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Z-Stable ASH Algebras

Andrew S. Toms and Wilhelm Winter

Abstract. The Jiang–Su algebra Z has come to prominence in the classification program for nuclear

C∗-algebras of late, due primarily to the fact that Elliott’s classification conjecture in its strongest form

predicts that all simple, separable, and nuclear C∗-algebras with unperforated K-theory will absorb Z

tensorially, i.e., will be Z-stable. There exist counterexamples which suggest that the conjecture will

only hold for simple, nuclear, separable and Z-stable C∗-algebras. We prove that virtually all classes

of nuclear C∗-algebras for which the Elliott conjecture has been confirmed so far consist of Z-stable

C∗-algebras. This follows in large part from the following result, also proved herein: separable and

approximately divisible C∗-algebras are Z-stable.

Introduction

The Jiang–Su algebra Z is a simple, separable, unital and nuclear C∗-algebra
KK-equivalent to C [12]. Since its discovery in 1995 there has been a steady ac-
cumulation of evidence linking Z to Elliott’s program to classify separable, nuclear

C∗-algebras via K-theoretic invariants: Jiang and Su [12] proved that simple, infinite-
dimensional AF algebras and Kirchberg algebras (simple, nuclear, purely infinite and
satisfying the universal coefficient theorem) are Z-stable, i.e., for any such algebra A

one has an isomorphism α : A → A ⊗ Z. This in particular implies that the purely

infinite algebras covered by Kirchberg’s classification of O2-stable C∗-algebras and
by the Kirchberg–Phillips classification are Z-stable [14]. Gong, Jiang, and Su [8]
showed that if a simple, unital and nuclear C∗-algebra A has a weakly unperforated
ordered K0-group, then the ordered K0-groups of A and A ⊗ Z are isomorphic. All

known counterexamples to Elliott’s classification conjecture fail to be Z-stable.
In the present paper (a natural sequel to [30]) we prove that as of this moment, all

classes of non-type-I C∗-algebras for which the Elliott conjecture is confirmed consist
entirely of Z-stable algebras. In the approximately homogeneous (AH) case, this re-

sult follows for the most part from [5,6] and our Theorem 2.3, which states that sep-
arable and approximately divisible C∗-algebras are Z-stable. One must then expend
considerable effort in proving that certain approximately subhomogeneous (ASH)
C∗-algebras which are not approximately homogeneous are nevertheless Z-stable —

such algebras need not be approximately divisible. To the best of the authors’ knowl-
edge, the classification results of [7,10,12,13,17,20,27,31] exhaust the known classes
of properly ASH, i.e., not AH, algebras for which the Elliott conjecture is confirmed.
We prove that some of these classification results in fact cover approximately divis-

ible C∗-algebras, and so are Z-stable by Theorem 2.3. For the remaining classes of
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ASH algebras, we develop an approach to proving Z-stability which should remain
applicable as more general classification results for ASH algebras arise.

We feel that our results, combined with the counterexamples of [22, 28, 29],

demonstrate the necessity for stabilisation by Z in the classification program for sep-
arable, nuclear C∗-algebras.

1 Z-Stability and an Augmented Invariant

In this section we review the effect of tensoring with Z on the Elliott invariant of a

simple, unital and nuclear C∗-algebra A, and examine the effect of this operation on
an augmented version of the invariant. Our conclusion, predictably, is that tensoring
with Z has no effect whatsoever provided that (the invariant of) A is sufficiently well
behaved.

Let A be a simple and nuclear C∗-algebra. Define an invariant

I(A) := ((K∗A,K∗A+),T+A, rA, µA),

where (K∗A,K∗A+) is the (pre-)ordered topological K-theory of A (this includes the
order on the direct sum K∗A := K0A ⊕ K1A coming from partial unitaries, which
we review below), T+A is the (possibly empty) space of positive tracial functionals,

rA is the pairing between T+A and K0A given by evaluation, and µA : T+A → R
+ is

the trace-norm map defined by µA(τ ) = supa∈B1(A) τ (a), where B1(A) is the unit
ball of A. If A is unital, then we replace T+A with the space of tracial states TA, and
ignore µA (it is identically equal to one). We include instead the K0-class of the unit,

[1A]. The space T+A and the pairing rA are only relevant in the setting of stably finite
C∗-algebras.

The invariant I(A) is a (slightly) augmented version of the usual Elliott invariant.
The latter, say Ell(A), is obtained from I(A) by considering only the order structure
on K0A, rather than K∗A.

To prepare the next proposition, we review the definition of K∗A+. An element u

of a unital C∗-algebra A is called a partial unitary if it is both normal and a partial
isometry. For such a u, the element u + (1A − uu∗) is a unitary in A. Say that an
element x ⊕ y ∈ K0A ⊕ K1A = K∗A is positive if

(i) x = [p] for some projection p ∈ Mn(A),
(ii) there is a partial unitary v ∈ Mk(A) such that

[vv∗] ≤ [p] and [v + (1Mk(A) − vv∗)]1 = y.

Proposition 1.1 Let A be a simple, separable, unital, and nuclear C∗-algebra. Then

I(A) ∼= I(A ⊗ Z) if and only if the (pre-)ordered group (K0A,K0A+) is weakly unperfo-

rated and the order structure on K∗A is the strict order coming from the direct summand

K0A of K∗A.

Proof In [8] it is shown that Ell(A) ∼= Ell(A ⊗ Z) whenever (K0A,K0A+) is weakly
unperforated, so that any difference between I(A) and I(A ⊗ Z) must occur in the
cone K∗A+.
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Theorem 2 of [11] states that the natural map

η : U(B ⊗ Z)/U(B ⊗ Z)0 → K1(B ⊗ Z)

is an isomorphism whenever B is a unital C∗-algebra. For a projection p ∈ B, the
map ι : K1(pBp) → K1B given by sending the class of a unitary v ∈ Mk(pBp) to

the class of the unitary v + (1Mk(B) − 1Mk(pBp)) ∈ Mk(B) is surjective whenever p is
full. Let q ∈ A ⊗ Z be a projection, and let y ∈ K1(A ⊗ Z). Since A is simple, q

is full and the map ι : K1(q(A ⊗ Z)q) → K1(A ⊗ Z) is surjective, hence there is a
unitary v ∈ Mk(q(A ⊗Z)q), some k ∈ N, such that ι([v]1) = y. By [11, Lemma 3.2],

Z-stability passes to corners (in fact, to hereditary subalgebras; see [30, §3]), whence
the map

η : U(q(A ⊗ Z)q)/U(q(A ⊗ Z)q)0 → K1(q(A ⊗ Z)q)

is an isomorphism. It follows that v may be chosen to lie in q(A⊗Z)q. Thus, ([q], y)
is positive for every y, and K∗(A⊗Z) has the strict order coming from K0(A⊗Z).

