N executes. For

https://doi.org/10.1017/S0956796819000121 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000121

On the expressive power of user-defined effects 27

Fig. 18. User-defined boolean state in DEL. (a) Terms. (b) Types.

delimited control cognoscenti, this construct is sometimes called “dollar’, and can macro
express the entire CPS hierarchy (Kiselyov & Shan, 2007; Materzok & Biernacki, 2012).

Example 17. Figure 18(a) expresses user-defined boolean state in DEL (Danvy, 2006,
Section 1.4). The code assumes the environment outside the closest reset will apply it to
the currently stored state. By shifting and abstracting over this state, get and put can access
this state and return the appropriate result to the continuation. When running a stateful
computation, we discard the state when we reach the final return value.

5.2 Operational semantics

The extension to the operational semantics in Figure 17(b) reflects our informal description.
The ret rule states that once the delimited computation returns a value, this value is sub-
stituted in the remainder of the reset computation. For the capture rule, the definition of
pure contexts guarantees that in the reduct 〈H[S0k.M]|x.N〉 there are no intervening resets
in H, and as a consequence H is the delimited continuation of the evaluated shift. After
the reduction takes place, the continuation is re-wrapped with the reset, while the body
of the shift has access to the enclosing continuation. If we were to, instead, not re-wrap
the continuation with a reset, we would obtain the control/prompt-zero operators (cf. Shan
2007 and Kiselyov et al. 2005 analyses of macro expressivity relationships between these
two, and other, variations on untyped delimited control).

Example 18. We have:
runState! toggle True�∗ 〈True|x.λs.x〉 False�∗ return True.

5.3 Type-and-effect system

Figure 19 presents the natural extension to MAM’s kind and type system for delimited
control. It is based on Danvy and Filinski’s description (Danvy & Filinski, 1989); they
were the first to propose a type system for delimited control. Effects are now a stack of
computation types, with the empty effect standing for the empty stack. The top of this
stack is the return type of the currently delimited continuation. Thus, as Figure 19 presents,
a shift pops the top-most type off this stack and uses it to type the current continuation, and
a reset pushes the type of the delimited return typed onto it.

Example 19. Figure 18(b) types the boolean state terms.

https://doi.org/10.1017/S0956796819000121 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000121

28 Y. Forster et al.

Fig. 19. DEL’s kinding and typing (extending Figures 5 and 6).

In this type system, the return type of the continuation remains fixed inside every reset.
Existing work on type systems for delimited control (Kiselyov & Shan 2007 provide a
substantial list of references) focuses on type systems that allow answer-type modification,
as these can express typed printf and type-state computation (as in Asai’s analysis 2009).
We exclude answer-type modification to keep the fundamental account clearer and simpler:
the type system with answer-type modification is further removed from the well-known
abstractions for effect handlers and monadic reflection. We conjecture that the relative
expressiveness of delimited control does not change even with answer-type modification,
once we add analogous capabilities to effect handlers (Brady, 2013; Kiselyov, 2016) and
monadic reflection (Atkey, 2009).

5.4 Operational metatheory

Our Abella formalisation establishes:

Theorem 17 (DEL safety). Well-typed programs do not go wrong: for all closed DEL

returners �;	∅M : FG, either M�N for some �;	∅ N : FG or else M = return V for
some �; 	 V : G.

In the next section, we extend DEL’s metatheory using the translation from DEL to MON.
We define DEL’s ground types, plugged contexts, �, and �cong as in MAM.

6 Macro translations

Felleisen (1991) argues that the usual notions of computability and complexity reduc-
tion do not capture the expressiveness of general-purpose programming languages. The
Church–Turing thesis and its extensions assert that any reasonably expressive model of
computation can be efficiently reduced to any other reasonably expressive model of compu-
tation. Thus, the notion of a polynomial-time reduction with a Turing-machine is too crude
to differentiate the expressive power of two general-purpose programming languages. As
an alternative, Felleisen introduces macro translation: a local reduction of a language
extension, in the sense that it is homomorphic with respect to the syntactic constructs,
and conservative, in the sense that it does not change the core language. We adapt this
concept to local translations between conservative extensions of a shared core.

https://doi.org/10.1017/S0956796819000121 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000121

On the expressive power of user-defined effects 29

Translation notation. We define translations S→T from each source calculus S to each
target calculus T. By default, we assume untyped translations, writing EFF, MON, and DEL

in translations that disregard typeability. In typeability-preserving translations, which must
also respect the monad laws where MON is concerned, we explicitly write TYPED EFF,
TYPED MON, and TYPED DEL. We allow translations to be hygienic and introduce fresh
binding occurrences. We write M �→M for the translation at hand. We include only the
non-core cases in the definition of each translation.

Out of the six possible untyped macro translations, the ideas behind the following
four already appear in the literature: DEL→MON (Wadler, 1994), MON→DEL (Filinski,
1994), DEL→EFF (Bauer & Pretnar, 2015), and EFF→MON (Kammar et al., 2013). The
Abella formalisation contains the proofs of the simulation results for each of the six trans-
lations. Three translations formally simulate the source calculus by the target calculus:
MON→DEL, DEL→EFF, and MON→EFF. The other translations, DEL→MON, EFF→DEL,
and EFF→MON, introduce suspended redexes during reduction that invalidate simulation
on the nose.

For the translations that introduce suspended redexes, we use a relaxed variant of sim-
ulation, namely the relations �cong, which are the smallest relations containing � that
are closed under the term formation constructs. We say that a translation M �→M is a
simulation up to congruence if for every reduction M�N in the source calculus, we
have M�+cong N in the target calculus. In fact, the suspended redexes always β-reduce by
substituting a variable, i.e., {λx.M}! x�+cong λx.M , thus only performing simple rewiring.

6.1 Delimited continuations as monadic reflection (DEL→MON)

We adapt Wadler’s analysis of delimited control (1994), using the continuation
monad (Moggi, 1989):

Lemma 18. For all �	k E : Eff, �	k C : CompE, we have the following proper
monad Cont:

�	k E≺ instance monad (α.UE (α→C)→C) where {
return x= λc.c! x;
m�=f = λc.m! {λy.f ! y c}
} : Eff

Using Cont, we define the macro translation DEL→MON as follows:

S0k.M :=µ(λk.M) 〈M |x.N〉 := [M]Cont {λx.N}
Shift is interpreted as reflection and reset as reification in the continuation monad.

