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Abstract. Let � be a smooth bounded domain in RN, with N ≥ 5. We provide
existence and bifurcation results for the elliptic fourth-order equation �2u − �pu =
f (λ, x, u) in �, under the Dirichlet boundary conditions u = 0 and ∇u = 0. Here λ is
a positive real number, 1 < p ≤ 2# and f (., ., u) has a subcritical or a critical growth
s, 1 < s ≤ 2∗, where 2∗ := 2N

N−4 and 2# := 2N
N−2 . Our approach is variational, and it

is based on the mountain-pass theorem, the Ekeland variational principle and the
concentration-compactness principle.

AMS Subject Classification. 35J35, 35B33, 35G20, 35B32.

1. Introduction. An approach for confronting second-order critical semilinear
elliptic equations in a bounded domain � in RN was introduced in [2], where it was
shown that the Palais-Smale compactness condition holds for certain levels of the
associated functional. Therefore, under the appropriate assumptions, the mountain-
pass theorem could be applied to yield a solution to the critical problem.

The existence of solutions of fourth-order critical elliptic problems can also be
proved by using this approach, see [4, 5, 8, 11, 15] and the references therein.

In this paper, we study problems of the form

�2u − �pu = f (λ, x, u) in �,

u = 0, ∇u = 0 on ∂�,

}
(1)

where � is a smooth bounded domain in RN , with N ≥ 5, �2u is the biharmonic
operator, �pu := div(|∇u|p−2∇u) is the p−Laplace operator, f : R × � × R → R is a
function with either subcritical or critical growth in the third variable and λ is a positive
real number.

Problem (1) has not been addressed in such a general context before. A similar
problem was examined by [6], [12] and [16], who studied not the difference, but the
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sum of the biharmonic and the p−Laplace operator for the case p = 2 and with Navier
boundary conditions.

Owing to the presence of the biharmonic and p−Laplace operators in the equation,
two critical exponents could appear: the critical exponent 2∗ := 2N

N−4 for the Sobolev
embedding H2

0 (�) ↪→ Lq(�) and the critical exponent 2# := 2N
N−2 for the Sobolev

embedding H1
0 (�) ↪→ Lq(�). Our purpose is to provide solutions for the subcritical

and critical cases, which arise as s, the growth of f in the third variable, varies between
1 and 2∗ and p varies between 1 and 2#. These solutions will be found as the critical
points of the Frechet differentiable energy functional given by

�λ(u) := 1
2

∫
�

(�u)2dx + 1
p

∫
�

|∇u|pdx −
∫

�

∫ u

0
f (λ, x, s) ds dx,

which is defined on the Sobolev space E := H2
0 (�) endowed with the equivalent norm

||u||2E =
∫

�

(�u)2.

We now present our results. In Section 2, we examine the subcritical case where
f (λ, x, u) = λ|u|s−2u, 1 < p < 2# and 1 < s < 2∗, and prove the following:

THEOREM 1. Let 1 < p < 2#.

(i) Suppose that 2 < s < 2∗. Then if p < s, (1) admits a solution for every λ > 0,

while if s ≤ p, there exists λ0 > 0 such that (1) admits a solution for every λ > λ0.

(ii) Suppose that 1 < s < 2. Then if s < p, (1) admits a solution for every λ > 0,

while if p < s, there exists λ0 > 0 such that (1) admits a solution for every λ > λ0.

(iii) If λ > λ1, s = 2 and 2 < p < 2#, then (1) admits a solution.

Here λ1 denotes the first eigenvalue of �2 with Dirichlet boundary conditions.
In Section 3, we examine the subcritical case for s and the critical case p = 2#. We

show the following:

THEOREM 2. (i) If p = 2# and 2 < s < 2#, then there exists λ̂ > 0 such that (1)
admits a nontrivial solution for every λ > λ̂.

(ii) If p = 2# and 2# < s < 2∗, then (1) admits a solution for every λ > 0.

In Section 4, in an effort to extend our results to the critical case s = 2∗, we assume that
f (λ, x, u) = λ|u|2∗−2u + g(x), where g : � → R is a nontrivial continuous function, and
in this situation, we obtain:

THEOREM 3. If ||g|| 2N
N+4

is small enough, then (18) admits a solution.