Proposition 1.1 does not address non-unital algebras, and cannot be adapted im-
mediately to a non-unital algebra with unit adjoined. Nevertheless, we can say some-
thing about I(A ⊗ Z) in this case: if γ is the unique normalised trace on Z, then the

isomorphism ζ : T+A → T+(A⊗Z) given by ζ(τ ) = τ ⊗ γ preserves the trace-norm
map.

2 Approximate Divisibility

In this section we show that separable, approximately divisible C∗-algebras are
Z-stable, answering a question posed by Jiang [11]. We first recall the definition

of approximate divisibility, then give a new version of [30, Theorem 2.2] to make
the special inductive limit decomposition of Z available for our purposes. Follow-
ing the terminology of [30], we denote by Q(A) the quotient

∏

N
A/

⊕

N
A for any

C∗-algebra A; M(A) will be the multiplier algebra of A.

Definition 2.1 A C∗-algebra A is said to be approximately divisible, if, for any

N ∈ N, there is a sequence of unital ∗-homomorphisms µn : MN ⊕ MN+1 → M(A)

which is approximately central for A, i.e., ‖[µn(x), a]‖
n→∞
−−−→ 0 for all a ∈ A and

x ∈ MN ⊕ MN+1.

Proposition 2.2 Let A and D be separable C∗-algebras, D unital, strongly self-absor-

bing and K1-injective. Suppose that D can be written as the closure of an increasing

union of nuclear C∗-algebras Di, i ∈ N. If for each i ∈ N there exists a unital ∗-

homomorphism γi : Di → Q(M(A))∩A ′, then there is an isomorphismϕ : A → A⊗D

and ϕ ≈a.u. idA ⊗1D.

Proof By the Choi–Effros lifting theorem we can lift the γi to u.c.p. maps

γ̄i : Di →
∏

N

M(A).
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Denote the components of γ̄i by γ̄i,n, n ∈ N. Each γ̄i,n is a nuclear u.c.p. map, so
it can be approximated pointwise by finite rank u.c.p. maps. These in turn may be

extended to u.c.p. maps γ̄(k)
i,n : D → M(A) by Arveson’s extension theorem. Fix i for

a moment; using separability of Di we can choose a suitable subsequence (kn)n∈N of
(k)k∈N, such that the u.c.p. map

γ̃i := (γ̄(kn)
i,n )n∈N : D →

∏

N

M(A) ,

when restricted to Di , also lifts γi . Again, let γ̃i,n denote the components of γ̃i .
But now, using the properties of the γi and the fact that the Di exhaust all of D, it

is straightforward to construct subsequences (ik)k∈N of (i)i∈N and (nk)k∈N of (n)n∈N,
such that the u.c.p. map γ̃ := (γ̃ik,nk

)k∈N : D →
∏

N
M(A) induces a ∗-homomor-

phism γ ′ : D → Q(M(A))∩A ′. The assertion now holds by [21, Theorem 7.2.2].

Theorem 2.3 Let A be a separable and approximately divisible C∗-algebra. Then

there is an isomorphism ϕ : A → A ⊗ Z and ϕ ≈a.u. idA ⊗ 1Z.

Proof By [12, Proposition 2.5], Z may be written as an increasing union of dimen-
sion drop algebras I[p j , p jq j , q j] with relatively prime integers p j , q j . For each j ∈ N

there are integers m j , n j such that 1 = m j ·p j +n j ·q j , since p j , q j are relatively prime.
Define N j := |m j | · p j + |n j | · q j and unital ∗-homomorphisms

γ ′
j : I[p j , p jq j , q j] → MN j

⊕ MN j +1

by

γ ′
j :=

( |m j |
⊕

1

ev0 ⊕
|n j |
⊕

1

ev1

)

⊕
( |m j |+m j

⊕

1

ev0 ⊕
|n j |+n j
⊕

1

ev1

)

.

By definition of approximate divisibility, for each j ∈ N there exists a unital ∗-homo-
morphism ι j : MN j

⊕ MN j +1 → Q(M(A)) ∩ A ′. Define unital ∗-homomorphisms

γ j : I[p j , p jq j , q j] → Q(M(A)) ∩ A ′

by γ j := ι j ◦ γ
′
j and the result will follow from Proposition 2.2.

3 AH Algebras

By [6], simple AH algebras of bounded topological dimension are approximately di-
visible, so Theorem 2.3 yields the following.

Corollary 3.1 A separable, unital and simple AH algebra of finite topological dimen-

sion is Z-stable.

Note that the corollary covers precisely the algebras classified in [5]. There are
also a number of classification results for non-unital and simple AH algebras, and
for non-simple AH algebras. In recent work Ivanescu [10] has proved that simple
C∗-algebras which are stably isomorphic to approximately interval (AI) algebras are
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classified up to isomorphism by the invariant I(·) described in Section 1 of this paper,
generalising work of I. Stevens [25]. AI algebras are approximately divisible (cf. [4]),

as are their tensor products with the compact operators [30, Corollary 3.2]. It follows
that the stabilization A ⊗ K of an algebra A as treated in [10] is Z-stable. Another
application of [30, Corollary 3.2] shows that A itself must be Z-stable.

In the non-simple case, K. Stevens [26] classifies certain non-simple and approx-

imately divisible AI algebras, which by Theorem 2.3 are Z-stable. There is also the
impressive result of Dadarlat and Gong [2], which classifies certain ASH algebras of
real rank zero. These are frequently approximately divisible, subject to K-theoretic
conditions which we will not describe here.

The converse of Theorem 2.3 is not true; in fact, Z itself is a counterexample (Z is
not approximately divisible, since it is unital and projectionless). However, it seems
natural to ask for a converse at least in the case of an abundance of projections:

Question 3.2 Are approximate divisibility and Z-stability equivalent for simple,

unital, nuclear, non-type-I C∗-algebras of real rank zero?