Theorem 19 (DEL→MON correctness). MON simulates DELup to congruence:

M�N =⇒ M�+cong N

The only suspended redex arises in simulating the reflection rule, where we substi-
tute a continuation into the bind of the continuation monad yielding a term of the form
{λy.{λy.M} y c} which we must reduce to {λy.M c}.

https://doi.org/10.1017/S0956796819000121 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000121

30 Y. Forster et al.

DEL→MON extends to a macro translation at the type level:

E, C� E≺ instance monad
(
α.UE

(
α→C

)→C
)
Cont

Theorem 20 (DEL→MON preserves typeability). Every well-typed DEL phrase �; � 	E

P : X translates into a proper well-typed MON phrase: �; � 	E P : X .

We use this result to extend the metatheory of DEL:

Corollary 21 (DEL termination). All well-typed closed ground returners in DEL must
reduce to a unique normal form: if ; 	∅M : FG, then there exists V such that ; 	 V : G
and M�� return V.

6.2 Monadic reflection as delimited continuations (MON→DEL)

We define the macro translation MON→DEL as follows:

µ(M) := S0k.λb.b! ({M}, {λx.k! x b})
[M]where {return x=Nu;y�=f=Nb} := 〈M∣∣x.λb.Nu

〉 {λ(y, f).Nb}
Reflection is interpreted by capturing the current continuation and abstracting over the bind
operator which is then invoked with the reflected computation and a function that wraps
the continuation in order to ensure it uses the same bind operator. Reification is interpreted
as an application of a reset. The continuation of the reset contains the unit of the monad.
We apply this reset to the bind of the monad.

Theorem 22 (MON→DEL correctness). DEL simulates MON up to congruence:

M�N =⇒ M�+cong N

This translation does not preserve typeability because the bind operator can be used at
different types. We conjecture that (a) any other macro translation will suffer from the
same issue and (b) adding a form of answer-type polymorphism along the lines of Piróg
et al. (2019) is sufficient to adapt this translation to one that does preserve typeability.

Filinski’s translation from monadic reflection to delimited continuations (1994) does
preserve typeability, but it is a global translation. It is much like our translation except
each instance of bind is inlined (hence bind need not be polymorphic).

6.2.1 Alternative translation with nested delimited continuations

An alternative to MON→DEL is to use two nested shifts for reflection and two nested resets
for reification:

µ(M) := S0k.S0b.b! ({M}, {λx. 〈k! x|(y, f).b!(y, f)〉})
[M]where {return x=Nu;y�=f=Nb} := 〈〈M∣∣x.S0b.Nu

〉∣∣(y, f).Nb
〉

In the translation of reflection, the reset inside the wrapped continuation ensures that any
further reflections in the continuation are interpreted appropriately: the two shifts have
popped unit and bind off the stack; the reset first pushes bind back on the stack and then

https://doi.org/10.1017/S0956796819000121 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000121

On the expressive power of user-defined effects 31

invoking k implicitly pushes unit back on the stack. In the translation of reification, the
shift guarding the unit garbage collects bind once it is no longer needed.

(There is an error in our earlier paper (Forster et al., 2017): 〈k! x|(y, f).b!(y, f)〉 was
〈k! x|z.z! b〉.)

6.3 Delimited continuations as effect handlers (DEL→EFF)

We define DEL→EFF as follows:

S0k.N � shift0 {λk.N}
〈M |x.N〉� handle M with {return x �→N} � {shift0 p k �→ p! k}

Shift is interpreted as an operation and reset is interpreted as a straightforward handler.

Theorem 23 (DEL→EFF correctness). EFF simulates DEL on the nose:

M�N =⇒ M�+ N

This translation does not preserve typeability because inside a single reset shifts can be
used at different types. We conjecture that (a) any other macro translation will suffer from
the same issue and (b) adding polymorphic operations (Kammar et al., 2013) to EFF is
sufficient to ensure this translation does preserve typeability.

One can adapt our translation to a global translation in which every static instance
of a shift is interpreted as a separate operation, thus avoiding the need for polymorphic
operations.

6.4 Effect handlers as delimited continuations (EFF→DEL)

We define EFF→DEL as follows:
op V � S0k.λh.h! (injop (V , {λy.k! y h})) handle M with H �

〈
M
∣∣H ret

〉 {Hops}
({return x �→Nret}
� {opi p k �→Ni}i

)ret

� x.λh.Nret

({return x �→Nret}
� {opi p k �→Ni}i

)ops

�

λy.case y of {
(injopi

(p, k)→Ni)i

}
Operation invocation is interpreted by capturing the current continuation and abstracting
over a dispatcher which is passed an encoding of the operation. The encoded operation is
an injection whose label is the name of the operation containing a pair of the operation
parameter and a wrapped version of the captured continuation, which ensures the same
dispatcher is threaded through the continuation.

Handling is interpreted as an application of a reset whose continuation contains the
return clause. The reset is applied to a dispatcher function that encodes the operation
clauses.

https://doi.org/10.1017/S0956796819000121 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000121

32 Y. Forster et al.

Theorem 24 (EFF→DEL correctness). DEL simulates EFF up to congruence:

M�N =⇒ M�+cong N

The EFF→DEL translation is simpler than Kammar et al.’s which uses a global higher-
order memory cell storing the handler stack (2013).

This translation does not preserve typeability because the interpretation of operations
needs to be polymorphic in the return type of the dispatcher over which it abstracts. We con-
jecture that (a) any other macro translation will suffer from the same issue and (b) adding
a form of answer-type polymorphism along the lines of Piróg et al. (2019) is sufficient to
adapt this translation to one that does preserve typeability.

6.4.1 Alternative translation with nested delimited continuations

Similarly to the MON→DEL translation, there is an alternative to EFF→DEL which uses
two nested shifts for operations and two nested resets for handlers:

op V � S0k.S0h.h! (injop (V , {λx. 〈k! x|y.h! y〉})) handle M with H �
〈〈

M
∣∣H ret

〉∣∣Hops
〉

({return x �→Nret}
� {opi p k �→Ni}i

)ret

� x.S0h.Nret

({return x �→Nret}
� {opi p k �→Ni}i

)ops

�
y.case y of {

(injop1
(p, k)→Ni)}

(There is an error in our earlier paper (Forster et al., 2017): 〈k! x|y.h! y〉 was
〈k! x|y.y! h〉.)