Here, p is restricted in the interval (1, 2#), and it is an open question whether there is
a solution if p = 2#.

Finally, in Section 5, we study the bifurcation properties for the problem

�2u − �pu = λu + h(x, λ)|u|2∗−2u in �,

u = 0, ∇u = 0 on ∂�,

}
(2)

where 1 < p < 2#, and we have the following:
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THEOREM 4. Equation (2) admits a continuum C of nontrivial solutions (λ, u) ⊆
R × E bifurcating from (λ1, 0), which meets the boundary of [λ1 − d, λ1 + d] × B(0, ρ0).

2. The subcritical case. In this section, we assume that f (λ, x, u) = λ|u|s−2u, 1 <

p < 2# and 1 < s < 2∗.

LEMMA 5. Suppose that one of the following statements holds:
(i) 1 < p < 2#, s ∈ (1, 2∗)\{2} and λ > 0.

(ii) s = 2, 2 < p < 2# and λ > 0.

(iii) s = 2, 1 < p ≤ 2 and λ < λ1.

Then �λ(.) satisfies the Palais-Smale condition.

Proof. Assume first that 2 ≤ p < 2#. Let {un}n∈N be a Palais-Smale sequence, that
is,

(i) �λ(un) is bounded and
(ii) �′

λ(un) → 0.

From (i), there exists M > 0 such that

−M ≤ 1
2

∫
�

(�un)2 + 1
p

∫
�

|∇un|p − λ

s

∫
�

|un|s ≤ M, (3)

while (ii) implies that∫
�

(�un)2 +
∫

�

|∇un|p − λ

∫
�

|un|s = on(1) ‖un‖E . (4)

Multiplying (4) by −1/a, a > 0, and adding memberwise to (3), we obtain

−M − on(1) ‖un‖E

≤
(

1
2

− 1
a

) ∫
�

(�un)2 +
(

1
p

− 1
a

) ∫
�

|∇un|p + λ

(
1
a

− 1
s

)∫
�

|un|s

≤ M − on(1) ‖un‖E . (5)

By taking a = p in (5), the boundedness of ‖un‖E is straightforward for the case
p ≤ s. For s < p, we take a > p and exploit the embeddings H1

0 (�) ↪→ Ls(�) and
(Lp(�))N ↪→ (L2(�))N to get(

1
2

− 1
a

)∫
�

(�un)2 +
(

1
p

− 1
a

)∫
�

|∇un|p + λc
(

1
a

− 1
s

) (∫
�

|∇un|p
) s

p

≤ M − on(1) ‖un‖E ,

from where we obtain once more the desired boundedness. Obvious modifications of
the same idea yields boundedness for the rest of the cases.
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Thus, we may assume that, up to a subsequence, un → u weakly in E. From the
Sobolev embedding, we obtain that

�un → �u weakly in L2(�),
un → u in Ls(�) and
∇un → ∇u in (Lp(�))N .

⎫⎬⎭ (6)

By (4), �′
λ(un)(un) → 0, that is,∫

�

(�un)2 +
∫

�

|∇un|p − λ

∫
�

|un|s → 0,

and so ∫
�

(�un)2 → λ

∫
�

|u|s −
∫

�

|∇u|p . (7)

On the other hand, since �′
λ(un)(u) → 0,∫

�

(�un)(�u) +
∫

�

|∇un|p−2 ∇un∇u − λ

∫
�

|un|s−2 unu → 0. (8)

Combining (6)–(8), we conclude that∫
�

(�u)2 = λ

∫
�

|u|s −
∫

�

|∇u|p .

