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Abstract

In this paper, we investigate Volterra spaces and relevant topological properties. New characterizations
of weakly Volterra spaces are provided. An analogy of the Banach category theorem in terms of Volterra
properties is obtained. It is shown that every weakly Volterra homogeneous space is Volterra, and there
are metrizable Baire spaces whose hyperspaces of nonempty compact subsets endowed with the Vietoris
topology are not weakly Volterra.
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1. Introduction

Let / : X -*• Y be a function from one topological space X into another topological
space Y. We shall denote by C(f) (respectively D(f)) the set of points at which
/ is continuous (respectively discontinuous). Recall that / is said to be pointwise
discontinuous, abbreviated as PWD, if C(f) is dense in X. This class of functions was
originally introduced by Hankel [8] in 1870, and used to be the main object of studies
in the classical real function theory until the appearance of the works of Lebesgue. It
can be shown that a function of a Baire space to a metric space is PWD if and only
if D(f) is of first category. In 1881, Volterra [16] proved the following interesting
theorem.

THEOREM 1.1 ([16]). Let f : R -> R be a PWD function. Then there exists no
other PWD function g : R ->• R with C(g) = D(f).
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62 Jiling Cao and David Gauld [2]

Hence, for example, the set C(f) of the function / : K —> R given by

^ (kx) (x) (2x) (kx)

where (x) denotes the fractional part of x e R, is precisely the irrationals, and there
exists no function g : K —> R whose set of points of continuity is the rationals.
These ideas and their generalizations have been studied in the last ten years by Gauld,
Greenwood and Piotrowski in [3-6] respectively. Their work leads to the following
definitions of Vblterra and weakly Vblterra spaces.

DEFINITION 1.2 ([5]). A topological space X is called Volterra (respectively weakly
Volterra) if for each pair of real-valued PWD functions / , g : X —>• K, the set
C(f) n C(g) is dense (respectively nonempty) in X.

We notice that the range space R in Definition 1.2 can be replaced by any de-
velopable space by considering the generalized oscillation. Although Volterra and
weakly Volterra spaces are defined in terms of 'external' functions on them, there are
some 'internal' characterizations for these two classes of spaces as well, namely, a
space X is Volterra (respectively weakly Volterra) if and only if the intersection of
any two dense Gj-sets in X is dense (respectively nonempty) [6]. Recall that a space
is Baire (respectively of second category) if the intersection of any countably many
dense open subsets is dense (respectively nonempty). Now, it is clear that every Baire
space is Volterra, and every space of second category is weakly Volterra. Of course, all
nonempty Baire spaces are of second category, and all nonempty Volterra spaces are
weakly Volterra. In general, these four classes of spaces are all distinct, and relevant
examples can be found in [4-7]. In answering a question in [4], Gruenhage and Lutzer
[7] provided some natural classes of topological spaces in which a space is Volterra if
and only if it is Baire. In particular, the following theorem is essentially proved in [7].

THEOREM 1.3 ([7]). Let X be a topological space which satisfies any one of the-
following conditions:

(a) X contains a dense metrizable subspace.
(b) X is a Lasnev space, that is, a closed continuous image of a metric space.
(c) X is a metacompact sequential space which has a a -closed discrete dense set.
(d) X is separable and sequential.

(e) X is a metacompact Moore space.

Then X is a Baire space (respectively a space of second category) if and only if it is a

Volterra (respectively weakly Volterra) space.

However, it is still not clear how to extend Theorem 1.3 to some classes of topo-
logical spaces with certain types of generalized metric properties. For example, it is
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still an open question whether it is true that every Volterra Moore space is Baire, see,
for example, [7, Question 2.11].

In this paper, we shall continue the study of Volterra and weakly Volterra spaces.
In Section 2, new characterizations of weakly Volterra spaces are given, and an error
in a result of [4] is corrected. In Section 3, an analogy of the Banach category
theorem is established. This enables us to discover a decomposition for an arbitrary
topological space in terms of Volterra properties, and further prove that any weakly
Volterra homogeneous space is Volterra. In the last section, we study hyperspaces
of Volterra spaces with the Vietoris topology. It is shown that in certain classes of
spaces, if the hyperspace of nonempty compact subsets of a given space is Volterra
(respectively weakly Volterra) then all its finite powers must be Volterra (respectively
weakly Volterra). We also give two examples to show that in general, the property
of being (weakly) Volterra is not preserved by the hyperspace of nonempty compact
subsets of a given space. Finally, some open questions related to Volterra properties
of hyperspaces are posed.

