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MOD-C POSTNIKOV APPROXIMATION OF A 
1-CONNECTED SPACE 

A. BEHERA AND S. NANDA 

Deleanu, Frei and Hilton have developed the notion of generalized 
Adams completion in a categorical context [4]. They have also shown that 
if the set of morphisms is saturated then the Adams completion of an 
object is characterized by a certain couniversai property. We want to 
prove a stronger version of this result by dropping the saturation 
assumption on the set of morphisms; we also prove that the canonical map 
from an object to its Adams completion is an element of the set of 
morphisms under very moderate assumptions. These two results are fairly 
general in nature and are applicable to most cases of interest. Further 
using these two results and introducing "modulo a Serre class C of abelian 
groups" [9] we have obtained the mod-C Postnikov approximation of a 
1-connected based C ̂ -complex, with the help of a suitable set of 
morphisms. 

1. Adams completion. Let C be a category and S a set of morphisms of 
C. Let C[S~ ] denote the category of fractions of C with respect to S and 
F\C —» Q S " 1 ] the canonical functor. Let S denote the category of sets 
and functions. Then for a given object Y of C, 

qs^K-, y):C->s 

defines a contravariant functor. If this functor is representable by an 
object Ys of C, that is, 

q s ^ K - , Y) = c ( - , YS) 

then Ys is called the (generalized) Adams completion of Y with respect to 
the set of morphisms S or simply the ^-completion of Y. We shall often 
refer to Ys as the completion of Y. 

We now state Deleanu's theorem [6] that under certain conditions, the 
global Adams completion always exists. 

1.1. THEOREM. Let Q be a cocomplete small \J-category (where U is a 
fixed Grothendieck universe) and S a set of morphisms of C that admits 
a calculus of left fractions. Suppose that the following compatibility condition 
with coproducts is satisfied: 
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528 A. BEHERA AND S. NANDA 

(P) If each Sj'.Xj —> Yt, i e /, is an element of S, where the index set I is an 
element of\J, then 

l±s-l±X,^±±Y, 

/s tfw element of S. 
Then every object of C has an Adams completion with respect to the set oj 

morphisms S. 

Given a set S of morphisms of C, we define S, the saturation of S, as the 
set of all morphisms u in C such that F(u) is an isomorphism in C[S_ 1] . 
S is said to be saturated if S = S. 

Deleanu, Frei and Hilton have shown that if the set of morphisms S is 
saturated then the Adams completion of a space is characterized by a 
certain couniversal property ([4], Theorem 1.2). In most applications, 
however, the set of morphisms S is not saturated. We therefore present a 
stronger version of Deleanu, Frei and Hilton's characterization of Adams 
completion in terms of a couniversal property. 

1.2. THEOREM. Let S be a set of morphisms of C admitting a calculus of 
left fractions. Then an object YsofCis the S-completion of the object Y with 
respect to S if and only if there exists a morphism e:Y —» Ys in S which is 
couniversal with respect to morphisms in S: given a morphism s:Y —> Z in S 
there exists a unique morphism t.Z —> Ys in S such that ts = e. In other 
words the following diagram is commutative: 

?YS 

Proof Suppose that Ys is the ^-completion of Y with respect to S. Then 
we have a natural equivalence of functors 

C [ < r ' ] ( - , Y) ^ C ( - , YS). 

Set r(ly) = e:Y —» Ys. First we will show that e e S, that is, F(e) is 
an isomorphism in C[S~ ]. Consider the following commutative diagram 

q s ~ ' ] ( y , Y) ^ ^ C ( 7 , Ys) 
— k 

QS l](Ys, Y) i *C(YS, Ys) 
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MOD-C POSTNIKOV APPROXIMATION 529 

where e is defined by e (a) = a o F(e) for any a: Ys y i n C [ S - , ] a n d 
e* is defined by e*(f) = f o e for any morphism f:Y —» Ys in C. Let 
0:7s l y ; thus YinQS l] be such that r(0) 

e*T(0) = e = re+(6). 