The idea that Z-stability should entail classifiability via the Elliott invariant also
suggests the following.

Question 3.3 Let A be a separable, unital and simple AH algebra. Is A ⊗ Z an AH
algebra of finite topological dimension?

As it turns out, we can make some immediate progress on Question 3.3.

Proposition 3.4 Let A := p(C(X)⊗K)p be a rank(p)-homogeneous C∗-algebra over

a connected compact Hausdorff space X. Then

(

(K0(A ⊗ Z),K0(A ⊗ Z)+, [p ⊗ 1Z]),K1(A ⊗ Z)
)

is a weakly unperforated, graded, ordered group with the strict order coming from K0.

Furthermore, the strictly positive elements of K0(A ⊗ Z) are precisely the images under

the map K0(idA ⊗1Z) of those elements in K0(A) having strictly positive virtual dimen-

sion.

Proof Since p is a full projection, one may repeat the proof of Proposition 1.1 to

conclude that K∗(A ⊗ Z) has the strict order coming from K0.
The elements of K0(A) can be thought of as differences of stable isomorphism

classes of complex vector bundles over X. Let x = [γ] − [ω] be such a differ-
ence. The quantity rank(γ) − rank(ω) is known as the virtual dimension of x. If

rank(γ) − rank(ω) > 0, then there exists N ∈ N such that nx ∈ K0(X)+ for all
n ≥ N [9, Theorem 8.1.2]. If rank(γ) − rank(ω) = 0, then mx ∈ K0(X)+ for some
m ∈ N if and only if mx = 0. If rank(γ) − rank(ω) < 0, then no positive integral
multiple of x is positive in K0(A). Note that (K0(A),K0(A)+, [p]) is a simple ordered

group: every non-zero positive element is represented by a difference x = [γ] − [ω]
where rank(γ) − rank(ω) > 0, and the stability properties of vector bundles im-
ply that every sufficiently large natural number multiple of x will dominate a second
fixed element y ∈ K0(X).
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By [8, Corollary 1.3], the inclusion ι : A → A ⊗ Z given by a 7→ a ⊗ 1Z induces a
group isomorphism ι∗ : K0(A) → K0(A ⊗ Z). Theorem 1.4 in [8] states that, with ι
as above and x ∈ K0(A), one has ι∗(x) > 0 if and only if nx > 0 for some n ∈ N. The
hypotheses of this theorem are that A is simple and unital, but an examination of the
proof shows that these can be weakened to the assumptions that A is stably finite and
that K0(A) is a simple ordered group. Applying this new version of [8, Theorem 1.4]

to our situation yields the following: (K0(A ⊗ Z),K0(A ⊗ Z)+, [p ⊗ 1Z]) is a simple
ordered group such that ι∗([γ]− [ω]) > 0 if and only if rank(γ)− rank(ω) > 0.

With A as in the proposition above, we have that

(

(K0(A ⊗ Z),K0(A ⊗ Z)+, [p ⊗ 1Z]),K1(A ⊗ Z)
)

has the strict order coming from K0(A ⊗ Z), and that

(K0(A ⊗ Z),K0(A ⊗ Z)+, [p ⊗ 1Z])

is a finitely generated ordered abelian group order isomorphic to

G := Z
n ⊕ (K0(A ⊗ Z))tor = Z

n ⊕ Gtor,

where an element (x1, . . . , xn) ⊕ g ∈ G is strictly positive if and only if x1 > 0; the
x1 co-ordinate is the virtual dimension of a K0-class. Let (G,G+) denote this ordered
group, and note that in general it does not have the Riesz interpolation property. It
is true, however, that if a1, a2 ≤ b1, b2 in (G,G+) and if the first free co-ordinates

of b1 and b2 exceed those of both a1 and a2 by at least 2, then there is an interpolat-
ing element g (i.e., a1, a2 ≤ g ≤ b1, b2) — any g with first free co-ordinate strictly
greater than the first free co-ordinates of the ai ’s and strictly less than the first free
co-ordinates of the bi ’s will serve. In fact, the same is true when G ⊕ K1(A ⊗ Z) is

equipped with the strict order from (G,G+). We use these observations to prove the
main results of this section. We recall first some standard notions and notation. Let
Aff(T(A)) denote the space of continuous real-valued affine functions on T(A), and
let W (A) denote the Cuntz monoid of generalised Murray–von Neumann equiva-

lence classes of positive elements in the algebraic direct limit

M∞(A) = lim
i→∞

(Mi(A), ψi),

where ψi : Mi(A) → Mi+1(A) denotes inclusion as the upper left corner. One says
that W (A) is almost unperforated if x ≤ y whenever (n + 1)x ≤ ny for x, y ∈ W (A)

and n ∈ N. Finally, let sr(A) denote the stable rank of A.

Theorem 3.5 Let A be a simple, unital AH algebra. Then I(A ⊗ Z) is the augmented

invariant of a simple, unital AH algebra of bounded topological dimension.

Proof The main theorem of [33] states that every instance of the Elliott invariant for
which
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(i) the ordered K0-group has the Riesz interpolation property, is simple and weakly
unperforated, and the torsion-free part of K0 is not isomorphic to Z or the triv-

ial group,
(ii) K1 is a countable abelian group,
(iii) the tracial state space is a non-empty metrizable Choquet simplex,
(iv) the continuous affine pairing between traces and states on K0 preserves extreme

points

occurs as Ell(B) for some simple, unital AH algebra B of bounded topological dimen-
sion. Items (ii)–(iv) above are automatically satisfied for AH algebras (see [33], for
instance), so we need only establish the properties in (i) for

(

(K0(A ⊗ Z),K0(A ⊗ Z)+, [1A ⊗ 1Z])
)

in order to prove our theorem with Ell(A⊗Z) in place of I(A⊗Z). The full conclusion
of the theorem then follows from the fact that the ordering on K∗(A⊗Z) is the strict

one coming from K0(A ⊗ Z) (Proposition 1.1).
Weak unperforation and simplicity for K0(A⊗Z) follow from [8, Theorem 1] and

the simplicity of A, respectively.
The algebra A is the limit of an inductive sequence (A j , φ j), where each A j is a

finite direct sum of n j homogeneous algebras over compact connected Hausdorff
spaces. For each j ∈ N and each 1 ≤ i ≤ n j , let (Gi, j := Gi, j