All topological spaces are assumed 71, although it is not always necessary. As
usual, A and int A will denote the closure and interior of a subset A in a space X
respectively. When X is a subspace of a topological space Y, we shall use Ax and
int* A to denote the closure and interior of a subset A in the subspace X respectively.
For a cardinal K, cf(/t) denotes the cofinality of K, and K+ will represent the next
cardinal after K. The symbol AB stands for the set of all functions from a set A to a
set B. We refer the readers to [9] for basic facts and undefined notation about Baire
spaces. For the other undefined terminology, see [11,12].

2. Weakly Volterra spaces

In this section, we first correct an error in an example of Gauld, Greenwood and
Piotrowski on weakly Volterra spaces in [4]. Then, we provide some new characteri-
zations for weakly Volterra spaces, which enable us to resolve a problem in [4]. The
following result can be found in [4].

THEOREM 2.1 ([4]). IfX is a Volterra space, Yu ..., Yn (n e M) are developable
spaces andfi : X -»• Y, (i < n) are PWD functions, then C\{C(fj) : 1 < i < n] is
dense in X.

In the light of Theorem 2.1, it is natural and also interesting to consider the following
question.

QUESTION 2.2. Is it true that for any weakly Volterra space X, any developable
spaces Yu ..., Yn (n > 3) and any PWD functions ft• : X -> Y,(1 < i < n),
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FIGURE 1.

In fact, this question has been already considered in [4] and a negative answer
was provided there. More precisely, a weakly Volterra space X and three real-valued
functions f,g,h : X -*• R such that C(f), C(g) and C(h) are dense Gj-sets of X,
but C(f) n C(g) (~1 C(h) = 0 , were constructed in [4, Example 3]. Unfortunately,
this example is false as we are going to show next.

EXAMPLE 1. The space X in [4, Example 3] is not weakly Volterra. First, we shall
briefly describe the space presented in [4]. Let

A = {(x,y)eR2:y>0}.

For each real number r > 0, let Ar = {(x, y) 6 R2 : y + r > 0}. Define B, Br to be
the sets obtained by rotating A, Ar 120° about (0, 0) anti-clockwise, and C, Cr by a
similar rotation clockwise. Let

D = (Ao n Bo) U (Bo n Co) U (Co n Ao) and

E = ( A 0 \ ( B U Q ) U (Bo N (CU A)) U (Co \ ( A U B)).

Furthermore, let us define and ^ 3 by

BS\ = {(Ar n Bs n C, n D) \ F : r, 5, r > 0 and F c R2 is finite},

^ 2 = {(Ar fl Bj n C,) \ F : r, i, f > 0 and F c R2 is finite} and

^ 3 = {(Ar D B, n C, n £) \ F : r, i, r > 0 and F c R2 is finite}.

Then the space X considered in [4, Example 3] is R2 endowed with the topology
generated by [_J{^, : 1 < / < 3} as a base. It is clear that A, B, C are dense G^-sets
of X. In addition, it can be checked easily that both Ao r\ Bo and C \ (A U B) are
Gj-sets of X (but, they are not dense in X).
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Now, consider the two subsets G and H of X shown in Figure 1 as the two shaded
regions without including their boundaries. These two sets can be defined by the
following formulae

G = ( A o n f l o ) U ( C \ ( A U B ) ) and H = (fl0 n Co) U (A \ (B U Q ) .

It is not difficult to see that G is dense in X. Being the union of two G^-sets in X, G
is also a Gj-set of X. Thus, G is a dense Gj-set in X. Similarly, H is also a dense
Gj-set of X. However, it is obvious that G D H = 0 . Therefore, we have verified
that the space X is not weakly Volterra.