But r ( l y ) = e; therefore 

e+(0) = 0 o F(e) = ly, 

showing that F(e) has a left inverse 6. To show that 0 is also the right 
inverse for F(e), we proceed as follows. Since S admits a calculus of left 
fractions, we write 

0 = [g,s] = F(s)-]F(g) 

with j G S and we express 0 as follows 

Y, 

We then have two commutative squares 

C[S '](7, Y)-
i 

c[s~'](*/, y>-

qs-'](ys > y)-

•Qy, ys) 
A 

•c(t/, ys) 

•c(yç, YS) 

Note that i 7 ^) is an isomorphism; hence s is bijective. Let 

- h be a morphism in C[S ] such that 

s+(fi) = y8 o F ( J ) = ly; 

thus /? = i ^ s ) - 1 . With this definition of /?, we have 

g+03) = 0 o F ( g ) = F(s)~lF(g) =0. 
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From the diagram 

T 

it follows that 

(i) s*(h) = hs = e and 

(ii) g*(/i) = hg = l v 

Thus 

F(e) o « = F C e ^ ^ - ' F C g ) = F(hs)F(s)-] F(g) 

= F(h)F(s)F(s)-]F(g) = F(hg) = \Ys. 

We have thus shown that e e 5 . To show that e has couniversai property 
with respect to morphisms in S, let s: Y —> Z be in 5. Consider the 
following commutative diagram 

C[5" (Y, Y)- -C(7, Ys) 

qs~'](z, y) i - •C(z, ys) 

Since s + is bijective, it follows that s* is bijective. Thus there is a unique 
t:Z Ys such that 

s*(t) = ts = e 

and we have the following commutative diagram 

v c » v 

Moreover, since £ e S and s e S c S, it follows that f e S. This 
completes the proof of the 'only if part. 

For the 'if part, suppose that there is e: Y —» Ŷ  in S having couniversal 
property with respect to morphisms in S. We show, first of all, that e has 
couniversal property with respect to morphisms in S. Let t\Y -^ Z be a. 
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morphism in S. Since F(t) = [t, l z] is an isomorphism, it has an inverse 
[/, s] as shown in the diagram below, with s e S. 

yv 

Thus [fot, l j o , s ] = [ly, l y ] , so we have a diagram 

with u = vs G S and vft = w. Since v/f : 7 —» i£ is in S and e: y —» Ys has 
couniversal property, we have a unique morphism w:AT —» 1J iri S making 
the diagram 

'v/ 

/ 

K 
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commutative; wvf:Z -> Ys is now the required morphism through which 
e factors. Now since e e S 

e+:C[S-l](-9 Y)-*C[S~l](-, Ys) 

defined by e+(0) = F(e) o 0, defines an equivalence of functors. It will 
now be enough to show that the canonical functor F induces an 
equivalence 

F*:C(- , y s ) ->qs - ' ] ( - , YS). 

To show that F* is surjective, let a:X —* Ys be in C[S~ ]. Then 

a = F(s)-]F(g), 

that is, a can be represented by 

X^ Z^YS, 

with s e S. The composite 

e s 

is easily seen to be in S; by the couniversal property of e with respect to 
morphisms in S we have a commutative diagram 

Y e~ 5Ys 

se\ , k 
f . 
Z 

so that kse = e, with k ^ S, implying that ks = 1Y• Hence 

F(*)F(fc) = \ys. 

For the morphism /cg:X —> 1^ in C, we have 

F*(%) = F(*)F(g) = F(s)~lF(g) = a. 

i7* is therefore surjective. To prove the injectivity of F*, let fx,f2'.X—> Ys 

in C be such that F*(fx) — F*(f2), so 

L/i. lys] = I/2. lysl-

This means we have a commutative diagram 
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with u e S and uf = uf2. We also have a commutative diagram 

Thus tu = ly. We then have 

f\ = tufx = tuf2 = f2. 

This completes the proof of the theorem. 

Ys to be in For most applications we have in mind we would like e: Y 
S. This is the case when S is saturated. However, in many cases of 
practical interest S is not saturated. Keeping in view the applications, we 
impose extra conditions on S which guarantees that e e S. 

1.3. THEOREM. Let S = S} D S2be a set of morphisms ofC admitting a 
calculus of left fractions. Let e\ Y —> Ys be the canonical morphism as defined 
in Theorem 1.2, where Ys is the S-completion ofY. Assume furthermore that 
S] and S2 have the following properties: 

(i) S}, S2 are closed under composition. 
(ii) fg G Sj implies that g 

(iii) fg e S2 implies that f 
Then e G S. 

s,-

Proof Since F(e) is an isomorphism in C[S~~ ], assume that [h, s]9 

with s e 5, is the inverse of .F(e) = [e, l r ] . We therefore have a 
diagram 
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with w = V5 G 5 and u = vhe. It follows from condition (ii) that e e 5, 
Moreover, the couniversal 
commutative diagram 

property of e implies that we have 

So e = wu = wvhe implying that 

wvh l y s e S c S2. 