Consequently, ‖un‖E → ‖u‖E . The uniform convexity of E implies that un → u
in E. �

Proof of Theorem 1. (i) Assume first that 2 ≤ p < s. By the Sobolev embedding, if
‖u‖E is sufficiently small, then

�λ(u) ≥ 1
2

∫
�

(�u)2 + 1
p

∫
�

|∇u|p − d
(∫

�

(�u)2
) s

2

> δ (9)

for some d, δ > 0. Note that for u �= 0,

�λ(tu) = t2

2

∫
�

(�u)2 + tp

p

∫
�

|∇u|p − λts

s

∫
�

|u|s → −∞

as t → ∞. Applying the mountain-pass theorem we get a solution to (1).
Suppose next that 2 < s ≤ p. We define

λ0 := inf
u∈E\{0}

1
2

∫
�

(�u)2 + 1
p

∫
�

|∇u|p
1
s

∫
�

|u|s . (10)
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The continuity of the embedding H1
0 (�) ↪→ Lt(�), t ∈ (1, 2#] implies that for every

u ∈ E\{0},
1
2

∫
�

(�u)2 + 1
p

∫
�

|∇u|p
1
s

∫
�

|u|s ≥
c1

(∫
�

|∇u|p) 2
p + 1

p

∫
�

|∇u|p

c2
(∫

�
|∇u|p) s

p

= c1

c2

(∫
�

|∇u|p
) 2−s

p

+ 1
pc2

(∫
�

|∇u|p
) p−s

p

> η (11)

for some η, c1, c2 > 0. Thus, λ0 > 0. Consequently, if λ > λ0, there exists uλ ∈ E\{0}
such that

1
2

∫
�

(�uλ)2 + 1
p

∫
�

|∇uλ|p <
λ

s

∫
�

|uλ|s (12)

and so �λ(uλ) < 0. Since (9) guarantees that �λ(.) is positive close to the origin, the
mountain-pass theorem provides a solution to (1).

Now let 1 < p < 2. In view of the embedding E ↪→ Ls(�), we have

�λ(u) ≥ 1
2

∫
�

(�u)2 − d
(∫

�

(�u)2
) s

2

(13)

for some d > 0, which implies that �λ(.) is positive near the origin. Since
limt→+∞�λ(tu) = −∞, the mountain-pass theorem provides a solution to (1).

(ii) Assume first that s < p. In view of the embedding E ↪→ Ls(�), we have

�λ(u) ≥ d
(∫

�

|u|s
) 2

s

− λ

s

∫
�

|u|s

for some d > 0 and so �λ(.) is bounded below. Since �λ(.) satisfies the Palais-Smale
condition, Ekeland’s variational principle [9] provides a solution to (1), which is
nontrivial because �λ(.) assumes negative values near the origin.

Let now 1 < p ≤ s < 2. Then �λ(.) satisfies the Palais-Smale condition and is
bounded below. If λ > λ0, in view of (11) and (12), �λ(.) assumes negative values and
so Ekeland’s variational principle provides a nontrivial solution to (1).

(iii) By exploiting the embedding W 1,p
0 (�) ↪→ L2(�), we get

�λ(u) = 1
2

∫
�

(�u)2 + 1
p

∫
�

|∇u|p − λ

2

∫
�

|u|2

≥ 1
2

(λ1 − λ)
∫

�

|u|2 + 1
p

∫
�

|∇u|p

≥ 1
2

(λ1 − λ)
∫

�

|u|2 + d
(∫

�

|u|2
) p

2

for some d > 0. Thus, �λ(.) is bounded below. Also, for an eigenfunction u1

corresponding to λ1 and t > 0 sufficiently small,

�λ(tu1) = t2

2

(
1 − λ

λ1

) ∫
�

(�u1)2 + tp

p

∫
�

|∇u1|p < 0.

https://doi.org/10.1017/S0017089508004588 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089508004588


132 D. A. KANDILAKIS, M. MAGIROPOULOS AND N. ZOGRAPHOPOULOS

Since �λ(.) also satisfies the Palais-Smale condition, Ekeland’s variational principle
provides a solution to (1). �

3. The critical case p = 2#.

Proof of Theorem 2. (i) Let pn ∈ (s, 2#), with pn → 2#. Theorem 1 guarantees
that there exists λn > 0 such that (1) admits a solution for every λ > λn. The Sobolev
embedding implies that the sequence {λn}n∈N is bounded. Define λ̂ := sup

n→+∞
λn. Thus,

for λ > λ̂, there exists un ∈ E such that

1
2

∫
�

(�un)2 + 1
pn

∫
�

|∇un|pn = λ

s

∫
�

|un|s . (14)