Interestingly, the answer to Question 2.2 is positive. To show this, we shall first
provide some new characterizations for weakly Volterra spaces.

THEOREM 2.3. The following statements are equivalent for a space X:

(a) X is a weakly Volterra space.
(b) The intersection of any finitely many dense Gs-sets of X is somewhere dense

inX.
(c) The intersection of any finitely many dense Gs-sets ofX is not empty.

PROOF. It is clear that (b) =>• (c) and (c) => (a).
We shall prove (a) => (b) by induction. Suppose X is weakly Volterra. First,

for any two dense Gj-sets A\, A2 of X, we define B\ = A\ \ A\ n A2 and B2 =
A2 \ Ai D A2. It is obvious that Bx n B2 = 0 . Since A\ and A2 are dense in X, we
have ~B~i = X \ intAi flA2, and ~B~2 = X \ int A7n~A^. If int A, n A2 = 0 , then
5i and B2 are two dense Gj-sets of X which are disjoint. This is a contradiction.
Therefore, we have shown that the intersection of any two dense Gj-sets of X is
somewhere dense in X.

Next, suppose that it has been shown that the intersection of any i many dense
Gj-sets of X is somewhere dense in X, where 1 < i < n and n > 3. Let
Ai, ..., An+l be n + 1 many dense G^-sets of X. Then, by our induction hypothesis,
int f][Ai : 1 < i < n) ^ 0 . For each 1 < j < n - 1, let us define the subset C, C X
by

U

Furthermore, we define the set Cn C X by the following

int p){A, : 1 < i < «}J .

https://doi.org/10.1017/S1446788700009332 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700009332


66 Jiling Cao and David Gauld [6]

Now for every 1 < j < n — 1, since Aj is dense in X, we have

Cj = X \ p){A, : 1 < i < n) U p|{A, : 1 < / < n}

= (X \ intP|{A, : 1 < / < n]j U P){A, : 1 < i < n]

= X.

Thus, all the sets Cj (1 < j < n - 1) are dense Gj-sets of X. Similarly, one can check
C is also a dense G{-set in X. Moreover, it is easy to see that

(~){q : 1 <j < n) C r |{A, : 1 < i < n + 1).

By our induction hypothesis again, f){Cj : 1 < j < n} is somewhere dense in X,
then so is C\{At : 1 < i < n + 1}. •

Our next result shall provide an affirmative answer to Question 2.2.

COROLLARY 2.4. LetX be a weakly Volterra space, Yu ...,Yn(n € N) developable

spaces andfi.X -+ Yt (1 < / < n) PWDfunctions. Then {~Yi=x{C(f d) £ 0 .

PROOF. It is easy to see that each C(/,) (1 < i < n) is a dense G -̂set of X. Hence,
by Theorem 2.3, we obtain r\{C(ft) : 1 < i < n) £ 0 . •

3. Volterraness in homogeneous spaces

A space X is said to be homogeneous if for any two distinct points x,y e X

there exists a homeomorphism / : X -+ X such t h a t / ( ; c ) = y. In this section, the

following main theorem shall be proved.

THEOREM 3.1. Let X be a homogeneous space. Then X is Volterra if and only if it
is weakly Volterra.

To achieve this goal, we shall first study non-weakly Volterra subspaces in a given
space. It is shown that the role of non-weakly Volterra subspaces in the theory of
Volterra spaces is somehow similar to that of first category sets in the theory of Baire
spaces. In what follows, we split the proof of Theorem 3.1 into several lemmas, which
are interesting for their own sake.

LEMMA 3.2. If a space X contains a nonempty weakly Volterra open subspace Y,
then X itself is weakly Volterra.
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PROOF. Suppose that U and V are any two dense G^-sets in X. Then U (~) Y and
V fl Y are two dense Gj-sets in the subspace Y. Since Y is weakly Volterra, then
UnVD(UDV)nY^0. Hence, X is weakly Volterra. •

REMARK. In Lemma 3.2, 'Y is open' can be replaced with a weaker condition
'there exists a Gj-set H in Y such that int / / is dense in Y\

LEMMA 3.3 ([5]). A space is Volterra if and only if every nonempty open subspace
is weakly Volterra.