0 ⊕ Gi, j
1 ,G

i, j+) denote
the graded ordered K∗-group of the i-th building block of A j tensored with Z. By the

simplicity of A we may assume, modulo compression of the inductive sequence, that
the partial morphisms K∗(φ j)

k
i : Gi, j → Gk, j+1 have large multiplicity with respect to

the co-ordinates of Gi, j
0 and Gk, j+1

0 which correspond to the rank of a projection in the
i-th direct summand of A j and the k-th direct summand of A j+1. This co-ordinate in

each of Gi, j
0 and Gk, j+1

0 is precisely the free co-ordinate which dominates the order in
each group, as discussed above. Call this the first co-ordinate for convenience. Now
let a1, a2 ≤ b1, b2 be elements of Gi, j , and note that this implies that either the first
co-ordinate of both b1 and b2 is strictly larger than either of the first co-ordinates of

a1 and a2, or, without loss, that a1 = b1. In the latter case, a1 = b1 is an interpolating
element. In the first case we push the four elements forward via K∗(φ j)

k
i , and note

that the first co-ordinate of the images of the bi ’s exceeds the first co-ordinate of either
of the ai ’s by at least two, whence, by the discussion above, there is an interpolating

element g ∈ Gk, j+1.
To see that the free part of K0(A ⊗ Z) cannot be cyclic, simply note that this

would imply that the first co-ordinate multiplicities of the partial maps K∗(φ j)
k
i are

bounded, contradicting the simplicity of A.

Corollary 3.6 Let A be a simple, unital, and infinite-dimensional AH algebra. Then

A ⊗ Z is weakly divisible in the sense of [19].

Proof Every simple, partially ordered abelian group (G,G+) which is weakly unper-

forated, has the Riesz interpolation property, and such that G/Gtor is not cyclic must
be weakly divisible. This statement follows from three facts: any such group can be
realised as the ordered K0-group of a simple, unital AH algebra of bounded topolog-
ical dimension [33]; any such algebra is approximately divisible [6]; approximately
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divisible C∗-algebras have weakly divisible K0-groups (immediate). It follows from
Theorem 3.5 that

(

(K0(A⊗Z),K0(A ⊗ Z)+, [1A⊗1Z])
)

is weakly divisible, i.e., each

x ∈ K0(A ⊗ Z)+ has a decomposition x = 2y + 3z for some y, z ∈ K0(A ⊗ Z)+. The
stable rank of A ⊗ Z is 1 by [23, Theorem 6.7]. Thus, for any projection p ∈ A ⊗ Z,
there is a unital embedding of M2 ⊕ M3 into p(A ⊗ Z)p. By [19, Lemma 5.2], this
suffices for the weak divisibility of A ⊗ Z.

Corollary 3.7 Let A be a simple, unital, and infinite-dimensional AH algebra. If

K0(A) is weakly unperforated, then it is also weakly divisible and has the Riesz interpo-

lation property.

Proof As in the proof of Corollary 3.6, every weakly unperforated, simple, partially
ordered abelian group (G,G+) with the Riesz interpolation property is weakly divis-
ible whenever G/Gtor is not cyclic. Thus, it will suffice to prove that (K0(A),K0(A)+)
has the Riesz interpolation property, and that K0(A)/K0(A)tor is not cyclic.

Let A ∼= lim j→∞(A j , φ j) be an inductive limit decomposition of A, as in the
proof of Theorem 3.5. Notice that in this proof, the only property of the ordered
groups (K0(A j),K0(A j)

+) required to establish the Riesz interpolation property for
(K0(A),K0(A)+) is this: each direct summand of (K0(A j),K0(A j)

+) corresponding to

a connected component of Sp(A j) has the strict order coming from the cyclic sub-
group generated by the K0-class of the trivial complex line bundle.

Now suppose that x ∈ (K0(A j),K0(A j)
+) has strictly positive virtual dimension.

The stability properties of vector bundles imply that some multiple mx, m ∈ N, of

x is both positive and non-zero in (K0(A j),K0(A j)
+. If, in (K0(A),K0(A)+), the im-

age of mx is non-zero, then the image of x in the same group is positive by weak
unperforation. Thus, we may equip each direct summand of (K0(A j),K0(A j)

+) cor-
responding to a connected component of Sp(A j) with the strict order coming from

the cyclic subgroup generated by the K0-class of the trivial complex line bundle with-
out disturbing (K0(A),K0(A)+). The Riesz interpolation property now follows from
the proof of Theorem 3.5, as does the property that K0(A)/K0(A)tor is not cyclic.

Given a partially ordered abelian group (G,G+), form the cone

G+ := {x ∈ G | mx ∈ G+ and mx 6= 0 for some m ∈ N}.

The order on G obtained by replacing G+ with G+ is called the saturated order. It
follows from [8, Theorem 1] that

(K0(A ⊗ Z),K0(A ⊗ Z)+) ∼= (K0(A),K0(A)+),

whence the saturated order on the K0-group of a simple, unital, and infinite-dimen-
sional AH algebra is weakly divisible and has the Riesz interpolation property.

Corollary 3.8 Let A be a simple, unital and infinite-dimensional AH algebra with

unique tracial state. Then the image of K0(A) in R = Aff(T(A)) is dense.

Proof By the comments preceding the statement of the corollary, the saturation of
(K0(A),K0(A)+) is weakly divisible, which implies that K0(A) contains elements of
arbitrarily small trace. The image of K0(A) under the unique tracial state on A is
therefore a dense subset of R ∼= Aff(T(A)), as desired.
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Based on [18, Theorem 1], Nate Brown has shown us a proof of the following
theorem, which will also follow from the (more general) results in [36]. The argu-

ments of [18, 36] are quite different; the latter is built upon the methods developed
in [15, 34, 35]. The second statement of the theorem follows from [16].

Theorem 3.9 Let A be a simple unital AH algebra. If A ⊗Z has real rank zero (this is

automatically the case if A has real rank zero), then A ⊗ Z is tracially AF. In particular,

A is AH of bounded topological dimension.