Condition (iii) implies that w e S2. Therefore e = wu 
closed under composition). Thus 

S2 (because S2 is 

e e S, n S2 = S. 

This completes the proof of the theorem. 

Both Theorems 1.2 and 1.3 can be dualised easily. 

2. Modulo a Serre class C of abelian groups. Now we introduce 
"modulo a Serre class C of abelian groups" [9] to obtain the mod-C 
Postnikov approximation of a 1-connected based CJf-complex, with the 
help of a suitable set of morphisms. From now onwards, we assume that C 
is a Serre class which is moreover an acyclic ideal of abelian groups [9]. 

Let CW denote the category of 1-connected based C^-complexes and 
based maps, and CW the corresponding homotopy category. We assume 
that the underlying sets of the elements of CW are elements of U where U 
is a fixed Grothendieck universe. We now fix suitable sets of morphisms 
in CW. 
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A map a:X —> Y in CW is called a mod-C (n -f l)-equivalence if 

is a C-isomorphism for m = n and a C-epimorphism for m = n + 1. 
Let 5W denote the set of all mod-C (n + Inequivalences in CW. 

2.1. PROPOSITION. 5W admits a calculus of left fractions. 

Proof It is enough to prove that every diagram 

a y 

in CW ( [8], Proposition 1.1.8) with y 
push-out diagram 

S„, can be embedded in a weak 

X 

W 

with 8 G Sn. Suppose a = [/] and y = [s]. Let y:X —» Afy- be the usual 
inclusion of A" into Afy-, the reduced mapping cylinder of / , and y is de­
fined by ij>(x) = [0, x]. Let 

j:Y'-» Mf and r:Mf-> Y Mj- and r.Mf 

be the maps defined by 

j(y) = [y], r([y]) 

such that 

r °J ly, i ' o r - 1 Mf
 a n d roif=f-

Now we consider the diagram 

- • Z 

lf 

Mf 

and form its push-out in CW. 

X • Z 

lf\ 

Mf- •*W 
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Since u is a cofibration, so is u; we therefore have the following diagram 

where C is the cokernel of U as well as of u; p and q are the usual 
projections. We consider the exact homology sequences 

-nm+l(C)-

*Hm + l(C). 

+H<X) 

-Hm(Z)-

~Hm{Mf) 

t* 

Hm{W). 

Hm(0-

HJO- + HmL,(Z) 

where H* denotes the singular homology functor. Since 

s*:irm(X) -+irm(Z) 

is a C-isomorphism for m ^ n and a C-epimorphism for m = n + 1, it 
follows from Theorem 9.6.22 [9] that 

s*:HJX) -> Hm(Z) 

is a C-isomorphism for m = n and a C-epimorphism for m = n + 1. The 
mod-C Five lemma then implies that 

U:Hm(Mf)-* Hm(W) 

is a C-isomorphism for m ^ n and a C-epimorphism for m = n + 1. 
Hence 

/*:M^/)-»»m(W0 
is a C-isomorphism for m ^ n and a C-epimorphism for m = « -h l. Let 
/? = [w] and 5 = [(/]. Since j is a homotopy equivalence, y* is an 
isomorphism of the corresponding homotopy groups; thus 8 e Sn. We 
consider the following diagram in CW: 
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We have 

Vf = tjrif ^ t\Mfif = tif = us. 

Taking the corresponding homotopy classes, we have a diagram in CW 

y = [s] 

j8 = [«] « = [/] 

with 8 e Sn. This indeed is a weak push-out diagram in CW. This 
completes the proof of the proposition. 

2.2. PROPOSITION. Let {sl\Xl —> Yh i e / } be a subset of'Sn\ then 

V Sj\ V X -> V y 
/ G / ' / G / ' / G / ' 

w a/7 element of ' Sn, where the index set I is in U. 