LEMMA 3.4. If a space X contains a dense Gg-subspace that is not weakly Volterra,
then X itself is not weakly Volterra.

PROOF. Let Y c X be a dense G$-subspace that is not weakly Volterra. Then there
are two disjoint dense Gj-sets U and V in Y. Pick two dense Gj-sets U and V in
X with U = U D Y and V = V n Y. Suppose that A" is weakly Volterra. Then, by
Theorem 2.3 (c), we have UH VHY j^ 0. It follows that U n V ^ 0 . This is a
contradiction, since U D V = 0 . •

Since every non-weakly Volterra subspace in a topological space must be a set of
first category, our next lemma can be treated as an analogy of the Banach category
theorem in topology and analysis.

LEMMA 3.5. In any space X, the union of any family of nonempty open non-weakly
Volterra subspaces is not weakly Volterra.

PROOF. Let <% be a family of nonempty open subspaces of X such that each member

of *% is not weakly Volterra in X. Let S# v be the set of all collections of nonempty

open subsets of X with the following two properties:

(a) each collection V e %NV is pairwise disjoint; and
(b) for each collection f e %NV and each member V e V, there exists some
U e <% such that V c U.

Then, by Zorn's lemma, %NV has a maximal element Y = [Va : a e A}. Let
V = U(K, : a e A}. By the maximality of Y, we have {J[U : U e &} C~V.
Moreover, it follows from (b) and Lemma 3.2 that for each a e A, Va is not weakly
Volterra as an open subspace of X. Thus, there are two families {Fa : a e A] and
[Ha : a e A} of Gj-sets of X such that

(c) FaDHa = 0 for all a € A; and

(d) FaC Vac'K and Ha c Va c ~H~a for all a e A.
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Let F = \J[Fa : a e A] and H = \J{Ha : a € A}. By (a) and (c), we have
F n H = 0 . For each a e A, let

." : n ^ ^ a n d w«

where F^ and //£ are nonempty open subsets of X contained in Va such that
and H£+l c //^ for all a 6 A and all n e N. Now, put

: a e A > a n d "n = \J{H: : a e A } .

for all n e M. After a simple computation, we can obtain

F = p |{F n : n > 1} and // = p|{tfn : n > 1}.

By (d), we have Va C Ya
v and Va c 7^ v for each a e A. Since {Fa : a e A] and

[Ha : a e A) are two discrete families in the subspace V of X, then

V c | J | ^ V : « e A } = F and V c (J {7/7 : a e A] = W.

Thus, F and // are two disjoint dense Gj-sets in the subspace V of X. Consequently,
V is not a weakly Volterra subspace of X. It follows from Lemma 3.4 that V is not
a weakly Volterra subspace of X either. Since |J{ U : U e <&} c ~V, by Lemma 3.2
again, IJ{£/ : U e %} is not a weakly Volterra subspace of V. Therefore, we
conclude that |J{ U : U e *2S) is not a weakly Volterra subspace of X. •

As an immediate application of Lemma 3.5, we obtain the following decomposition
lemma for an arbitrary topological space.

LEMMA 3.6. Let X be an arbitrary topological space. Then there are two open
(possibly empty) subspaces XNV and Xv ofX such that

(a) X =XNVUXvandXNVnXv = 0;
(b) every nonempty open subspace ofX^v is not weakly Volterra in X; and
(c) every nonempty open subspace ofXv is Volterra in X.

Furthermore, X is a Volterra space if and only XNV = 0 . and X is a weakly Volterra
space if and only if

PROOF. Let XN v be the union of all nonempty open non-weakly Volterra subspaces
of X, and let Xv = X \ XNV. By Lemma 3.5, XNV is not weakly Volterra as an open
subspace of X. It is obvious that every nonempty open subspace of Xv is weakly
Volterra. Thus, following from Lemma 3.3, every nonempty open subspace of X v is
Volterra. So, we have shown that XNV and Xv fulfil (a), (b) and (c). By Lemma 3.3
again, X is Volterra if and only if XN v = 0 . If X v ^ 0 , then X v is a weakly Volterra
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subspace of X. By Lemma 3.2, the space X itself is weakly Volterra. Conversely,
suppose that X is weakly Volterra, and Xv = 0- Then X = XNV. Since XNV is not
weakly Volterra, then by Lemma 3.4, the space X itself is not weakly Volterra either.
This is a contradiction. •

Now we are able to prove Theorem 3.1 by applying the previous lemmas.