If, in the preceding theorem, A happens to have only one tracial state, then real
rank zero follows from Corollary 3.8 above and [23, Corollary 7.3].

Theorem 3.10 Let A be a simple, unital AH algebra with unique tracial state. Then

A ⊗ Z is tracially AF.

Proof Since A ⊗ Z is Z-stable, it has stable rank one by [23, Theorem 6.7]. As
mentioned above, A ⊗ Z has real rank zero. Furthermore, it is locally type I with

weakly unperforated K∗-group. It follows from [1, Theorem 7.1] that A⊗Z is tracially
AF.

The last result of this section combines results from [6,16,18,23] and our Theorem
2.3.

Theorem 3.11 Let A be a simple, unital, and infinite-dimensional AH algebra, and

suppose that the image of K0(A) in Aff(T(A)) is uniformly dense. Then the following are

equivalent:

(i) A is Z-stable;

(ii) A is AH of bounded topological dimension;

(iii) A is tracially AF;

(iv) W (A) is almost unperforated and sr(A) = 1.

Proof (i) ⇒ (iv). If A is Z-stable, then W (A) is almost unperforated and sr(A) = 1
by [23, Theorems 4.5, 6.7], respectively.

(iv) ⇒ (iii). A is simple, unital, exact, has stable rank one, and W (A) is almost

unperforated. Add to this the condition that the image of K0(A) in Aff(T(A)) is
uniformly dense, and one has the hypotheses of [23, Proposition 7.1]. The conclusion
is that A has real rank zero. It then follows from [18, Theorem 1] that A is tracially
AF.

(iii) ⇒ (ii). If A is tracially AF, then it is AH of bounded topological dimension by
Lin’s classification theorem [16, 21].

(ii) ⇒ (i). A is approximately divisible by [6]. This implies Z-stability by Theo-
rem 2.3.

Note that the class of algebras described in the hypotheses of Theorem 3.11 need
not satisfy any of the four equivalent conditions in the conclusion of the same. In-

deed, Villadsen has constructed simple, unital AH algebras of arbitrary finite stable
rank having unique trace and projections of arbitrarily small trace [32].

If, as in the hypotheses of Theorem 3.11, A has a unique tracial state, Corollary 3.8
implies that the density condition on the image of K0 can be dropped.
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There is evidence to suggest that conditions (i), (ii), and (iv) in the conclusion of
Theorem 3.11 are equivalent for general simple, unital and infinite-dimensional AH

algebras.

4 ASH Algebras

The list of ASH classification results as mentioned in the introduction can be divided
into two groups according to whether or not they cover a class of approximately di-
visible C∗-algebras. Obviously, one may apply Theorem 2.3 to the approximately
divisible algebras to obtain Z-stability, so our task is twofold: decide which of the

classification results for ASH algebras cover approximately divisible C∗-algebras, and
find an alternative method for proving Z-stability for the classified ASH algebras
which are not approximately divisible. One can order the classification theorems
covering ASH algebras which may fail to be approximately divisible by increasing

generality: [7, 12, 17, 27]. We shall prove that the algebras treated in [17] are Z-stable
in Theorem 4.2 below. As it turns out, the remaining ASH classification results cover
algebras which are approximately divisible, though this fact is far from obvious for
the algebras treated in [13].

Razak [20] established the first classification result for simple, nuclear, and sta-
bly projectionless C∗-algebras. The algebras classified are simple inductive limits of
subhomogeneous building blocks of the form

An,k = Mn(C) ⊗
{

f ∈ C([0, 1],Mk(C)) | ∃ a ∈ C such that

f (0) = diag(a, . . . , a, 0), f (1) = diag(a, . . . , a)
}

.

Let R denote this class of building blocks. Razak’s [31] results are generalised to
cover simple inductive limits of finite direct sums of the building blocks above, and
the range of the Elliott invariant for this class of algebras is computed.

The following proposition appears to be known to a few experts, but has not ap-
peared in print.

Proposition 4.1 Let A = limi→∞(Ai , φi) be a simple inductive limit, where each Ai

is a finite direct sum of building blocks from R. Then A is approximately divisible.

Proof Let there be given a finite set F ⊆ A and a tolerance ǫ > 0. We may assume
without loss of generality that F ⊆ A1. We will use the existence and uniqueness

theorems [31] to prove that, modulo compression of the inductive sequence (Ai , φi),
there exists a map γ : M5 ⊗ A1 → A2 such that the diagram

M5 ⊗ A1

γ

##G
GG

GGG
GGG

A1

1⊗id
;;wwwwwwwww φ1

// A2

commutes up to ǫ on F. The existence of γ implies the approximate divisibility of A.
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The ∗-homomorphism 1M5
⊗ idA1

: A1 → M5⊗A1 induces an isomorphism at the
level of the augmented invariant I(•). (One need only verify this at the level of traces,

since every Ai has trivial K-groups.) Thus, there is a map γ̃ : I(M5 ⊗ A1) → I(A2)
making the diagram above commute at the level of the Elliott invariant. The local
existence theorem [31] implies that there exists a ∗-homomorphism γ ′ : M5 ⊗ A1 →
A2 which agrees with γ̃ at the level of the Elliott invariant within a specified tolerance

on a particular finite subset of Aff(T(A1)) depending only on F. The local uniqueness
theorem then implies that there is a unitary u ∈ M(A2) such that

γ := uγ ′( · )u∗ : M5 ⊗ A1 → A2

has the required property.

We now recall the ASH algebras considered in [17]. Let N, n, d1, . . . , dN be natural
numbers such that di divides n for every i, and let x1, . . . , xN be distinct points in
T. Denote by A(n, d1, . . . , dN) the C∗-algebra { f ∈ C(T) ⊗ Mn | f (xi) ∈ Mdi

, i =

1, 2, . . . ,N}, where Mdi
is embedded unitally in Mn. Let S denote the collection

of all such algebras. These algebras are often referred to as dimension drop circles.
We will refer to the points x1, . . . , xN as the exceptional points of A(n, d1, . . . , dN).
The simple unital infinite dimensional inductive limits of finite direct sums of such
algebras are shown to be classified by the Elliott invariant in [17].

Theorem 4.2 Let A = limi→∞(Ai , γi) be a simple unital and infinite-dimensional

inductive limit, where each Ai is a finite direct sum of building blocks from S. Then A is

Z-stable.