6.5 Monadic reflection as effect handlers (MON→EFF)

We simulate reflection with an operation and reification with a handler. Formally, for every
anonymous monad T given by where {return x=Nu; y�=f =Nb}, we define MON→EFF

as follows:

µ(N)� reflect {N} [M]T � handle M with T

T � {return x �→Nu} � {reflect y f �→Nb}
Reflection is interpreted as a reflect operation and reification as a handler with the unit of
the monad as a handler and the bind of the handler as the implementation of the reflect
operation.

Theorem 25 (MON→EFF correctness). EFF simulates MON on the nose:

M�N =⇒ M�+ N

MON→EFF does not preserve typeability. For instance, consider the following compu-
tation of type Fbit using the environment monad Reader below it:

https://doi.org/10.1017/S0956796819000121 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000121

On the expressive power of user-defined effects 33

[b←µ({λ(b, f).b});
f ←µ({λ(b, f).f });
f ! b]Reader (injtrue (), {λb.return b})

	k ∅≺ instance monad (α.bit×U∅ (bit→ F bit)→ Fα)

where {return x= λe.return x;
m�=f = λe.x←m! e; f ! x e} : Eff

Its translation into EFF is not typeable: reflection can appear at any type, whereas a single
operation is monomorphic. We conjecture that (a) this observation can be used to prove that
no macro translation TYPED MON→TYPED EFF exists and that (b) adding polymorphic
operations (Kammar et al., 2013) to EFF is sufficient for typing this translation.

6.6 Effect handlers as monadic reflection (EFF→MON)

We define EFF→MON as follows:

op V �µ(λk.λh.h! (injop (V , {λy.k! y h}))) handle M with H � [M]Cont {H ret} {Hops}
({return x �→Nret}
� {opi p k �→Ni}i

)ret

� λx.λh.Nret

({return x �→Nret}
� {opi p k �→Ni}i

)ops

�

λy.case y of {
(injopi

(p, k)→Ni)i

}

The translation is much like EFF→DEL, using the continuation monad in place of first class
continuations.

Operation invocation is interpreted by using reflection to capture the current continua-
tion and abstracting over a dispatcher which is passed an encoding of the operation. The
encoded operation is an injection whose label is the name of the operation containing a
pair of the operation parameter and a wrapped version of the captured continuation, which
ensures the same dispatcher is threaded through the continuation.

Handling is interpreted as an application of a reified continuation monad computation to
the return clause and a dispatcher function that encodes the operation clauses.

Theorem 26 (EFF→MON correctness). MON simulates EFF up to congruence:

M�N =⇒ M�+cong N

This translation does not preserve typeability for the same reason as the EFF→DEL trans-
lations: the interpretation of operations needs to be polymorphic in the return type of the
dispatcher over which it abstracts. We conjecture that (a) any other macro translation will
suffer from the same issue and (b) adding polymorphism to the base calculus is sufficient
to adapt this translation to one that does preserve typeability.

https://doi.org/10.1017/S0956796819000121 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000121

34 Y. Forster et al.

6.6.1 Alternative translation using a free monad

An alternative to interpreting effect handlers using a continuation monad is to use a free
monad:

op V �µ(return (injop (V , λx.return x))) handle M with H �H� [M]H†

({return x �→Nret}
� {opi p k �→Ni}i

)†

�

where {
return x= return (injret x);
y�= f = case y of {

injret x→ k! x
(injopi

(p, k)→ return (injopi
(p, λx.k! x�= f)))i

}
}

({return x �→Nret}
� {opi p k �→Ni}i

)�

�

h= λy.case y of {
injret x→Nret
(injopi

(p, k′)→ k← return {λx.y← k′! x; h! y}; Ni)i

}

Both the bind operation for the free monad H† and the function h that interprets the free
monad H� are recursive. Given that we are in an untyped setting, we can straightforwardly
implement the recursion using a suitable variation of the Y combinator. This translation
does not extend to the typed calculi as they do not support recursion. Nevertheless, we
conjecture that it can be adapted to a typed translation if we extend our base calculus to
include inductive data types, as the recursive functions are structurally recursive.

6.7 Non-existence results

Theorem 27. The following macro translations do not exist:

• TYPED EFF→TYPED MON satisfying: M�N =⇒ M �N.
• TYPED EFF→TYPED DEL satisfying: M�N =⇒ M �N.

Proof
Our proof of the first part hinges on the finite denotation property (Lemma 16). Assume
to the contrary that there was such a translation. Consider a single effect operation symbol
tick : 1→ 1 and set tick0� return (), and tickn+1� tick(); tickn. All these terms have
the same type, and by the homomorphic property of the hypothesised translation, their
translations all have the same type. By the finite denotation property, two of them are
observationally equivalent and, by virtue of a macro translation, the two source terms are
observationally equivalent in EFF. But every distinct pair of tickn terms is observationally
distinguishable using an appropriate handler. See Forster’s thesis (2016) for the full details.
The second part follows from Theorem 20. �

Regarding the remaining four possibilities, we have seen that there is a typeability-
preserving macro translation TYPED DEL→TYPED MON (Theorem 20), but we con-
jecture that there are no typeability-preserving translations TYPED MON→TYPED DEL,
TYPED DEL→TYPED EFF, or TYPED MON→TYPED EFF.

https://doi.org/10.1017/S0956796819000121 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000121

On the expressive power of user-defined effects 35

Returning to the untyped translations, we emphasise that though macro expressivity cap-
tures some of the intuitive differences in expressiveness of programming language features,
it leaves something to be desired, as not all macro translations have equal status.

A concrete feature that distinguishes the translations into EFF is that they satisfy sim-
ulation on the nose, whereas all of the other translations only satisfy simulation up to
congruence. In principle, this could have practical consequences as administrative reduc-
tions may be deferred and slow down computation. That said, we do not have concrete
evidence that this is a problem in practice.