PROOF OF THEOREM 3.1. The necessity is trivial. To prove the sufficiency, suppose
that X is a weakly Volterra space. Then, by Lemma 3.6, Xv is a nonempty open
Volterra subspace of X. Now, let U be any nonempty open subspace of X. Then there
exists a point x e X v and a homeomorphism / : X —»• X such that f (x) e U. The
space U fl / (X v), being a nonempty open subspace of the Volterra space / (X v ) , is
also Volterra. Thus, it follows from Lemma 3.2 that U is a weakly Volterra subspace
of X. Finally, by Lemma 3.3, the space X itself is Volterra. •

The relationships among the classes of Baire spaces, Volterra spaces, weakly
Volterra spaces and spaces of second category can be summarised in the following
figure.

2nd category

weakly Volterra

FIGURE 2.

REMARK. It is well known that a homogeneous space is Baire if and only if it is of
second category. Note that homogeneous Volterra spaces which are not Baire do exist.
For example, let X = R be the set of all reals. Let 3T\ be the lower topology on X, that
is, 3?\ = {0, X} U {(a, +oo) : a e X). Let ^ be the co-countable topology on X.
Equip X with the topology !7 = £?\ v ^ . Then X is a T\ homogeneous space. Every
dense (7a-set A of X can be expressed by either A = X \ S, or A = (a, +oo) \ 5,
or A = [a, +oo) N S, where a e X and 5 C X is countable. Hence, the intersection
of any finitely many dense G^-sets of X meets every nonempty member of &. It
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follows that X is Volterra. On the other hand, X is not Baire, because the subsets
Un = (n, +00) of X are all open and dense but their intersection over N is empty.

Since the space given in the previous remark is not Hausdorff, the following question
arises naturally.

QUESTION 3.7. Does there exist a Tychonoff homogeneous space or even a Haus-
dorff topological group which is Volterra but not Baire?

By Lemma 3.6, a nonempty space is not weakly Volterra if and only if no nonempty
open subspace is weakly Volterra. Our next result, which says that a semi-open
subspace of a given space is not weakly Volterra if and only if it is nowhere weakly
Volterra, is a slight extension of this fact. Recall that a subset A of a space X is
semi-open if int A is dense in A. It is clear that in any topological space, all open
subspaces are semi-open.

THEOREM 3.8. Let A be a nonempty semi-open subspace of a space X. Then A is
not weakly Volterra in X if and only if for every open subset UofX with U HA ^ 0
there exists a nonempty open subset V of X contained in U such that V n A is not
weakly Volterra in X.

PROOF. The necessity follows from Lemma 3.2 directly. So, we shall consider the
sufficiency. First, suppose that A is a nowhere dense subset of X. Let U and V be
any two dense Gj-sets in A. If A is weakly Volterra, then by Theorem 2.3, U D V is
a somewhere dense set in the subspace A. We shall derive a contradiction. Let G be
any nonempty open subset of A, and let H be an open subset of X with G = H n A.
Then H D int A ^ 0 , as int A is dense in A. Since A is a nowhere dense set of X,
then U C\ V is a nowhere dense subset of X as well. Thus, there exists a nonempty
open subset O of X contained in H n int A such that OD(UnV) = 0. This shows
that UC\ V is a nowhere dense set in the subspace A, which is a contradiction. Hence,
A is not weakly Volterra in this case.

