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Abstract
We demonstrate that the Bayesian evidence can be used to find a good approximation of the ground truth likelihood function of a dataset,
a goal of the likelihood-free inference (LFI) paradigm. As a concrete example, we use forward modelled sky-averaged 21-cm signal antenna
temperature datasets where we artificially inject noise structures of various physically motivated forms. We find that the Gaussian likelihood
performs poorly when the noise distribution deviates from the Gaussian case, for example, heteroscedastic radiometric or heavy-tailed
noise. For these non-Gaussian noise structures, we show that the generalised normal likelihood is on a similar Bayesian evidence scale with
comparable sky-averaged 21-cm signal recovery as the ground truth likelihood function of our injected noise. We therefore propose the
generalised normal likelihood function as a good approximation of the true likelihood function if the noise structure is a priori unknown.
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1. Introduction

Twenty-one-centimetre cosmology (Furlanetto et al. 2006) stud-
ies the hydrogen hyperfine transition line with a characteristic
free-space wavelength of λ = 21 cm. When this spin-flip tran-
sition is emitted during Cosmic Dawn (CD) and Epoch of
Reionisation (EOR), the wavelength is redshifted to lower frequen-
cies, enabling us to probe these epochs through radio observa-
tories. Experimental approaches such as the sky-averaged exper-
iment or also known as the global experiment (Liu et al. 2013)
measure the contrast between integrated absorption and emission
of the 21-cm signal and the cosmic microwave background (CMB)
across the whole sky. This contrast which is known as the sky-
averaged 21-cm signal has a characteristic shape (Pritchard & Loeb
2008) that can be probed to study and constrain the earliest epochs
of the universe.

The EDGES collaboration (Bowman et al. 2018a) was the first
to report a deep flattened absorption feature at CD with an ampli-
tude of 500+500

−200 mK centred at 78± 1 MHz. However, these results
are not compatible, for example, with the astrophysical models of
Cohen et al. (2017) which predicted a weaker absorption signal
with less than a half of the amplitude of what the EDGES col-
laboration reported. Furthermore, the best-fitting profile reported
by EDGES is not a unique solution; however, the most physically
justifiable one and an unmodelled sinusoidal systematic structure
can be found when changing the foreground model, for example,
the number of polynomials (Hills et al. 2018). These discrepan-
cies caused an open scientific debate (Bowman et al. 2018b) that

Corresponding author: K. H. Scheutwinkel, email: khs40@cam.ac.uk.
Cite this article: Scheutwinkel KH, Handley W and de Lera Acedo E. (2023)

Bayesian evidence-driven likelihood selection for sky-averaged 21-cm signal
extraction. Publications of the Astronomical Society of Australia 40, e016, 1–10.
https://doi.org/10.1017/pasa.2023.16

can only be resolved by an independent sky-averaged experiment
such as SARAS 2 and 3 (Singh et al. 2018; 2021), LEDA (Price et
al. 2018), REACH (de Lera Acedo et al. 2022), or many others.
Possible candidates to explain the EDGES signal, if of cosmological
origin, could involve new physics; an excessive coolingmechanism
of the IGM through dark matter particle interaction (Barkana et
al. 2018; Barkana 2018; Muñoz & Loeb 2018) or an enhanced
radio background apart from the CMB (Jana et al. 2019; Fialkov
& Barkana 2019; Mirocha & Furlanetto 2019) with standard stellar
population models incapable to achieve this (Mittal & Kulkarni
2022). However, some argue that the claim of new physics is
not justified as this deep absorption feature could be a result
of unmodelled systematic features such as a ground plane arte-
fact (Bradley et al. 2019), calibration issues (Sims & Pober 2020),
or within the data analysis methods, for example, by changing
the polynomial foreground model to maximally smooth functions
(Bevins et al. 2021; Singh & Subrahmanyan 2019). Additionally,
recent data collected by SARAS 3 (Singh et al. 2021) reject the
best-fitting profile of EDGES with 95.3% confidence.