Inspecting the translations between EFF and the other calculi, there is a clear sense in
which the translations into EFF are “simpler” than those from EFF. This intuition extends
to the polymorphically typed translations of Piróg et al. (2019). Their translation from
delimited continuations into effect handlers relies only on a natural notion of polymorphic
operations, while the converse translation relies on a bespoke variant of answer-type-
polymorphism. In our setting, while the translations from DEL and MON into EFF are direct,
those from EFF into MON and DEL have the flavour of a double-negation translation using
the continuation monad, or a deep-embedding using a free monad.

7 Abella experience report

We have mechanised the proofs of safety (Theorems 1, 6, 11, 17) for each calculus and the
correctness theorems for all translations (Theorems 19, 20, 22, 23, 24, 25, 26) in the Abella
proof assistant (Gacek, 2008). Additionally, we have mechanised the proofs of correctness
for the two alternative translations described in Sections 6.2.1 and 6.4.1.

We already had positive prior experience (Bauer & Pretnar, 2014; Kammar & Pretnar,
2017) with the concise higher-order abstract syntax (HOAS) encoding in Twelf, and it
made sense to follow the same approach in this development, especially with the large
number of bindings in the programming abstractions we considered. Figure 20 confirms
this, as even with all the repetition, both the specification and the proofs are reasonable in
size. We chose Abella because in addition to HOAS, it provides a simple tactic language
for interactively building proofs and allows one to write propositions in terms of a first-
order logic with equality. This is in contrast to Twelf where proof terms are constructed
manually, while theorems amount to the existence of a total relation between input and
output types of ∀∃-statements.

In general, the user experience with Abella was pleasant. We managed to discover a bug
in the logic programming engine,6 but that was quickly resolved. On the top of our wish-
list for a future release of Abella is support for tactic automation, as a significant portion
of our proofs amounts to routine proofs by induction. In fact, a lot of proofs would already
be much shorter with a construct that attempts to use the same tactic for all subgoals (as in
Coq). A smaller improvement would be an abbreviation mechanism similar to %abbrev in
Twelf, which would allow us to transparently annotate the considerably large translations
of effect constructs with a single term.

Avoiding boilerplate when formalising multiple calculi. As we are comparing different
calculi, our specification uses separate syntactic sorts for each calculus. Each calculus has

6https://github.com/abella-prover/abella/issues/107

https://doi.org/10.1017/S0956796819000121 Published online by Cambridge University Press

https://github.com/abella-prover/abella/issues/107
https://doi.org/10.1017/S0956796819000121

36 Y. Forster et al.

Fig. 20. Abella formalisation size in lines-of-code (LoC).

a significant number of distinct sorts: effects, value types, computation types, values, com-
putations, and contexts. In addition, variants require auxiliary sorts of computation and
value-type lists. Finally, we need type kinding judgements for each type sort, typing judge-
ments for each term sort, and translation relations for each sort and each pair of calculi.
The calculi share most constructs and judgements, while macro translations are mostly
trivial, so a lot of the listed specification is boilerplate. In order to reduce it, we used two
mechanisms. First, a simple Python script that instantiates a template for a calculus and a
translation definition. Next, instead of modifying the generated files, we used the specifica-
tion accumulation mechanism of Abella, which allowed us to provide the additional parts
of the specification in a separate file that imports the automatically generated one. In this
way, the generated files can be replaced without a problem if the base calculus changes.
The extension mechanism works well. It allows one to import multiple such signatures,
while Abella keeps track that they all agree on the common definitions.

Encoding of translations. Abella has no function definitions, and we formalise type and
term translations as relations. Thus, we formalise statements like M�N =⇒ M�+cong

N as:

∀M , N , M . (M�N ∧M→trans M) =⇒ ∃N .(N→trans N ∧M�+cong N)

In a proof assistant that incorporates inductive types, such as Coq or Agda, the existence of
translations could be proven by induction on the structure of M . In Abella, which provides
induction only over relations, one needs to define an auxiliary predicate on terms that traces
their structure (Baelde et al., 2014, p. 21). In our case, the existence of N could also be
proven by induction on the relation M�N , so we did not have to modify the theorem
statement.

Well-kindedness of types. The most significant extension to our previous mechanisa-
tion (Forster et al., 2017) is the proof of Theorem 20, i.e. a well-typed phrase �; � 	E P : X
in DEL implies �; � 	E P : X in MON. Again, one can show that P exists by induction

https://doi.org/10.1017/S0956796819000121 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000121

On the expressive power of user-defined effects 37

on the typing derivation, while for types, effects, and environments, we again needed an
inductive relation, amounting to the well-kindedness relation, which we now include. To
minimise the overhead, this was done by splitting each typing judgement into two: one
stating the usual conditions of the typing rule, and the second one requiring the first and
well-kindedness of all types involved. This change did break all of our previous safety
proofs, though with the aid of a good text editor, the rewriting of proofs was straightfor-
ward. In a proof assistant with inductively defined types, we could get away with induction
on their structure, but this would swiftly break when moving to a polymorphic type-system,
where well-kindedness is not trivial.

Environment translations. Following the HOAS approach, the value environments are
encoded in Abella by assuming typing judgements for fresh value terms. For example,
�; x : A	E M : C is given by stating that for any fresh value x, the computation M x (recall
that in HOAS, a term with a free variable is represented by a term abstraction) has the type
C under the assumption that x has type A. The type environment � is encoded implicitly
by assuming appropriate fresh types. Theorems about such judgements are given through
an auxiliary predicate, which limits the form of possible assumptions (Baelde et al., 2014,
p. 40).

For translation of environments, we require a fresh value x and three judgements with
synchronised assumptions (Baelde et al., 2014, p. 75): first, we require that M x has type C
under the assumption x : A as before; next, we similarly require that M x has type C
under the assumption x : A; finally, we require that M x→trans M x under the assumption
x→trans x. (Through subordination, Abella can infer that M cannot depend on x as they
belong to distinct syntactic sorts.) Since fresh values in Abella are represented with nomi-
nal constants, there are infinitely many fresh values x that x can be translated to. This breaks
the obvious inductive proof of Theorem 20, which in terms of relations is written as:

∀�, E, P, X . (� 	E P : X) =⇒
∃�, E, P, X . (�→trans �)∧ (E→trans E)∧ (P→trans P)∧ (X→trans X)∧ (� 	E P : X)

The reason is that each inductive hypothesis �; �i 	Ei Pi : Xi gives us a different transla-
tion �i. A workaround is to first prove

∀�, E, P, X , �. (� 	E P : X)∧ (�→trans �) =⇒
∃E, P, X . (E→trans E)∧ (P→trans P)∧ (X→trans X)∧ (� 	E P : X)

and then show separately that each well-kinded environment � has a suitable translation
�, and appealing to well-kindedness.