Next, we shall consider the case that A is a somewhere dense subset of X. Let
U = int A. Then U is a nonempty open subset of X. Let % = {Up : B e B} be
the family of all nonempty open subsets of X such that for each B e B, Up C U and
Up D A is not a weakly Volterra subspace of X. Note that for each 8 e B, Up n A is not
weakly Volterra as an open subspace of the subspace A. It follows from Lemma 3.5
that \^){ Up f) A : B e B] is not weakly Volterra in the subspace A. By hypothesis,
\J[Up n A : 8 € B] is a dense open subspace of A D U. Hence, it follows from
Lemma 3.4 that A D U cannot be weakly Volterra. Furthermore, since int A C A n £/,
by Lemma 3.2, int A is not weakly Volterra in X. Finally, as int A is dense and open
in the subspace A, by Lemma 3.4 again, we conclude that A is not a weakly Volterra
subspace of X. •
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REMARK. Note that the condition 'A is semi-open' in Theorem 3.8 is not needed
in the proof of necessity. However, the authors do not know whether this condition
can be dropped from the proof of the sufficiency.

4. Hyperspaces of Volterra spaces

In this section, we shall study hyperspaces of Volterra and weakly Volterra spaces.
For a given Hausdorff topological space X, let 2X denote the collection of nonempty
closed subsets of X. For any finite family % = {U\, U2,..., Un} of subsets of X, we
define ( * ) C 2 X by

= J F e 2 ) t : F C (J{Ui : 1 < / < « } , and FH U, ,£ 0 Vi = 1 , . . . , n ) .

Throughout this section, 2X shall be equipped with the so-called Vietoris topology rv

(also known as the finite topology in the literature), which has the family of all subsets
of 2X of the form (^) as a base, where ^ runs through all finite families of open
subsets of X. Let &(X) (respectively Jf(X)) be the subspace of 2X consisting of
all nonempty finite (respectively compact) subsets of X with the relative topology.
In what follows, we shall first give some necessary conditions for space X in certain
classes of spaces such that Jf(X) is (weakly) Volterra. Then we give two examples
from well-known constructions to show that the (weak) Volterraness of a space X is
not preserved by its hyperspace Jtf(X) in general.

LEMMA 4.1. For any Hausdorff space X, ifJ(f(X) is Volterra (respectively weakly
Volterra) then X is Volterra (respectively weakly Volterra).

PROOF. For a family {Ba : a e A} of subsets of X, it is easy to check that

(a) (f]{Ba:aeA}) = r[{(Ba):cteA);and
(b) for any a e A, Ba is dense (respectively nonempty) in X if and only if (Ba) is

dense (respectively nonempty) in Jf(X).

Now suppose that Jt(X) is Volterra (respectively weakly Volterra). Let U and V
be two dense Gj-sets in X. Then (U) and (V) are dense Gj-sets in Jt(X). Since
J€~(X) is Volterra (respectively weakly Volterra), then (U) D (V) is dense (respectively
nonempty) in JT(X). By (a) and (b) above, U D V is dense (respectively nonempty)
in X. Therefore, X is Volterra (respectively weakly Volterra). •

We notice that the conclusion of Lemma 4.1 still holds when X(X) is replaced
by 2X. Next, we shall show that the conclusion of Lemma 4.1 can be strengthened for
certain classes of spaces.
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THEOREM 4.2. Let X be a Tychonoff space which satisfies any one of the following
conditions:

(a) X has a dense metrizable subspace.
(b) X is a Lasnev space, that is, a closed continuous image of a metric space.
(c) X is separable and first countable.
(d) X is a metacompact Moore space.

If X(X) is a Volterra (respectively weakly Volterra) space, then X" is a Baire space
(respectively a space of second category) for all n € N.

PROOF. Suppose that J^(X) is a Volterra (respectively weakly Volterra) space. By
Lemma 4.1, X itself is Volterra (respectively weakly Volterra). Then, by Theorem 1.3,
under any of these conditions, X is a Baire space (respectively a space of second
category). We first show that under any one of these conditions, Jt(X) is a Baire
space (respectively a space of second category). The cases of (a), (b) and (c), which
are easier, shall be shown in the next. Suppose that (a) holds. Let Y c X be a dense
metrizable subspace. Then &(Y) is a dense metrizable subspace of X(X). If (b)
holds, then there is a metric space M and a closed continuous mapping / : M -+ X
from M onto X. Define / : JT(M) -> J f (X) by letting f(K) = f(K) for all
K € X(M). It can be checked that / is closed and continuous. Moreover, f(X(M))
is a dense subspace of X(X). Now, suppose that (c) holds. Then &(X) is a dense
separable and first countable subspace of JC(X). Hence, by [7, Corollary 2.8], under
any of conditions (a), (b) and (c), J?(X) is Baire (respectively of second category).