The embeddings H1
0 (�) ↪→ Ls(�) and Lpn (�) ↪→ L2(�) imply that

‖u‖Ls(�) ≤ c‖∇u‖L2(�) and ‖∇u‖L2(�) ≤ cn‖∇u‖Lpn (�),

where {cn}n∈N is a bounded sequence. Thus,

‖u‖Ls(�) ≤ d‖∇u‖Lpn (�) (15)

for some d > 0. Combining (14) and (15), we see that ‖∇un‖Lpn (�), n ∈ N, is bounded.
By (14), we conclude that the sequence {‖un‖E}n∈N is bounded. By passing to a
subsequence, if necessary, we may assume that un → u weakly in E. Thus, for
ψ ∈ C∞

0 (�) and λ > λ̂, we have∫
�

�un�ψ +
∫

�

|∇un|pn−2 ∇un∇ψ = λ

∫
�

|un|s−2 unψ

for every n ∈ N. It is clear that∫
�

�un�ψ →
∫

�

�u�ψ,

∫
�

|un|s−2 unψ →
∫

�

|u|s−2 uψ,

while Theorem IV.9 in [1] yields∫
�

|∇un|pn−2 ∇un∇ψ →
∫

�

|∇u|2#−2 ∇u∇ψ.

Thus, ∫
�

�u�ψ +
∫

�

|∇u|2#−2 ∇u∇ψ = λ

∫
�

|u|s−2 uψ,

that is, u is a solution to (1), with p = 2#. We show that u �= 0. Indeed, if we assume
that un → 0 in E, then for the sequence vn := un

‖un‖E
, n ∈ N, we would have

1 =
∫

�

(�vn)2 = λ‖un‖s−2
E

∫
�

|vn|s − ‖un‖pn−2
E

∫
�

|∇vn|pn → 0,
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a contradiction.
(ii) Assume that E is supplied with the norm

|‖u|‖ =
(∫

�

(�u)2
) 1

2

+
(∫

�

|∇u|2#

) 1
2#

.

We show that �λ(.) satisfies the Palais-Smale condition. Let {un}n∈N be a Palais-Smale
sequence. Working as in Lemma 5, we see that {un}n∈N is bounded in E with respect
to the norm |‖.|‖. Therefore, by passing to a subsequence, if necessary, we may assume
that un → u weakly in E and W 1,2#

0 (�). Since �′
λ(un)(un) → 0 and �′

λ(un)(u) → 0, we
have ∫

�

(�un)2 +
∫

�

|∇un|2# → λ

∫
�

|u|s (16)

and ∫
�

(�un)(�u) +
∫

�

|∇un|2#−2 ∇un∇u → λ

∫
�

|u|s . (17)

Note that ∇un → ∇u in L2#−2(�) and �un → �u weakly, so (17) yields∫
�

(�u)2 +
∫

�

|∇u|2# = λ

∫
�

|u|s ,

and this fact combined with (16) shows that un → u in E and W 1,2#
(�). By (13), �λ(.)

is positive near the origin. Since limt→+∞�λ(tu) = −∞, the mountain-pass theorem
provides a solution to (1). �

4. The critical case s = 2∗. In this section, we study the nonhomogeneous
equation

�2u − �pu = λ|u|2∗−2u + g in � (18)

subject to the Dirichlet boundary conditions, where g : � → R is a nontrivial
continuous function and λ > 0. We follow the approach of Guedda [11].