Proof By Proposition 2.2 it will suffice to prove the following: given a finite set F ⊆
A, a dimension drop interval B = I[p, pq, q], a finite set G ⊆ B, and a tolerance
ǫ > 0, there is a unital embedding ι : B → A such that

‖ι(g) f − f ι(g)‖ < ǫ, ∀ f ∈ F, g ∈ G.

By [17, Lemma 9.6], we may assume that the unital ∗-homomorphism γi is injec-
tive for every i ∈ N. We may further assume that F ⊆ A1, where

A1 =

l
⊕

j=1

A1, j ,

and, for each 1 ≤ j ≤ l, there are natural numbers n j , N j , and d1, j , . . . , d1,N j
such

that A1, j = A(n j , d1, j, . . . , dN j , j).

Consider the building block A(pq, p, q) where the dimension drops occur at
1,−1 ∈ T. The fixed point algebra of A(pq, p, q) under the automorphism induced
by the flip on T with fixed points 1,−1 is isomorphic to B. Assume that the excep-
tional points of A1 are disjoint from {1,−1} ⊆ T. Let πB : B → A(pq, p, q) ⊗ A1 be

the ∗-monomorphism obtained by embedding B into A(pq, p, q) as the fixed point
algebra described above and then embedding A(pq, p, q) into A(pq, p, q) ⊗ A1 as
A(pq, p, q)⊗1A1

. Let πA1
: A1 → A(pq, p, q)⊗A1 be the embedding obtained by iden-

tifying A1 with 1A(pq,p,q)⊗A1. Let ρ j denote the restriction of A(pq, p, q)⊗A1, j to the
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closed subset ∆ = {(x, x) | x ∈ T} ⊆ T
2 of its spectrum. The image of ρ j , say D j , is

easily seen to be a building block of the form A(n j pq, pqd1, j, . . . , pqdN j , j , pn j , qn j),
which, by [17, Corollary 3.6, Lemma 3.9], has the same Elliott invariant as A1, j . Set

D :=
l

⊕

j=1

D j ρ :=
l

⊕

j=1

ρ j .

To prove the theorem it will suffice to establish the existence of a ∗-homomor-

phism φ : D → A2 making the diagram

D
φ

  @
@@

@@
@@

A1

ρ◦πA1

??~~~~~~~ γ1

// A2

commute up to ǫ on F ⊆ A1. Then B (and hence G) can be embedded into D such
that the image commutes with ρ ◦ πA1

(F).
The composition ρ◦πA1

: A1 → D induces a KK-equivalence and an isomorphism
at the level of the Elliott invariant. (The details of this calculation are straightforward.

The interested reader is referred to [17, §§4, 5].) Thus, there are a positive element
xφ ∈ KK(D,A2) and an isomorphism ηφ : Ell(D) −→ Ell(A2) such that

[ρ ◦ πA1
] · xφ = [γ1] ∈ KK(A1,A2) and ηφ ◦ Ell(ρ ◦ πA1

) = Ell(γ1) .

Let the superscript ♯ denote the map induced by a ∗-homomorphism at the level of

the Hausdorffized algebraic K1-group U( · )/DU( · ). Then one also has a morphism

νφ : U(D)/DU(D) → U(A2)/DU(A2)

such that νφ ◦ (ρ ◦ πA1
)♯ = γ♯1. We have used the subscript φ above to suggest, as

indeed will turn out to be the case, that these invariant level maps above can be lifted
to a ∗-homomorphism φ̃ : D → A2.

By the simplicity of A, we may assume that the fibres of A2 are of arbitrarily large
rank at every point in the spectrum of A2. Knowing this, we may invoke [17, Theorem

8.1], specialising it to our purpose.

Theorem 4.3 (Mygind) Let ǫ > 0 and a finite set H ⊆ Aff(TA1) be given. Then

there exists a ∗-homomorphism φ̃ : D → A2 such that

(i) [φ̃] = xφ ∈ KK(D,A2);

(ii) φ̃♯ = νφ;

(iii) ‖(φ̃ ◦ ρ ◦ πA1
)̂ (h) − γ̂1(h)‖ < ǫ‖h‖, ∀h ∈ H.

Thus, the diagram

D
φ̃

  @
@@

@@
@@

A1

ρ◦πA1

??~~~~~~~ γ1

// A2
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is at least approximately commutative (with respect to the finite set H ⊆ Aff(TA1)
of the theorem above) at the level of the Elliott invariant, KK, and U( · )/ DU( · ).

By enlarging H if necessary, we may apply [17, Lemma 9.1] to conclude that φ̃ is
injective.

To complete the proof we recall [17, Theorem 7.7].

Theorem 4.4 (Mygind) For C1, C2 ∈ S, let β, ψ : C1 → C2 be ∗-homomorphisms

inducing the same element of KK(C1,C2). Let F be a finite subset of C1, and let ǫ > 0
be given. There exists a natural number l such that if p and q are positive integers with

l ≤ p ≤ q, if δ > 0, if

(i) ψ̂(ĥ) > 8
p
, h ∈ H(C1, l),

(ii) ψ̂(ĥ) > 2
q
, h ∈ H(C1, p),

(iii) ‖β̂(ĥ) − ψ̂(ĥ)‖ < δ, h ∈ H̃(C1, 2q),

(iv) ψ̂(ĥ) > δ, h ∈ H(C1, 4q),

(v) DC2
(β♯(qC1

(νC1 )), ψ♯(q(νC1 ))) < 1
4q2 ,

then there exists a unitary u ∈ C2 such that ‖ψ( f ) − u∗β( f )u‖ < ǫ for all f ∈ F.