8 Conclusion and further work

We have given a uniform family of formal calculi expressing the common abstractions for
user-defined effects: effect handlers (EFF), monadic reflection (MON), and delimited con-
trol (DEL), together with their natural type-and-effect systems. We have used these calculi
to formally analyse the relative expressive power of these abstractions. Effect handlers,
monadic reflection, and delimited control have equivalent expressivity when types are not
taken into consideration. However, neither monadic reflection nor delimited control can

https://doi.org/10.1017/S0956796819000121 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000121

38 Y. Forster et al.

macro express effect handlers while preserving typeability. We have formalised the more
syntactic aspects of our work in the Abella proof assistant and have used set-theoretic
denotational semantics to establish inexpressivity results.

Our work has already born unexpected if not entirely unsurprising fruit. By compos-
ing our translation from effect handlers to delimited continuations with a CPS translation
for delimited continuations, Hillerström et al. (2017) derived a CPS translation for effect
handlers, which they then used as the basis for an implementation.

Further work abounds. We would like to extend each type system until each trans-
lation preserves typeability. We conjecture that adding polymorphic operations to EFF,
data type polymorphism to MON, and a suitable form of answer-type polymorphism to
DEL would enable typed macro-transformations between each pair of calculi. We have
reason to believe this should pan out as Piróg et al. (2019) have recently shown such a
correspondence for call-by-value analogues of EFF and DEL extended, respectively, with
polymorphic operations and a novel form of answer-type polymorphism. Their calculi also
include other features including a row-polymorphic effect type system in the style of Leijen
(2017), supporting duplicate effect labels and effect subtyping.

We are also interested in analysing global translations between these abstractions. In
particular, whereas MON and DEL allow reflection/shifts to appear anywhere inside a piece
of code, in practice, library designers define a fixed set of primitives using reflection/shifts
and only expose those primitives to users. This observation suggests calculi in which each
reify/reset is accompanied by declarations of this fixed set of primitives. We conjecture that
MON and DEL can be simulated on the nose via a global translation into the corresponding
restricted calculus, and that the restricted calculi can be macro translated into EFF while
preserving typeability. Such two-stage translations would give a deeper reason why so
many examples typically used for monadic reflection and delimited control can be directly
recast using effect handlers. Other global pre-processing may also eliminate administrative
reductions from our translations and establish simulation on the nose.

We hope the basic calculi we have analysed will form a foundation for systematic further
investigation. Supporting answer-type modification (Asai, 2009; Kobori et al., 2016) can
inform more expressive type system design for effect handlers and monadic reflection,
and account for type-state (Atkey, 2009) and session types (Kiselyov, 2016). In practice,
effect systems are often extended with sub-effecting or effect polymorphism (Lucassen &
Gifford, 1988; Bauer & Pretnar, 2014; Pretnar, 2014; Hillerström & Lindley, 2016; Leijen,
2017; Lindley et al., 2017; Saleh et al., 2018). To these, we add effect forwarding (Kammar
et al., 2013) and rebasing (Filinski, 2010).

Recent work (Inostroza & van der Storm 2018, Brachthäuser et al. 2019, unpub-
lished draft,7 Zhang & Myers 2019) explores alternative formulations of effect handlers
with close connections to object-oriented programming models. We would like to apply
our methodology to study the relative expressiveness of these alternative formulations.
Inspired by the suggestion of Bračevac et al. (2018) to associate effect handlers with
implicits, Brachthauser & Leijen (2019) have recently proposed another basis for user-
defined effects. They extend a calculus of dynamic binding with implicit functions and

7Brachthäuser, J. I., Schuster, P., & Ostermann, K. (2019). Effekt: Type- and effect-safe, extensible
effect handlers in Scala. Unpublished draft. Available from: http://ps.informatik.uni-tuebingen.de/publications/
brachthaeuser19effekt/.

https://doi.org/10.1017/S0956796819000121 Published online by Cambridge University Press

http://ps.informatik.uni-tuebingen.de/publications/brachthaeuser19effekt/
https://doi.org/10.1017/S0956796819000121

On the expressive power of user-defined effects 39

implicit control. Following our lead, they give macro translations back and forth between
effect handlers and their calculus of dynamic binding.

We have taken the perspective of a programming language designer deciding which pro-
gramming abstraction to select for expressing user-defined effects. In contrast, Schrijvers
et al. (2019) take the perspective of a library designer for a specific programming language,
Haskell, and compare the abstractions provided by libraries based on monads with those
provided by effect handlers. They argue that both libraries converge on the same interface
for user-defined effects via Haskell’s type-class mechanism.

Relative expressiveness results are subtle, and the potentially negative results that are
hard to establish make them a risky line of research. We view denotational models as pro-
viding a fruitful method for establishing such inexpressivity results. It would be interesting
to connect our work with that of Laird (2002, 2013, 2017), who analyses the macro expres-
siveness of a hierarchy of combinations of control operators and exceptions using game
semantics, and in particular uses such denotational techniques to show certain combina-
tions cannot macro express other combinations. We would like to apply similar techniques
to compare the expressive power of local effects such as ML-style reference cells with
effect handlers.

Acknowledgments

This work was supported by the European Research Council grant “events causality and
symmetry—the next-generation semantics”, a Balliol College Oxford Career Development
Fellowship, a Royal Society University Research Fellowship, and the Engineering and
Physical Sciences Research Council grants EP/H005633/1 “Semantic Foundations for
Real-World Systems”, EP/K034413/1 “From Data Types to Session Types—A Basis for
Concurrency and Distribution”, and EP/N007387/1 “Quantum computation as a program-
ming language”. This material is based upon work supported by the Air Force Office of
Scientific Research under award number FA9550-17-1-0326. We thank Bob Atkey, Andrej
Bauer, Paul Downen, Marcelo Fiore, Tamara von Glehn, Mathieu Huot, Oleg Kiselyov,
Daan Leijen, Craig McLaughlin, Kayvan Memarian, Sean Moss, Alan Mycroft, Ian Orton,
Hugo Paquet, Jean Pichon-Pharabod, Matthew Pickering, Didier Remy, Reuben Rowe,
Philip Saville, Filip Sieczkowsi, Ian Stark, Sam Staton, Philip Wadler, Jeremy Yallop, and
the anonymous referees for useful suggestions and discussions.