The energy functional associated to (18) is

�λ(u) := 1
2

∫
�

(�u)2dx + 1
p

∫
�

|∇u|pdx − λ

2∗

∫
�

|u|2∗
dx −

∫
�

gu. (19)

Let S := inf{‖u‖2
E : ‖u‖2∗ = 1} be the best constant in the Sobolev inclusion H2

0 (�) ⊂
L2∗

(�). By Theorem 2.1 in [8], S is attained by the functions uε given by

uε(x) := KN

(
ε

ε2 + |x − x0|2
) N−4

2

, (20)

where

KN := [(N − 4)(N − 2)N(N + 2)]
N−4

8
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for any ε > 0 and x0 ∈ RN . Furthermore, the functions uε, with x0 = 0, are the only
positive spherically symmetric solutions of the equation

�2u = u
N+4
N−4 in RN,

which are decreasing in |x|.
LEMMA 6. Suppose that 1 < p < 2#. Then �λ(.) satisfies a local Palais-Smale

condition in the strip
( −∞, 2λ

N

(S
λ

) N
4 − K

)
, where

K := (2∗ − 1)(2# − 1)η‖g‖η
η

λη−1(2∗ − 2#)η−12∗2#
and η := 2N

N + 4
. (21)

Proof. Assume that lim
n→+∞�λ(un) = α < 2λ

N

(S
λ

) N
4 − K and � ′

λ(un) → 0 in E∗. Then,

1
2

∫
�

(�un)2 + 1
p

∫
�

|∇un|p − λ

2∗

∫
�

|un|2∗ −
∫

�

gun = α + on(1) (22)

and ∫
�

(�un)2 +
∫

�

|∇un|p − λ

∫
�

|un|2∗ −
∫

�

gun = on(1)‖un‖E. (23)

Combining (22) and (23), we get(
1
2

− 1
2∗

) ∫
�

(�un)2 +
(

1
p

− 1
2∗

) ∫
�

|∇un|p −
(

1 − 1
p

) ∫
�

gun

= α + on(1) + on (1) ‖un‖E,

which implies that {un}n∈N is bounded in E. By passing to a subsequence, if necessary, we
have that un → u weakly in E. In view of the Sobolev embedding and the concentration-
compactness principle [13],

un → u in L2(�) and a.e. in �,

∇un → ∇u in Lq(�)N, 1 < q < 2#, and a.e. in �,

|un|2∗ → ν = |u|2∗ + ∑
j∈J νjδxj in the w∗- sense,

(�un)2 → μ ≥ (�u)2 + ∑
j∈J μjδxj in the w∗- sense,

Sν
2

2∗
j ≤ μj,

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(24)

where J is a finite set and xj ∈ �. We show that νj = μj = 0 for every j ∈ J. For a
fixed j ∈ J and ε > 0, let ϕ ∈ C∞

0 (RN) such that

0 ≤ ϕ ≤ 1, ϕ = 1 on B(xj, ε), ϕ = 0 on RN\B(xj, 2ε),
|∇ϕ| ≤ 2

ε
and |�ϕ| ≤ 2

ε2 .

}
(25)

By hypothesis,

� ′
λ(un)(unϕχ�) → 0 as n → ∞,

that is, ∫
B(xj,2ε)∩�

(�un)�(unϕ) +
∫

B(xj,2ε)∩�

|∇un|p−2∇un∇(unϕ)

−
∫

B(xj,2ε)∩�

gunϕ − λ

∫
B(xj,2ε)∩�

|un|2∗
ϕ → 0.
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In view of (24) and (25),∫
B(xj,2ε)∩�

(�un)�(unϕ) +
∫

B(xj,2ε)∩�

|∇un|p−2∇un∇(unϕ)

−
∫

B(xj,2ε)∩�

gunϕ → λ

∫
B(xj,2ε)∩�

ϕ dν, (26)

as n → +∞. Since∫
B(xj,2ε)∩�

|∇un|p−2∇un∇(unϕ)

=
∫

B(xj,2ε)∩�

|∇un|p ϕ +
∫

B(xj,2ε)∩�

|∇un|p−2∇un∇ϕun

→
∫

B(xj,2ε)∩�

|∇u|p ϕ +
∫

B(xj,2ε)∩�

|∇u|p−2∇u∇ϕu,

(26) becomes

lim
n→∞

∫
B(xj,2ε)∩�

(�un) � (unϕ)