Finally, suppose (d) holds. Then we can choose a development (^)neN such that
for each n € N, tf£n is a point finite open cover of X and %fn+i is a refinement of ^ n .
For each n e M, let Yn C X be a dense Gj-subspace such that &„ is locally finite at
each point of Yn. For each n e N, set

:n e N} and % = {U n Y : U e <%n\.

Then, (JC^, : n € N} is a cr-locally finite base for Y. Thus, by the Bing-Nagata-
Smirnov metrization theorem, Y is a metrizable subspace of X. If J(f(X) is Volterra,
as we have seen, X is Baire. Then, Y is dense in X, and thus &(Y) is a dense
metrizable subspace of X(X). It follows that X(X) is Baire. Suppose that X(X)
is weakly Volterra. By Lemma 3.6, Jf(X) contains a nonempty basic open subspace
{[/ , , . . . , Un) that is Volterra. Let U = \J(Ui : 1 < / < « } . We claim that U is an
open Volterra subspace of X. To see this, for any two dense G^-sets

G = f){Gm : m € N} and H = f){Hm : m e H]

of U, where Gm and Hm are open subsets of U (thus they are open in X as well) for
all m € N, let Gm, = Gmn £/, and Hmi = Hm l~l [/, for each 1 < i < n. Then, for
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each m e N, we can define two basic open subsets

%, = (Gm, Gmn) and Jfm = (HmU . . . , Hmn)

in X ( X ) . It can be readily checked that $ = f){<gm : m e N) a n d J f = f\{Xn •
m e N} are dense Gj-sets in the subspace {U\,..., Un). Thus, <g D Jf? is dense in
(Ui,..., £/„). This implies that G H // is dense in £/. Hence, we have shown that
U is a Volterra subspace of X. Next, we choose an open subset V C X such that
V C U and K = V n U,-^ 0 for all 1 < / < n. Being a nonempty open subspace
of (Uu . . . , {/„), (Vj , . . . , Vn) is also Volterra. By applying the condition (d) to the
closed subspace V of X and then repeating the previous argument, we conclude that V
contains a dense metrizable subspace M. Then M D V is a dense metrizable subspace
of V. Since &(M n V) is dense in (Vj, . . . , Vn), then it follows that

is a dense metrizable subspace of (VJ, . . . , Vn). By Theorem 1.3 (a), we conclude that
(Vit..., Vn) is an open Baire subspace of X(X). Therefore, Jf(X) is a space of
second category.

To complete the proof, we need to introduce some auxiliary tools. For any finite
family <ft = {Uu U2, • • • , £/„} of subsets of X, let

^* = Y[{Ui : 1 < « " < « } x f ] [\J{Uj : 1 < ; < « } : i > n j .

Then aU* c Xw. Let X"3 be equipped with a topology r* by taking

3 = {ty* : ^ is a finite family of open subsets of

as a base. We denote the space Xa with this topology by Xf. We have shown that under
any of conditions (a)-(d), Jf(X) is Baire (respectively of second category). Then
it follows from [13, Theorem 3.10] that X'* is also a Baire space (respectively space
of second category). For any fixed n e N, since the canonical projection mapping
n : X™ -> X", defined by ;r((*,-)) = fri, . . . ,*„) for all <JC,-> e XJ", is an open and
continuous surjection, then X" is Baire (respectively of second category). •

REMARK. (i) In general, none of the following properties: first countability,
Lasnev, metacompactness and sequentiality, is preserved by the hyperspace of non-
empty compact subsets of a given space. For example, the Sorgenfrey line 5 is
metacompact, but X{S) is not metacompact. The other relevant counterexamples
can be found in [1,14].