References

Asai, K. (2009) On typing delimited continuations: three new solutions to the printf problem. Higher-
Order Symb. Comput. 22(3), 275–291.

Asai, K. & Kameyama, Y. (2007) Polymorphic delimited continuations. In Programming Languages
and Systems, Shao, Z. (ed). Berlin, Heidelberg: Springer, pp. 239–254.

Atkey, R. (2009) Parameterised notions of computation. J. Funct. Program. 19(3–4), 335–376.
Baelde, D., Chaudhuri, K., Gacek, A., Miller, D., Nadathur, G., Tiu, A. & Wang, Y. (2014) Abella:

a system for reasoning about relational specifications. J. Form. Reason. 7(2), 1–89.
Barr, M. & Wells, C. (1985) Toposes, Triples, and Theories. Grundlehren der mathematischen

Wissenschaften. Springer-Verlag.
Bauer, A. & Pretnar, M. (2014) An effect system for algebraic effects and handlers. Log. Methods

Comput. Sci. 10(4), 29 pages.

https://doi.org/10.1017/S0956796819000121 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000121

40 Y. Forster et al.

Bauer, A. & Pretnar, M. (2015) Programming with algebraic effects and handlers. J. Logical Alg.
Methods Program. 84(1), 108–123. Special Issue: Domains X, International workshop on Domain
Theory and applications, Swansea, er 5–7, 2011.

Brachthauser, J. & Leijen, D. (2019) Programming with Implicit Values, Functions, and Control (or,
Implicit Functions: Dynamic Binding with Lexical Scoping). Technical Report MSR-TR-2019-7.
Microsoft.

Brady, E. (2013) Programming and reasoning with algebraic effects and dependent types. In
Proceedings of the 18th ACM SIGPLAN International Conference on Functional Programming.
ICFP’13. New York, NY, USA: ACM, pp. 133–144.

Bračevac, O., Amin, N., Salvaneschi, G., Erdweg, S., Eugster, P. & Mezini, M. (2018) Versatile
event correlation with algebraic effects. Proc. ACM Program. Lang. 2(ICFP), 67:1–67:31.

Bulwahn, L., Krauss, A., Haftmann, F., Erkök, L. & Matthews, J. (2008). Imperative functional
programming with Isabelle/HOL. In Theorem Proving in Higher Order Logics, Mohamed, O. A.,
Muñoz, C., & Tahar, S. (eds). Berlin, Heidelberg: Springer, pp. 134–149.

Danvy, O. (2006) An Analytical Approach to Programs as Data Objects. DSc dissertation,
Department of Computer Science, University of Aarhus.

Danvy, O. & Filinski, A. (1989) A Functional Abstraction of Typed Contexts. Technical Report
89/12. DIKU.

Danvy, O. & Filinski, A. (1990) Abstracting control. In Proceedings of the 1990 ACM Conference
on LISP and Functional Programming. LFP’90. New York, NY, USA: ACM, pp. 151–160.

Doczkal, C. (2007) Strong Normalization of CBPV. Technical Report, Saarland University.
Doczkal, C. & Schwinghammer, J. (2009) Formalizing a strong normalization proof for moggi’s

computational metalanguage: a case study in Isabelle/HOL-nominal. In Proceedings of the Fourth
International Workshop on Logical Frameworks and Meta-Languages: Theory and Practice.
LFMTP’09. New York, NY, USA: ACM, pp. 57–63.

Felleisen, M. (1991) On the expressive power of programming languages. Sci. Comput. Program.
17(1), 35–75.

Felleisen, M. & Friedman, D. P. (1987) A reduction semantics for imperative higher-order languages.
In PARLE Parallel Architectures and Languages Europe, de Bakker, J. W., Nijman, A. J. &
Treleaven, P. C. (eds). Berlin, Heidelberg: Springer, pp. 206–223.

Felleisen, M., Wand, M., Friedman, D. & Duba, B. (1988) Abstract continuations: a mathematical
semantics for handling full jumps. In Proceedings of the 1988 ACM Conference on LISP and
Functional Programming. LFP’88. New York, NY, USA: ACM, pp. 52–62.

Filinski, A. (1994) Representing monads. In Proceedings of the 21st ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages. POPL’94. New York, NY, USA: ACM,
pp. 446–457.

Filinski, A. (1996) Controlling Effects. PhD thesis, School of Computer Science, Carnegie Mellon
University, Pittsburgh, Pennsylvania.

Filinski, A. (1999) Representing layered monads. In Proceedings of the 26th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages. POPL’99. New York, NY, USA:
ACM, pp. 175–188.

Filinski, A. (2010) Monads in action. In Proceedings of the 37th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages. POPL’10. New York, NY, USA: ACM,
pp. 483–494.

Forster, Y. (2016) On the Expressive Power of Effect Handlers and Monadic Reflection. Technical
Report, University of Cambridge.

Forster, Y., Kammar, O., Lindley, S. & Pretnar, M. (2017) On the expressive power of user-
defined effects: effect handlers, monadic reflection, delimited control. Proc. ACM Program. Lang.
1(ICFP), 13:1–13:29.

Forster, Y., Schäfer, S., Spies, S. & Stark, K. (2019) Call-by-push-value in Coq: operational,
equational, and denotational theory. In Proceedings of the 8th ACM SIGPLAN International
Conference on Certified Programs and Proofs. CPP 2019. New York, NY, USA: ACM,
pp. 118–131.

https://doi.org/10.1017/S0956796819000121 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000121

On the expressive power of user-defined effects 41

Gacek, A. (2008) The Abella interactive theorem prover (system description). In Automated
Reasoning, Armando, A., Baumgartner, P. & Dowek, G. (eds). Berlin, Heidelberg: Springer,
pp. 154–161.