=
∫

B(xj,2ε)∩�

ϕdν −
∫

B(xj,2ε)∩�

|∇u|p ϕ −
∫

B(xj,2ε)∩�

|∇u|p−2∇u∇ϕu

−
∫

B(xj,2ε)∩�

gunϕ → λνj, (27)

as ε → 0. Also,∫
B(xj,2ε)∩�

(�un)(�unϕ) =
∫

B(xj,2ε)∩�

(�un)2ϕ

+
∫

B(xj,2ε)∩�

(�un)(�ϕ)un + 2
∫

B(xj,2ε)∩�

(�un)(∇un∇ϕ). (28)

But

lim
n→+∞

∫
B(xj,2ε)∩�

(�un)2ϕ →
∫

B(xj,2ε)∩�

ϕ dμ ≥ μj, (29)

as ε → 0,

lim
n→+∞

∣∣∣∣ ∫
B(xj,2ε)∩�

(�un)(�ϕ)un

∣∣∣∣
≤ lim

n→+∞

⎡⎣(∫
B(xj,2ε)∩�

|�un|2
) 1

2
(∫

B(xj,2ε)∩�

|�ϕ|2|un|2
) 1

2

⎤⎦
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≤ c1

(∫
B(xj,2ε)∩�

|�ϕ|2|u|2
) 1

2

≤ c1

(∫
B(xj,2ε)∩�

|�ϕ|N
2

) 2
N

(∫
B(xj,2ε)∩�

|�ϕ|2|u|2
) 1

2
(∫

B(xj,2ε)∩�

|u|2∗
) 1

2∗

≤ c2

(∫
B(xj,2ε)∩�

|u|2∗
) 1

2∗

→ 0, (30)

as ε → 0, and

lim
n→+∞

∣∣∣∣ ∫
B(xj,2ε)∩�

(�un)(∇un∇ϕ)

∣∣∣∣
≤ lim

n→+∞

⎡⎣(∫
B(xj,2ε)∩�

|�un|2
) 1

2
(∫

B(xj,2ε)∩�

|∇ϕ|2|∇un|2
) 1

2

⎤⎦
≤ c3

(∫
B(xj,2ε)∩�

|∇ϕ|2|∇u|2
) 1

2

≤ c3

(∫
B(xj,2ε)∩�

|∇ϕ|N
) 1

N
(∫

B(xj,2ε)∩�

|∇u| 2N
N−2

)N−2
2N

≤ c4

(∫
B(xj,2ε)∩�

|∇u| 2N
N−2

)N−2
2N

→ 0, (31)

as ε → 0. Combining (27)–(31), we obtain μj ≤ λνj. By (24), Sν
2/2∗
j ≤ λνj,

which implies that either νj = 0 or νj ≥ (S
λ

)N/4
. If we assume that νj ≥ (S

λ

)N/4
,

then

α = lim
n→+∞

[
�λ(un) − 1

2#
� ′

λ(un)un

]
= lim

n→+∞

[(
1
2

− 1
2#

)∫
�

(�un)2 +
(

1
p

− 1
2#

) ∫
�

|∇un|p + λ

(
1

2#
− 1

2∗

)
×

∫
�

|un|2∗
]

−
(

1 − 1
2#

) ∫
�

gu

≥
(

1
2

− 1
2#

) ∫
�

(�u)2 +
(

1
2

− 1
2#

)
μj + λ

(
1

2#
− 1

2∗

) ∫
�

|u|2∗
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+ λ

(
1

2#
− 1

2∗

)
νj −

(
1 − 1

2#

)
||g||η

(∫
�

|u|2∗
) 1

2∗

≥ 2λ

N

(
S
λ

)N
4

+ λ

(
1

2#
− 1

2∗

) ∫
�

|u|2∗ −
(

1 − 1
2#

)
||g||η

(∫
�

|u|2∗
) 1

2∗
.

Let z(x) := λ( 1
2# − 1

2∗ )x − (1 − 1
2# )||g||ηx1/2∗

. Since the minimum value of z(x)
for positive x is −K, we get a contradiction. Thus, νj = 0 for every j ∈ J.