Proof We consider the commutative diagram 

® s, 
'* 

© /w> 

V G / / 

/ G / 

where 
(AJ 

-w/*(v ri 

a 7 :X-> V X and j8,:i;-> V Y 
' ' / G / ' ^ ' / G / l 

are the canonical inclusions. Note that each horizontal row is an 
isomorphism, hence a C-isomorphism. Moreover, since each st is a 
C-isomorphism in dimension ^n and a C-epimorphism in dimension 
n + 1, so is © / e / ^ , and from the commutativity of the diagram it 
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follows that (V/€E/ S;)* is also a C-isomorphism in dimension 
C-epimorphism in dimension n + 1. Thus 

in and a 

V s, s„. 

Let U be a fixed Grothendieck universe such that the category of 
C^-complexes and homotopy classes of maps between them is a 
U-category. Since S] can be given the structure of a CW-complex, 
[S> sl] Z is an element of U, and it follows from the axioms of a 
Grothendieck universe that Z , the set of positive integers, is also an 
element of U. We shall use this fact in proving the following 
proposition. 

2.3. PROPOSITION. For a given object X of the category CW there exists a 
subset Sx of the set {s.X —* X\s e Sn} such that Sx is an element of the 
universe U and for each s.X —> X, s G Sn, there exist an s' e Sx and 
a morphism u o/CW rendering the following diagram commutative: 

Proof Given X in CW, we let 

Sx = {s:X -» Y\ (7 , X) is a relative CW-complex 

with cells in dim i? n + 2). 

Clearly Sx c Sn. Moreover, if s.X -^ Y is in Sn, then we can find a 
CW-complex Z such that (i) (Z, X) has cells in dim ^ « + 2, (ii) there is 
a map w:Z —> Y which is a mod-C homotopy equivalence and which 
extends s. If v denotes the mod-C homotopy inverse of u and s'.X —» Z the 
usual inclusion, then the following diagram is easily seen to be homotopy 
commutative: 

It will now be enough to prove that Sx e U. We write 

Ak = {s:X-^ Y\ (F, X) has cells em such that 

« + 2 ^ dim(é>m) ^ n + k 1] 
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so that we have Sx = UAk, k varying over the positive integers. We use 
induction to show that, for every k ^ 1, Ak e U. For k = 1, we have 

Ax = {s:X -> Y\ (Y, X) is a relative CW-complex 

having cells in dim n 4- 2 only}. 

Therefore, y must be of the form 

y = x u rf+2 

where ai\S
n + ] -> X and / <= / for some index set /. It is also evident that 

every family 

{tf,:S'7 + 1 ^ X) c [S**1, X] 

determines a space y such that ( Y, X) is a relative C^-complex with cells 
in dim n 4- 2 only. Thus, 

^ « P[SW + 1, X], 

where P denotes the power set. Since [Sn , X] e U, it follows from the 
axioms of a Grothendieck universe (see [3], p. 10) that 

P[S" + \X] e U; 

thus ^ ! G U. 
We now assume inductively that Ak e U. TO show that Ak + X e U, let 

s\X —> Y be in Ak, i.e., (Y, X) is a relative CW-complex having cells em 

such that 

« + 2 ^ dim(>m) S /i + A; + 1. 

Let {« z } z e / be a family of maps with 

for some index set / . It is then clear that the inclusion 

X^> Y U e^k+2 

is in Ak + X. Moreover, every map s.X —> Z of v4A + 1 arises in this way. 
Therefore, 

Ak+X = y P [S" + * + 1 , F] 

where the union is taken over all Y such that s:X —» y is in Ak. Since 
v4, G U and P[Sn+k, Y] <= U, we have Ak + l e U. Similarly, since the 
set of positive integers is an element of the universe U, so is the union 
VAk = Sx. This completes the proof of Proposition 2.3. 

Since the category CW as stated above is neither cocomplete nor small, 
Theorem 1.1 can not be used to show the existence of Adams completion 
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of an object in the category CW with respect to the set of morphisms Sn. 
However, we have the following result (Theorem 2.4) which is essentially 
Theorem 4.7 [2] and Theorem 3.8 [1] (it is also a generalization of 
the Theorem in [5] ). 

2.4. THEOREM. Let U be a fixed Grothendieck universe. Let C be the 
category defined as follows: the objects of Q are the based CW-complexes 
whose underlying sets are elements of U; the morphisms of C are based 
homotopy classes of base-point preserving maps between such CW-complexes. 
Let S be a family of morphisms of C admitting a calculus of left fractions 
and satisfying the following axiom of compatibility with coproducts: 

(A) If si\Xl —» Yt lies in S for each i e /, where the index set I is an 
element of\J, then 

V S[: V X : -> V Y 
/ G / ' / e / ' / G / z 

lies 

Assume that the family S and the object X of C satisfy the condition: 
(*) There exists a subset Sx of the set {s:X —•> X'\s e S} such that Sx is 

an element of the universe U and for each s:X —* X', s e S, there exist an 
s' e Sx and a morphism u of C rendering the following diagram 

commutative. 