Adding these various model components into the simula-
tions and comparing them with the observations is the subject
of current state-of-the-art sky-averaged 21-cm cosmological
research. However, determining the statistical properties of this
often hierarchical generative model which potentially consists
of many latent hyperparameters poses a challenge for current
Bayesian inference tasks. This is due to the necessity of an explicit
likelihood expression to recover the parameters of our model,
that is, solving the inverse problem of the sky-averaged 21-cm
simulations. Oversimplification of the noise structure, for exam-
ple, through a Gaussian approximation can engender inaccurate
posterior inferences.

We investigate this problem of unknown noise structures, by
generating antenna temperature datasets with non-Gaussian or
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heavy-tailed noise and study its influence on the sky-averaged
21-cm signal parameter inference by using likelihood functions
of various forms. We use a Bayesian evidence-driven likelihood
selection to decide which likelihood is preferred and the best
approximation of the (unknown) ground truth likelihood of our
dataset. This Bayesian evidence-driven likelihood selection anal-
ysis can be embedded into the Likelihood-Free Inference (LFI)
paradigm Marin et al. (2011); Papamakarios & Murray (2016);
Cranmer et al. (2020); Papamakarios et al. (2021), where the goal is
to find a satisfactory approximation of the unknown ground truth
likelihood function. Examples of various algorithmic LFI methods
applied in 21-cm cosmology can be found in Zhao et al. (2022a;b)
or in the broader cosmological field in Alsing et al. (2018; 2019);
Jeffrey et al. (2020).

In Section 2, we briefly explain the Bayesian Inference frame-
work and its parameter estimation andmodel comparison compo-
nent. In Section 3, we describe how we generate the sky-averaged
21-cm signal antenna temperature datasets using a physically
motivated forward model or also known as a simulator. In Section
4, we present various candidates of likelihood functions to statis-
tically model our (unknown) datasets and in Section 5, we present
our findings. Finally, we summarise our work in Section 6.

2. Bayesian inference and nested sampling

We use the Bayesian inference framework (Sivia & Skilling 2006)
to analyse a dataset D, which is a powerful statistical framework
based on Bayes Theorem of conditioned probabilities:

P = Lπ

Z , (1)

where P ≡ p(θ |D,M) is the posterior distribution of the param-
eters θ of model M after the dataset D has been observed. The
posterior is recovered by combining the likelihood L≡ p(D|θ ,M)
of the dataset with the prior π ≡ p(θ |M) of the parameters, a dis-
tribution containing prior assumptions before any data has been
observed. The product of these two distributions is normalised
by Z the marginalised likelihood or also known as the Bayesian
evidence.

With the help of algorithms such as Markov-Chain Monte
Carlo (MCMC) methods (MacKay 2003) one is able to address the
parameter estimation problem of Bayesian inference to generate
posterior samples θ∗ from the prior. However, MCMC methods
avoid solving the generally computationally expensive integration
of the marginalised likelihood:

Z =
∫

L(θ)π(θ)dθ , (2)

which is an integration over all possible parameter values θ of the
modelM. The solution of the integral is the Bayesian evidence Z ,
a key component for model comparison in Bayesian inference. As
the model comparison is essential for this analysis, we use a nested
sampling-based (Skilling 2006) algorithmwhich numerically com-
putes the Bayesian evidence. We choose PolyChord (Handley et
al. 2015b;a) as our nested sampler, which utilises a slice sampling
method to generate new proposal candidates subject to an evolv-
ing likelihood constraint. Additionally, PolyChord proves to be
a more scalable solution than MultiNest (Feroz & Hobson 2008;
Feroz et al. 2009) which is vital for high-dimensional parameter
spaces. Moreover, as PolyChord is a sampling-based method, we
can acquire posterior samples and, therefore, address the model
comparison and parameter estimation part of Bayesian inference
simultaneously.

With the Bayesian evidence Z ≡ p(D|M) we recover the model
probabilities by applying Bayes Theorem:

p(M|D)= p(D|M)p(M)
p(D)

. (3)

For two competing modelsM1 andM2 which are assumed a priori
equally likely p(M1)= p(M2), we define the Bayes factor:

logK = log p(M1|D)− log p(M2|D), (4)

which is a Bayesian evidence posterior ratio of both models given
our assumption. Hence, a positive Bayes factor indicates the pref-
erence of modelM1 for the dataset D.