Consequently, un → u in L2∗
(�). Exploiting the complete continuity of the

inverse biharmonic operator, we can now show that un → u in E. �

Working as in Lemma 3.1 in [11], we have

LEMMA 7. There exist constants r, δ > 0 such that if ‖g‖η < δ, then �λ(u) > 0 for
all ‖u‖E = r.

Proof. By the Hölder and the Sobolev inequalities, we have that

�λ(u) ≥ 1
2

∫
�

(�u)2 dx − λ

2∗

∫
�

|u|2∗
dx − ‖g‖η‖u‖2∗

≥ 1
2

∫
�

(�u)2 dx − λ

2∗S2∗/2

(∫
�

(�u)2 dx
) 2∗

2

− ‖g‖ηS
1
2

(∫
�

(�u)2 dx
) 1

2

.

Define k(x) := 1
2 x2 − λ

2∗ S−2∗/2x2∗ − ‖g‖ηS1/2x, x > 0. It is easy to see that there exists
δ > 0 such that if 0 < ‖g‖η < δ, then k(.) has a positive maximum attained at a point
r = r(‖g‖η) > 0. Consequently, �λ(u) > 0 for every u ∈ E, with ‖u‖E = r. �

Proof of Theorem 3. Without loss of generality, we may assume that 0 ∈ � and
g(0) > 0. By taking ε > 0 small enough, we have that∫

�

guε > 0,

where uε is defined by (20) with x0 = 0. Equation (19) implies that �λ(tuε) < 0 for
small t > 0. Thus,

inf{�λ(u) : ‖u‖E ≤ r} < 0.

We now choose g so that 0 < ||g||η < δ and 2λ
N

(S
λ

)N/4 − K ≥ 0 (see (21)). An application
of the Ekeland variational principle provides a solution to (18).

5. Bifurcation from the principal eigenvalue. Let ε > 0 and γ ∈ (0, 1). We say that
� is ε-close in C4,γ -sense to the unit ball B(0, 1) if there exists a surjective mapping
g ∈ C4,γ (B(0, 1),�) such that

‖g − Id‖C4,γ (B(0,1),�) ≤ ε.

https://doi.org/10.1017/S0017089508004588 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089508004588


138 D. A. KANDILAKIS, M. MAGIROPOULOS AND N. ZOGRAPHOPOULOS

THEOREM 8. There is ε2,N > 0 such that if � is ε-close in the C4,γ -sense to B(0, 1),
with ε < ε2,N, then the eigenfunction ϕ1,�(.) for the first eigenvalue λ1 of

�2ϕ = λϕ in �,

u = 0, ∇u = 0 on ∂�

}
is unique up to normalization and there exists c > 0 such that ϕ1,�(x) ≥ cd(x, ∂�)2.

For more details, we refer to [10].
We assume that our perturbation term h satisfies the following:

(h) h : � × [λ1 − d, λ1 + d] → R is continuous with h∞ = sup{|h(x, λ)| : (x, λ) ∈ � ×
[λ1 − d, λ1 + d]} and ∫

�

h(x, λ1)ϕ2∗
1,�(x)dx �= 0.

DEFINITION 9. Let � : X → X∗ be an operator on the real reflexive Banach space
X. The operator � is said to satisfy the local (S+) property on the set G ⊆ X if any
sequence {xn}n∈N in G with xn → x weakly in X and limsupn→+∞ 〈�(xn), xn − x〉 ≤ 0
satisfies xn → x strongly in X.

We define the operators J, S, Hλ : E → R with the use of the duality pairing in E :

(J(u), v) =
∫

�

�u�v,

(S(u), v) =
∫

�

uv

and

(Hλ(u), v) =
∫

�

|∇u|p−2∇u∇v +
∫

�

h(x, λ)|u|2∗−2uv.

It is clear that u ∈ E is a (weak) solution to (2) if and only if u solves the operator
equation:

Nλ(u) := J(u) + λS(u) − Hλ(u) = 0.

LEMMA 10. Suppose that ρ0 < min{1, h−(N−4)/8
∞ SN/8}. Then, Nλ(.) satisfies the local

(S+) property in B(0, ρ0).