Gacek, A. (2009) A Framework for Specifying, Prototyping, and Reasoning about Computational
Systems. PhD thesis, University of Minnesota.

Hermida, C. (1993) Fibrations, Logical Predicates and Related Topics. PhD thesis, University of
Edinburgh.

Hillerström, D. & Lindley, S. (2016) Liberating effects with rows and handlers. In Proceedings of
the 1st International Workshop on Type-Driven Development. TyDe 2016. New York, NY, USA:
ACM, pp. 15–27.

Hillerström, D., Lindley, S., Atkey, R. & Sivaramakrishnan, K. C. (2017) Continuation Passing
style for effect handlers. In 2nd International Conference on Formal Structures for Computation
and Deduction (FSCD 2017), Miller, D. (ed). Leibniz International Proceedings in Informatics
(LIPIcs), vol. 84. Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
pp. 18:1–18:19.

Hutton, G. & Meijer, E. (1998) Monadic parsing in Haskell. J. Funct. Program. 8(4), 437–444.
Inostroza, P. & van der Storm, T. (2018) JEff: objects for effect. In Proceedings of the 2018

ACM SIGPLAN International Symposium on New Ideas, New Paradigms, and Reflections on
Programming and Software. Onward! 2018. New York, NY, USA: ACM, pp. 111–124.

Kammar, O. (2014) An Algebraic Theory of Type-and-Effect Systems. PhD thesis, University of
Edinburgh.

Kammar, O., Lindley, S. & Oury, N. (2013) Handlers in action. In Proceedings of the 18th ACM
SIGPLAN International Conference on Functional Programming. ICFP’13. New York, NY, USA:
ACM, pp. 145–158.

Kammar, O. & McDermott, D. (2018) Factorisation systems for logical relations and monadic
lifting in type-and-effect system semantics. Electron. Notes Theor. Comput. Sci. 341, 239–260.
Proceedings of the Thirty-Fourth Conference on the Mathematical Foundations of Programming
Semantics (MFPS XXXIV).

Kammar, O. & Plotkin, G. D. (2012) Algebraic foundations for effect-dependent optimisations.
In Proceedings of the 39th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. POPL’12. New York, NY, USA: ACM, pp. 349–360.

Kammar, O. & Pretnar, M. (2017) No value restriction is needed for algebraic effects and handlers.
J. Funct. Program. 27, e7.

Katsumata, S. (2014) Parametric effect monads and semantics of effect systems. In Proceedings
of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages.
POPL’14. New York, NY, USA: ACM, pp. 633–645.

Kiselyov, O. (2016) Parameterized extensible effects and session types (extended abstract).
In Proceedings of the 1st International Workshop on Type-Driven Development. TyDe 2016. New
York, NY, USA: ACM, pp. 41–42.

Kiselyov, O., Friedman, D. P. & Sabry, A. A. (2005) How to Remove a Dynamic Prompt: Static and
Dynamic Delimited Continuation Operators are Equally Expressible. Technical Report TR611,
Indiana University School of Informatics and Computing.

Kiselyov, O., Sabry, A. & Swords, C. (2013) Extensible effects: an alternative to monad transformers.
In Proceedings of the 2013 ACM SIGPLAN Symposium on Haskell. Haskell’13. New York, NY,
USA: ACM, pp. 59–70.

Kiselyov, O. & Shan, C.-c. (2007) A substructural type system for delimited continuations. In
Typed Lambda Calculi and Applications, Della Rocca, S. R. (ed). Berlin, Heidelberg: Springer,
pp. 223–239.

Kiselyov, O., Shan, C.-c. & Sabry, A. (2006). Delimited dynamic binding. In Proceedings of the
Eleventh ACM SIGPLAN International Conference on Functional Programming. ICFP’06. New
York, NY, USA: ACM, pp. 26–37.

Kiselyov, O. & Sivaramakrishnan, K. C. (2018) Eff directly in OCaml. In Proceedings ML Family
Workshop/OCaml Users and Developers workshops, Nara, Japan, September 22–23, 2016, Asai,

https://doi.org/10.1017/S0956796819000121 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000121

42 Y. Forster et al.

K. & Shinwell, M. (eds). Electronic Proceedings in Theoretical Computer Science, vol. 285. Open
Publishing Association, pp. 23–58.

Kobori, I., Kameyama, Y. & Kiselyov, O. (2016) Answer-type modification without tears:
prompt-passing style translation for typed delimited-control operators. In Proceedings of the
Workshop on Continuations, London, UK, April 12, 2015, Danvy, O. & de’Liguoro, U. (eds).
Electronic Proceedings in Theoretical Computer Science, vol. 212. Open Publishing Association,
pp. 36–52.

Laird, J. (2002) Exceptions, continuations and macro-expressiveness. In Programming Languages
and Systems, Le Métayer, D. (ed). Berlin, Heidelberg: Springer, pp. 133–146.

Laird, J. (2013) Combining and relating control effects and their semantics. In Proceedings First
Workshop on Control Operators and their Semantics, Eindhoven, The Netherlands, June 24–25,
2013, de’Liguoro, U. & Saurin, A. (eds). Electronic Proceedings in Theoretical Computer Science,
vol. 127. Open Publishing Association, pp. 113–129.

Laird, J. (2017) Combining control effects and their models: game semantics for a hierarchy of static,
dynamic and delimited control effects. Ann. Pure Appl. Logic 168(2), 470–500. Eighth Games for
Logic and Programming Languages Workshop (GaLoP).

Leijen, D. (2017) Type directed compilation of row-typed algebraic effects. In Proceedings of
the 44th ACM SIGPLAN Symposium on Principles of Programming Languages. POPL 2017.
New York, NY, USA: ACM, pp. 486–499.

Levy, P. B. (2003) Call-by-Push-Value: A Functional/Imperative Synthesis. Semantics Structures in
Computation, vol. 2. Dordrecht, Netherlands: Springer.

Lindley, S., McBride, C. & McLaughlin, C. (2017) Do be do be do. In Proceedings of the 44th ACM
SIGPLAN Symposium on Principles of Programming Languages. POPL 2017. New York, NY,
USA: ACM, pp. 500–514.