3. Dataset simulation

To generate the datasetD, we use a physicallymotivated simulator.
The simulator splits the dataset into a sum of three components:

D≡ Tdata = Tfg + T21 + Tnoise, (5)

where Tfg is the foreground component, T21 the sky-averaged
21-cm signal, and Tnoise the contribution of the noise model.
We describe in the subsequent sections how we simulate each
component.

3.1. Foreground simulation

To simulate the foreground we use the Bayesian foreground mod-
elling framework of Anstey et al. (2021b) or also referred to as the
Bayesian data analysis pipeline with its standard settings that are
being used in REACH (de Lera Acedo et al. 2022) e.g. to quantify
the influence of unmodelled systematic structure for sky-averaged
21-cm signal parameter inference (Scheutwinkel et al. 2022). The
pipeline uses the Global Sky Model (GSM) map (De Oliveira-
Costa et al. 2008) to construct two maps at 408 and 230 MHz
frequencies. With these maps, we construct the spatially varying
spectral index parameter:

β(�)=
log

(
T230(�)−TCMB
T408(�)−TCMB

)
log

( 230
408

) , (6)

withTCMB = 2.375 K the CMB.We choose this spatially dependent
spectral index as it is physicallymore realistic than a constant spec-
tral index. Moreover, Anstey et al. (2021b) investigated the influ-
ence of a uniform spectral index for the resulting sky-averaged
21-cm parameter inference and concluded that a uniform index
introduces spectral features which are mimicking a sky-averaged
21-cm signal, hence, making the signal extraction unnecessar-
ily difficult or unsuccessful. We use this spectral index β(�) to
generate our foreground:

Tsim(ν,�)= (T230(�)− TCMB)
( ν

230

)−β(�) + TCMB, (7)

where we use T230(�) as a base map such that we generate an
approximate representation of the sky in the 50-200 MHz fre-
quency band where the sky-averaged 21-cm signal is expected.
Furthermore, 230MHz is “far enough” that there is negligible sky-
averaged 21-cm signal contamination to be expected, therefore
mitigating potential issues when we add a simulated absorption
feature later on.We convolve the foregroundmap with the conical
log-spiral antenna beam pattern B� (Dyson 1965):

Tfg(ν)= 1
4π

∫
�

B(�, ν)Tsim(�, ν)d�, (8)
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to compute the resulting antenna temperature Tfg. The log-spiral
beam pattern is reported to have the most accurate capabilities
to recover the sky-averaged 21-cm signal compared to five other
antenna designs (Anstey et al. 2021a). The antenna beam pattern
is FEKO simulated (Elsherbeni 2014), assumed to be in ideal con-
ditions using an infinite ground plane tomitigate edge effects. This
setup is located at λ = −30.71131◦ and φ = 21.4476236◦ at the
Karoo Radio reserve in South Africa, where REACH is currently
being deployed. We choose a snapshot of the sky at ‘2019-10-01
00:00:00’ UTC (LST 23.99 h), where the Milky Way centre is not
at the zenith to mitigate brighter foreground contributions.

3.2. Sky-averaged 21-cm signal

To simulate the sky-averaged 21-cm signal, we add a Gaussian
absorption profile which is a Gaussian approximation of the stan-
dard case of the astrophysical models of Cohen et al. (2017):

T21(ν)= −A21 exp

(
−1
2

(
ν − f0,21

σ21

)2
)
, (9)

where A21 is the amplitude of the absorption signal, σ21 the stan-
dard deviation, f0,21 the central frequency and ν the frequency. For
our absorption feature, we set A21 = 155 mK, σ21 = 15 MHz and
f0,21 = 85 MHz.