Proof. Let {un}n∈N be a sequence in B(0, ρ0). By passing to a subsequence, if
necessary, we may assume that un → u0 weakly in E. Furthermore, let

lim sup
n→+∞

Nλ(un)(un − u0) ≤ 0,

that is,

lim sup
n→+∞

{∫
�

�un�(un − u0) +
∫

�

|∇un|p−2∇un∇(un − u0)

− λ

∫
�

un(un − u0) −
∫

�

h(x, λ)|un|2∗−2un(un − u0)
}

≤ 0. (32)
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Note that, by (24), ∫
�

�un�u0 →
∫

�

(�u0)2, (33)

∫
�

|∇un|p−2∇un∇(un − u0) → 0, (34)

∫
�

un(un − u0) → 0 (35)

and ∫
�

h(x, λ)|un|2∗ →
∫

�

h(x, λ)|u0|2∗ +
∫

�

h(x, λ)d ν̃, (36)

where ν̃ = ∑
j∈J νjδxj . Since the sequence {|un|2∗−2un}n∈N is bounded in (L2∗

(�))
′
, we

have that, up to a subsequence, |un|2∗−2un → |u0|2∗−2u0 weakly in (L2∗
(�))

′
. Thus,∫

�

h(x, λ)|un|2∗−2unu0 →
∫

�

h(x, λ)|u0|2∗
. (37)

In view of hypothesis (h), (24) and (33)–(37), (32) yields

μ̃(�) ≤ h∞ν̃(�),

where μ̃ = ∑
j∈J μjδxj , and by exploiting (24) again, we get

μ̃(�) ≤ h∞S− 2∗
2 μ̃(�)

2∗
2 .

Consequently, μ̃(�) = 0 or h−(N−4)/4
∞ SN/4 ≤ μ̃(�). If h−(N−4)/4

∞ SN/4 ≤ μ̃(�), then,
since ||un||E < ρ0, we should have μ̃(�) < ρ2

0 < h−(N−4)/4
∞ SN/4, a contradiction.

Consequently, μ̃ = 0. In view of (24) and the strict convexity of E, we get that un → u
in E. �
In view of Lemma 10 and Theorem 1.6 in [7], the degree Deg(Nλ, D, 0) is well defined
for all open, bounded and nonempty sets D ⊂ B(0, ρ0) whenever 0 /∈ Nλ(∂D). Define

Ñλ(u) := J(u) + λS(u).

The degree Deg(Ñλ, B(0, ρ), 0), for any 0 < ρ < ρ0, is also well defined for λ ∈ (λ1 −
d, λ1 + d), λ �= λ1,

Deg(Ñλ, B(0, ρ), 0) = 1, λ ∈ (λ1 − d, 0)

and

Deg(Ñλ, B(0, ρ), 0) = −1, λ ∈ (0, λ1 + d).

For more details, we refer to [3, 7].
The proof of the following lemma follows as an easy combination of Hölder’s

inequality with the Sobolev embeddings and it is omitted.
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LEMMA 11. The operator Hλ(.) satisfies

lim
‖u‖E→0

‖Hλ(u)‖E∗

‖u‖E
= 0

uniformly for λ in a bounded subset of R.

By exploiting the previous lemma and the homotopy invariance property of the degree,
we get that for every λ ∈ (λ1 − d, λ1 + d), λ �= λ1, there exists ρ > 0 such that

Deg(Nλ, B(0, ρ), 0) = 1, λ ∈ (λ1 − d, 0)

and

Deg(Nλ, B(0, ρ), 0) = −1, λ ∈ (0, λ1 + d).

Note that the index of the isolated zero of Nλ changes by magnitude 2 when λ crosses
λ1, so working as in Theorem 1.3 and Corollary 1.12 in [14] we get

THEOREM 12. Equation (2) admits a continuum C of nontrivial solutions (λ, u) ⊆
R × E bifurcating from (λ1, 0), which meets the boundary of [λ1 − d, λ1 + d] × B(0, ρ0).

REMARK 13. Most of the above results can be extended to the case of the equation
�2u + �pu = λ|u|s−2u with Dirichlet boundary conditions.
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