Lindley, S. & Stark, I. (2005) Reducibility and ��-lifting for computation types. In Typed Lambda
Calculi and Applications, Urzyczyn, P. (ed). Berlin, Heidelberg: Springer, pp. 262–277.

Lucassen, J. M. & Gifford, D. K. (1988) Polymorphic effect systems. In Proceedings of the
15th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. POPL’88.
New York, NY, USA: ACM, pp. 47–57.

Marmolejo, F. & Wood, R. J. (2010) Monads as extension systems—no iteration is necessary. Theory
Appl. Categor. 24(4), 84–113.

Materzok, M. & Biernacki, D. (2012) A dynamic interpretation of the CPS hierarchy.
In Programming Languages and Systems, Jhala, R. & Igarashi, A. (eds). Berlin, Heidelberg:
Springer, pp. 296–311.

Moggi, E. (1989) Computational lambda-calculus and monads. In Proceedings of the Fourth Annual
Symposium on Logic in Computer Science. Piscataway, NJ, USA: IEEE, pp. 14–23.

Paré, R. (1974) Colimits in topoi. Bull. Amer. Math. Soc. 80(3), 556–561.
Piróg, M., Polesiuk, P. & Sieczkowski, F. (2019) Typed equivalence of effect handlers and

delimited control. In 4th International Conference on Formal Structures for Computation and
Deduction (FSCD 2019), Geuvers, H. (ed). Leibniz International Proceedings in Informatics
(LIPIcs), vol. 131. Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
pp. 30:1–30:16.

Plotkin, G. & Power, J. (2002) Notions of computation determine monads. In Foundations
of Software Science and Computation Structures, Nielsen, M. & Engberg, U. (eds). Berlin,
Heidelberg: Springer, pp. 342–356.

Plotkin, G. & Power, J. (2003) Algebraic operations and generic effects. Appl. Categor. Struct. 11(1),
69–94.

Plotkin, G. & Pretnar, M. (2008) A logic for algebraic effects. In Proceedings of the 2008 23rd
Annual IEEE Symposium on Logic in Computer Science. LICS’08. Washington, DC, USA: IEEE
Computer Society, pp. 118–129.

Plotkin, G. & Pretnar, M. (2009) Handlers of algebraic effects. In Programming Languages and
Systems, Castagna, G. (ed). Berlin, Heidelberg: Springer, pp. 80–94.

Pretnar, M. (2014) Inferring algebraic effects. Logical Methods Comput. Sci. 10(3), 43 pages.

https://doi.org/10.1017/S0956796819000121 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000121

On the expressive power of user-defined effects 43

Pretnar, M. (2015) An introduction to algebraic effects and handlers. invited tutorial paper. Electron.
Notes Theoret. Comput. Sci. 319, 19–35. The 31st Conference on the Mathematical Foundations
of Programming Semantics (MFPS XXXI).

Reynolds, J. C. (1998) Theories of Programming Languages. Cambridge University.
Saleh, A. H., Karachalias, G., Pretnar, M. & Schrijvers, T. (2018). Explicit effect subtyp-

ing. In Programming Languages and Systems, Ahmed, A. (ed). Cham: Springer International
Publishing, pp. 327–354.

Schrijvers, T., Piróg, M., Wu, N. & Jaskelioff, M. (to appear) Monad transformers and modular alge-
braic effects: what binds them together. In Proceedings of the 12th ACM SIGPLAN International
Symposium on Haskell. Haskell 2019. New York, NY, USA: ACM.

Schrijvers, T., Tack, G., Wuille, P., Samulowitz, H. & Stuckey, P. J. (2013) Search combinators.
Constraints 18(2), 269–305.

Shan, C.-c. (2007) A static simulation of dynamic delimited control. Higher-Order Symb. Comput.
20(4), 371–401.

Sinkovics, Á. & Porkoláb, Z. (2013) Implementing monads for C++ template metaprograms.
Sci. Comput. Program. 78(9), 1600–1621.

Spivey, M. (1990) A functional theory of exceptions. Sci. Comput. Program. 14(1), 25–42.
Swierstra, W. (2008) Data types à la carte. J. Funct. Program. 18(4), 423–436.
Tait, W. W. (1967) Intensional interpretations of functionals of finite type I. J. Symb. Logic 32(2),

198–212.
Wadler, P. (1990) Comprehending monads. In Proceedings of the 1990 ACM Conference on LISP

and Functional Programming. LFP’90. New York, NY, USA: ACM, pp. 61–78.
Wadler, P. (1994) Monads and composable continuations. Lisp Symb. Comput. 7(1), 39–55.
Wright, A. K. & Felleisen, M. (1994) A syntactic approach to type soundness. Infor. Comput. 115(1),

38–94.
Zhang, Y. & Myers, A. C. (2019) Abstraction-safe effect handlers via tunneling. Proc. ACM

Program. Lang. 3(POPL), 5:1–5:29.
Ziliani, B., Dreyer, D., Krishnaswami, N. R., Nanevski, A. & Vafeiadis, V. (2015) Mtac: a monad

for typed tactic programming in Coq. J. Funct. Program. 25, e12.

https://doi.org/10.1017/S0956796819000121 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000121

	On the expressive power of user-defined effects: Effect handlers, monadic reflection, delimited control
	Introduction
	The core calculus: mam
	Syntax
	Operational semantics
	Type-and-effect system
	Operational metatheory
	Denotational semantics
	Denotational metatheory

	Effect handlers: eff
	Syntax
	Operational semantics
	Type-and-effect system
	Operational metatheory
	Denotational semantics
	Denotational metatheory

	Monadic reflection: mon
	Syntax
	Operational semantics
	Type-and-effect system
	Operational metatheory
	Denotational semantics
	Denotational metatheory

	Delimited control: del
	Syntax
	Operational semantics
	Type-and-effect system
	Operational metatheory

	Macro translations
	Delimited continuations as monadic reflection (delmon)
	Monadic reflection as delimited continuations (mondel)
	Alternative translation with nested delimited continuations

	Delimited continuations as effect handlers (deleff)
	Effect handlers as delimited continuations (effdel)
	Alternative translation with nested delimited continuations

	Monadic reflection as effect handlers (moneff)
	Effect handlers as monadic reflection (effmon)
	Alternative translation using a free monad

	Non-existence results

	Abella experience report
	Conclusion and further work