&X" 

Then the Adams completion Xs of X does exist. 

As remarked by Adams on page 34 of [1], this result remains valid if C is 
the homotopy category of 1-connected CW7-complexes (whose underlying 
sets belong to U). 

It is to be emphasized that condition (*) is essential in order to be able 
to apply E. H. Brown's representability theorem to prove this result. 

Hence from Propositions 2.1, 2.2 and 2.3 it follows that the conditions 
of Theorem 2.4 are satisfied and so by Theorem 1.2 we obtain the 
following theorem. 

2.5. THEOREM. Every object X of the category CW has an Adams 
completion Xs with respect to the set of morphisms Sn and there exists a 
morphism en:X —-> Xs in Sn which is couniversal with respect to morphisms 
in Sn. 

2.6. PROPOSITION. The morphism en:X—» Xs , as constructed in Theorem 
2.5, is in S„. 
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Proof. Let Sn be the set of all morphisms f.X —> 7 in the category CW 
such that 

is a C-monomorphism for m < n and Sn be the set of all morphisms 
f:X-> Y in CW such that 

Unm(X) ^> vm(Y) 

is a C-epimorphism for m ^ n + 1. Clearly (i) S„ = S]
n n S^, (ii) S,1, and 

Sn satisfy all the conditions of Theorem 1.3; hence en e Sn. 

3. A mod-C Postnikov approximation. Now we can obtain a tower for 
the mod-C Postnikov approximation of a 1-connected CW-complex, with 
the help of the sets of morphisms Sn. In the process, starting from a 
1-connected based CW-complex X we get a tower of spaces, and the 
inverse limit of this tower gives us a space which in some sense is 
the mod-C Postnikov approximation of X. When C = {0}, we of course 
get the usual Postnikov sections of X as different stages of the tower. In 
case C = Cp,, that is, the set of P'-torsion abelian groups, the inverse limit 
gives us the P-localization. When P = {/?}, X is finitely generated and 
C = Cp/, the inverse limit gives us the /?-profinite completion of X. It is 
hoped that this analysis of the completion will be helpful in other 
constructions (currently under investigations). 

3.1. THEOREM. Let X be a \-connected based CW-complex. Then 
for n > 1, there exist \-connected based CW-complexes Xn, maps 
en\X —•> Xn andfibrationspnjrX\Xn + x —» Xn such that 

(a) en \mm(X) —» irm{Xn) is a C-isomorphism for m ^ n and 

*m(xn) = ° for m > n, 

(b) en =Pn+\ °en + \-

Proof. For each integer n ^ 1, let Xn be the ^-completion of X and 
en\X —> Xn be the canonical map as stated in Proposition 2.6. Since 
enjrX G 5W + 1, it follows that en + x G Sn\ hence by the couniversal property 
of en (Theorem 1.2), we have a map 

Pn + \:Xn + \ ~~* Xn 

making the diagram 

x e- *x. 

7+1 

Xn+\ 

Pn + \ 
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542 A. BEHERA AND S. NANDA 

commutative: /?w + 1 o en+x = en. The maps {pn} can of course be replaced 
by fibrations, in the usual manner. Since en e Sn9 

is a C-isomorphism for m ^ n. To show that 7rm(Xn) = 0 for m > n, let 
/ : 5 W —» X„ be a map with m > n. Let s denote the inclusion 

x„^x„yer+\ 

Clearly s is an m-equivalence and hence a mod-C (n -f l)-equivalence 
(since m > n), so 5 e Sn and 5 0 ^ G 5W. By the couniversal property of 
etv we have a unique extension 

• v.xny<r+x-*xn 

which makes the diagram 

e„ 
X-

X„ 

x„Ue> m+1 

commutative: tsen = en; using the couniversal property of en again, we 
deduce that ts = \x\ 

hence / ~ 0; so that irm(Xn) = 0 for m > n. This completes the proof of 
the theorem. 

It is a pleasure to thank the referee for his comments which resulted in 
an improved presentation of the paper. 
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