Many undefined objects appear in hypotheses (i)–(v). We will address this issue
presently. Replace Ci with Ai for i = 1, 2, β with φ̃ ◦ ρ ◦πA1

, and ψ with γ1. In [17] it
is proved that the simplicity of A = limi→∞(Ai , γi) allows one to assume that condi-

tions (i), (ii) and (iv) are satisfied, modulo compression of the inductive sequence for
A. We may assume that [17, Theorem 8.1(iii)] holds for H = H̃(A1, 4q), so that con-
dition (iii) is satisfied. Condition (v) is a statement concerning the distance between
two elements of the algebraic K1-group of A2. Since DA2

is a metric and since

φ̃ ◦ ρ ◦ πA1

♯
(νA1 ) = γ♯1(νA2 )

by part (ii) of the conclusion of Theorem 4.2 above, one sees that condition (v) is

satisfied. Thus, γ1 and φ̃ ◦ ρ ◦ πA1
agree up to ǫ on the finite set F ⊆ A1 after

conjugation by a unitary element in A2. Set φ := Ad(u) ◦ φ̃. The inclusion of B into
D composed with φ yields a unital embedding ι : B → A2 →֒ A. The image ι(G) then
commutes with F up to ǫ, as required.

It remains to address the algebras classified in [13]. Let P denote the collection of
C∗-algebras of the form

A(a1, . . . , am; b1, . . . , bl) :=
{

f ∈ Mn ⊗C([0, 1]) | f (0) ∈
m
⊕

i=1

Mai
, f (1) ∈

l
⊕

j=1

Mb j

}

,

where n, a1, . . . , am and b1, . . . , bl are natural numbers such that

m
∑

i=1

ai =

l
∑

j=1

b j = n.

Notice that the spectrum of such an algebra is not Hausdorff in general. We call
the points 0 and 1 in the Hausdorffized spectrum of A(a1, . . . , am; b1, . . . , bl) broken
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endpoints, and the spectra of the simple blocks of the fibres over 0 or 1 fractional end-

points. In [13] it is shown that simple, unital, infinite-dimensional inductive limits

of finite direct sums of members of P are classified by the Elliott invariant.

Theorem 4.5 Let A = limi→∞(Ai , γi) be simple unital and infinite-dimensional

inductive limit, where Ai ∈ P, i ∈ N. Then A is approximately divisible.

Before proceeding with the proof we recall some terminology from [13]. Let C,D
be C∗-algebras. Morphisms κ : K0(A) → K0(B), θ : T(B) → T(B) are said to be
compatible if 〈e, θ(t)〉 = 〈κ(e), t〉 for all e ∈ K0(A) and t ∈ T(B). A decomposition
of a compatible pair (κ, θ), denoted (κ, θ =

∑

j(κ j , θ j), consists of

• mutually orthogonal C∗-subalgebras D1,D2, . . . ,Dn of D such that 1D ∈ D1 +

D2 + · · · + Dn,
• a compatible pair (κ j , θ j) for (C,D j) for each j satisfying κ = ι∗

(
⊕n

j=1 κ j

)

,
where ι : D1 + D2 + · · · + Dn → D is the inclusion map, and

θ(t) =

n
∑

j=1

θ j(t|D j
), t ∈ T(B),

where θ j is again naturally extended.

Let C = A(k1
0, . . . , k

r0

0 ; k1
1, . . . , k

r1

1 ). Then

K0(C) =

{

(l1
0, . . . , l

r0

0 , l
1
1, . . . , l

r1

1 ) ∈ Z
s × Z

r
∣

∣

∣

∑

i

li
0 =

∑

j

l
j
1

}

.

We now consider some basic compatible pairs:
(i) Let D = Mm(C), κ(l1

0, . . . , l
r0

0 , l
1
1, . . . , l

r1

1 ) =
∑

i li
0, and θ(Tr) = µ, where Tr is

the unique normalised trace on D and µ is any Radon probability measure on [0, 1].
Then (κ, θ) is a compatible pair for (C,D). Such a pair is called generic.

(ii) Let x be a broken endpoint of C . Let D = C(x),

κ(l1
0, . . . , l

s
0, l

1
1, . . . , l

r
1) = (l1

0, . . . , l
s
0),

and θ(δi
x) = δi

x for 1 ≤ i ≤ rx, where δi
x is the unique normalised trace of the matrix

algebra Mki
x
. Such a pair is called broken.

(iii) Let y be a fractional endpoint of C , and let D = C(y),

κ(l1
0, . . . , l

r0

0 , l
1
1, . . . , l

r1

1 ) = l j
x

(l
j
x is the co-ordinate corresponding to y), and θ(Tr) = δy . A compatible pair equiv-

alent to this will be called fractional at y.

Proof of Theorem 4.5 Let A = lim(Ai , γi) be a simple, unital and infinite dimen-
sional C∗-algebra, where Ai ∈ P for every i ∈ N. Let there be given a finite set
F ⊆ A, a natural number N and a tolerance ǫ > 0. We require a unital embedding of
ι : MN ⊕MN+1 → A which commutes with F up to ǫ. We may assume that F ⊆ A1, so

that it will suffice to find a unital embedding of MN ⊕MN+1 into A2 which commutes
with γ1(F) up to ǫ. In light of [13, Lemma 2.3], we may assume that A1 and A2 are
single building blocks.

We recall the following [13, Theorem 3.7] (local existence).
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Theorem 4.6 (Jiang–Su) Let A1 be a splitting interval algebra. Then for any finite

subset F of A1 and any positive tolerance ǫ there is a constant K ∈ N such that for any

compatible pair (κ, θ) for (A1,A2), where A2 is a splitting interval algebra of generic

fibre dimension m, there is a constant C depending only on A1 and a ∗-homomorphism

α : A1 → A2 of the standard form [13] which induces κ and almost induces θ in the

sense that

‖α∗(t)( f ) − θ( f )‖ < ǫ +
CK‖ f ‖

m

for any f ∈ F, t ∈ T(A2).

By [13, Theorem 3.6] we may assume that K, which depends only on F and ǫ, is even.
Since we are dealing with a simple limit, we may assume that m above is arbitrarily
large. In fact, we may assume that the dimension of each simple matrix block at the
endpoints of the spectrum of A2 is arbitrarily large [13, Corollary 5.3].

We recall the construction of the map α above, and show that this map can be
perturbed to a ∗-homomorphism φ : A1 → A2 which induces κ and almost induces
θ as above, and whose image commutes with a unital copy of MN ⊕ MN+1 inside A2.
We then apply the local uniqueness result of [13] to complete the proof.