(ii) For any given space X, the associated space X", or a more general space X*
(where K > co), has been studied in [13,15] respectively. In particular, r* is called the
pinched-cube topology in [15].
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Now, we give two examples to show that the hyperspace J%f(X) of a Volterra (even
a metric Baire) space X does not need to be weakly Volterra, that is, the converse of
Lemma 4.1 does not hold in general.

EXAMPLE 2. A Baire metric space X whose square X2 is nowhere Baire and
whose hyperspace J^(X) is not weakly Volterra. For any cardinal K > co, let
O = {a € K : dipt) = co}. For a n y / e WK, l e t /* = sup{/ (n) : n e co). Next,
define a metric p on WK by

Pif g)=\°' i f / = g ;

I 1/2", if/ 7̂  g, where n = min{m e co : f \ m ^ g \ m).

Then the metric space (WK, p) is simply denoted by JK. Let M = J2 x 7C+ be given
the product metric d, that is, d((*i, vi), (JC2, y2)) = PiOci, XI) + P2(yi, y2)- Now, let
{Ay : y € J2) be a family of pairwise disjoint stationary subsets of Cwc+. Consider
the subspace X = {(y, / ) e M : f* e Ay) of M. It is shown in [2, Example 4] that
X is a Baire space, but X2 is of first category. By Theorem 4.2, J(f(X) is not weakly
Volterra.

EXAMPLE 3. A hereditarily Baire metric space X all of whose powers are Baire,
but whose hyperspace JT(X) is not weakly Volterra. Let X c R be a Berstein set
endowed with the Euclidean topology (refer to [10,12] for the existence of such a set
in K). It is known that X is a hereditarily Baire metric space such that neither X nor
K \ X contains a perfect subset of R. Moreover, it is also known that all compact
subsets of X are countable and X" is a Baire space for any cardinal K. Since X is
separable, it has a countable base 88. For any nonempty member V e 3D, let

s/v = {K € JT(X) : K C\V contains exactly one point}.

Suppose that (Ui,.. •, Un) is any basic open subset of JT(X), where Uu • • •, Un are
nonempty open subsets of X. We consider two cases.

(i) V n (U"=i Ui) = 0. In this case, we have s/v n (UX , . . . , ( / „ ) = 0 .
(ii) Vfl U^ ^ 0 for some 1 < i0 < n. First, we can choose two disjoint nonempty

open subsets (/̂  and If* of X both of which are contained in V n Uk. Then, it follows
that (U\,..., f/̂ , U%,..., Un) is a basic open subset of J^(X) which is contained in
(£/ , , . . . , Un) such that ^ n ( f / , Ul

k, Ul Un) =0.

Thus, we have shown that s/v is a nowhere dense subset of X(X). Since each
nonempty compact subset is not perfect, it must have an isolated point. Consequently,
Jf(X) = U Vem &tv and X{X) is a space of first category. In addition, since X{X)
is metrizable by the Hausdorff metric of the Euclidean metric on X, by Theorem 1.3,

is not weakly Volterra.
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By a result of McCoy in [13], if X is a Tychonoff space such that J(f{X) is a Baire
space, then X" is Baire for all n e N. We conclude this paper with the following two
questions motivated by this fact and Theorem 4.2.

QUESTION 4.3. Let X be a Tychonoff space. If Jt{X) is a Volterra (respectively
weakly Volterra) space, is it true that X" is Volterra (respectively weakly Volterra) for
all n e N?

QUESTION 4.4. Let X be a Tychonoff space. If 2X is a Baire (respectively Volterra,
weakly Volterra), is it true that X" is Baire (respectively Volterra, weakly Volterra) for
a l i n e N?

NOTE ADDED IN PROOF. In the system [ZFC+ P(c)], there is a Hausdorff-Volterra
group which is not Baire; refer to V. Malykhin, 'Extremally disconnected and nearly
extremally diconnected groups', Soviet Math. Dokl. 16 (1975), 21-25. Recently, an
affirmative answer to the case of Baire spaces of Question 4.4 has been given by
J. Cao, S. Garcia-Ferreira and V. Gutev in a joint paper.
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