For x ∈ {0, 1}, let Qx : A2 → A2(x) be the canonical evaluation map. Applying
[13, Lemma 3.5] to the compatible pairs (κ(x), θ(x)) := ((Qx)∗ ◦ κ, θ ◦ (Qx)∗), we
obtain decompositions (κ(x), θ(x)) =

∑

j(κ
(x)
j , θ

(x)
j ), where each (κ(x)

j , θ
(x)
j ) is either

fractional, broken, or generic. Furthermore, these two decompositions have the same

total number of summands, and the same number of summands which are fractional
pairs at the fractional endpoint y of A1 for each such y. Assume, therefore, that
(κ(0)

j , θ
(0)
j ) is fractional at y if and only if (κ(1)

j , θ
(1)
j ) is fractional at y.

We now group the remaining compatible pairs into “batches” in a manner simi-

lar to that of the proof of [13, Theorem 3.7]. In each simple block of A2(0), group
the generic pairs into batches of size KN(2N + 1), leaving at most KN(2N + 1) − 1
such pairs unaligned. Group equivalent broken pairs — those corresponding to the
same endpoint of the spectrum of A1 — into batches of size KN(2N + 1), leav-

ing at most 2KN(2N + 1) − 2 unaligned pairs. Carry out a similar grouping of
the pairs in the decomposition for (κ(1)

j , θ
(1)
j ). By [13, Lemma 5.2] we may assume

that at least 2/ǫ batches of generic pairs occur inside each simple block of A2(0) and
A2(1). After batching, the total number of unaligned pairs in A2(0) does not exceed

(2 + s0)(KN(N + 1)− 1), where s0 denotes the number of direct summands of A2(0).
Assume that the total number of batches at 1 does not exceed that at 0, and that if
two pairs (κ(0)

j , θ
(0)
j ) and (κ(0)

l , θ(0)
l ) are in the same batch, then so are (κ(1)

j , θ
(1)
j ) and

(κ(1)
l , θ(1)

l ).

Find mutually orthogonal subalgebras B1,B2, . . . ,Bk of A2 such that

(i) if (κ(0)
j , θ

(0)
j ) is fractional at y, then B j ≃ A1(y);

(ii) if (κ(0)
j , θ

(0)
j ) is not fractional, then B j is a splitting interval algebra with B j(x)

isomorphic to the fibre of A1 giving rise to κ(x)
j , x ∈ {0, 1}.

Define φ to be equal to α on the batched compatible pairs for the time being. Note
that any perturbation of α on the subalgebras B j corresponding to fractional or un-
aligned pairs will have a negligible effect on traces.
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Consider the fibre over a broken endpoint of the spectrum of A2 having the greater
number, say β, of simple blocks. Choose a batch of generic pairs from each such

block. It is elementary that one may choose β batches of generic pairs from among
the simple blocks over the opposite endpoint such that at least one batch is chosen
from each simple block, and the proportion of batches chosen among all generic
batches in any given simple block does not exceed ǫ. Pair these batches of generic

compatible pairs, and assume that if (κ(0)
j , θ

(0)
j ) is in a chosen batch at one endpoint,

then (κ(1)
j , θ

(1)
j ) is in the paired batch at the other endpoint. Let B(l) be the direct

sum of the B j corresponding to the l-th pair of batches. Define a ∗-homomorphism
φl : A1 → B(l) to be the direct sum of (KN/2)(2N + 1) copies of evaluation at each of

the two broken endpoints of the spectrum of A1, 1 ≤ l ≤ β. Notice that this choice
of morphism does not change the induced maps κ(0)

j and κ(1)
j corresponding to the

B j under consideration. Let Jβ be the set of all indices contained in the paired batches
above.

We now address the unaligned pairs. To each unaligned compatible pair in A2(0)
there corresponds a compatible pair in A2(1) and a subalgebra B j of A2 whose end-
points lie entirely inside a simple block of A2(0) and A2(1), respectively. The map
defined in [13, Theorem 3.7] from A1 to B j can be replaced with evaluation at a bro-

ken endpoint, say 0, of A1 without changing the induced map on K-theory. Since the
number of unaligned pairs is negligible when compared to the total number of pairs,
this modification has a negligible effect on traces. Let I denote the set of indices of

the unaligned pairs and let φβ+1 : A1 →
⊕

j∈I B j be the direct sum of the modified
maps above.

It follows from the proof of [13, Theorem 3.7] that there is a morphism

φ̃ : A1 →
⊕

j /∈ Jβ∪I

B j

(which is in fact equal to α on these B j) such that

φ := φ̃⊕
( β+1

⊕

l=1

φl

)

induces κ and almost induces θ in the manner of the conclusion of [13, Theorem 3.7].

Note that by the proof of [13, Theorem 3.7], the direct sum of the B j from any
given batch sits inside a subalgebra of A2 isomorphic to MnKN(2N+1)(C([0, 1])), where
n is the dimension of the generic fibre of A1.

The important difference between the construction of φ produced here and that

of α in the proof of [13, Theorem 3.7] is that, using the assumption of simplicity,
we are able to guarantee that the multiplicity of the evaluation of A1 at any fractional
endpoint is at least N(N +1) in each simple block over the two endpoints of the Haus-
dorffized spectrum of A2, and that the map φ̃ can be written as the N(2N + 1)-fold

direct sum of another morphism ψ. Furthermore, the image of
⊕β+1

l=1 φl consists en-

tirely of fractional evaluations. Let sx denote the number of simple blocks of A2(x),
x ∈ {0, 1}. For 1 ≤ i ≤ s0, write aiN + bi(N + 1) for the number of evaluations
at y in the i-th simple block of A2(0). Since there are at least N(N + 1) such evalu-
ations in each simple block, we may assume that ai, bi ≥ 0 for all i. Similarly, write
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c jN + d j(N + 1) for the number of evaluations at y in the j-th block of A2(1) with
c j , d j ≥ 0. Since, by the construction of the φl, there are at least 2KN(2N + 1) such

evaluations in each simple block, one may modify the choices of the ai , bi , c j , and d j

so that
∑

i

ai =

∑

j

c j and
∑

i

bi =

∑

j

d j .

Having noticed this, one sees that φ can be factored through A1 ⊗ (MN ⊕ MN+1).

One can easily verify the hypotheses of [13, Theorem 4.2] (local uniqueness) for
φ, γ1, F, and ǫ, and conclude that φ is approximately unitarily equivalent to γ1 on the
finite subset F of A1. This establishes the approximate divisibility of A.
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