3.3. Antenna temperature noise

The Bayesian data analysis pipeline of Anstey et al. (2021b)
has demonstrated the success of the sky-averaged 21-cm signal
recovery through simulating antenna temperature dataset with
homoscedastic Gaussian noise. However, this noise structure is
not an accurate physically motivated choice, hence, we add vary-
ing non-Gaussian noise models onto the antenna temperature Tfg
to study its influence on the sky-averaged 21-cm recovery. As
non-Gaussian noise can potentially arise through imperfections
in a real experimental setup or through complex unknown noise
structures within a physical process, we consider one of the fol-
lowing noise models for each dataset which are also visualised in
Figure 1.

1. Gaussian noise:

p(x; μ, σ )= 1√
2πσ 2

exp
(

− (x− μ)2

2σ 2

)
, (10)

with mean μ and standard deviation σ .
2. Generalised normal noise:

p(x; μ, α, β)= β

2α�(1/β)
exp

(−(|x− μ|/α)β) , (11)

with mean μ, shape parameter β and scale parameter α.
If β = 2, this noise model recovers the Gaussian noise
model. Furthermore, the variance of the distribution can
be expressed in terms of the shape and scale parameter:

σ 2 = α2�(3/β)
�(1/β)

.

3. The Student-t distribution:

p(x; ν, μ̂, σ̂ )= �( ν+1
2 )√

νπσ̂�( ν
2 )

(
1+ 1

ν

(
x− μ̂

σ̂

)2
)− ν+1

2

,

(12)

Figure 1. Top: Comparison of standardised probability density functions. Bottom:
Exemplary heteroscedastic radiometric noise realisation that decreases exponentially
∝ ν−2.6 over a range ν.

with ν degrees of freedom, the location parameter μ̂, and
the scale parameter σ̂ . This distribution arises after the
antenna temperature has been calibrated in a Bayesian way
(Roque et al. 2021).

4. The Cauchy distribution:

p(x; x0, γ )= 1

πγ

[
1+

(
x−x0

γ

)2] , (13)

with the location parameter x0 and the scale parameter
γ . This distribution has an undefined mean and variance,
therefore, it is a heavy-tail distribution simulating frequent
outliers i.e. extremely noisy structures.

5. The radiometric noise (Kraus et al. 1986), a physically
motivated radiometer model, which is defined as:

σradio(ν)= ηTfg(ν)+ (1− η)T0 + Trec√
�ντ

, (14)

where Tfg is the antenna temperature, η the antenna radia-
tion efficiency,Trec the antenna receiver temperature, τ the
integration time, and�ν the channel width.Wemodel the
noise through aGaussian distribution with heteroscedastic
frequency-dependent radiometric noise.

For each noise model, we centre the probabilistic distribution
at the mean/location parameter μ = Tfg, set the standard devia-
tion/scale parameter to σ = 0.025 K and vary the shape parameter
if a shape parameter exists, otherwise, we vary the scale param-
eter. The scale parameter represents values seen in EDGES after
removing the foreground and 21-cm models which are also used
as default settings in the REACH data analysis pipeline. For the
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radiometric noise model, we assume a realistic choice of param-
eters with η = 0.9, T0 = 293.15 K, Trec = 500 K, �ν = 0.1 MHz
and a variable integration time parameter τ that stays constant
across the frequency band, that is, we assume there is no simu-
lated RFI contamination that requires certain frequency channels
to be time-integrated differently.

4. Bayesian modelling of dataset

After dataset creation D with varying noise Tnoise, we define two
models:

M1 ≡ TM1 = Tfg + T21, (15)

the signal model with Tfg the foreground component and T21 the
sky-averaged 21-cm signal component, and

M2 ≡ TM2 = Tfg, (16)

the no-signal model, where we leave the sky-averaged 21-cm sig-
nal unmodelled. In both models, the noise contribution Tnoise is
modelled through its likelihood function.

The foreground component Tfg utilises the Bayesian fore-
ground modelling framework of Anstey et al. (2021b), where the
sky is split into Nreg = 14 regions with each region having its
own uniform index to model the spatially dependent spectral
index of the whole sky to construct chromaticity functions. Hence,
the foreground parameterises through their spectral indices θfg =
(βfg,1:Nreg ). Additionally, we assume that the simulated experiment
is located on an infinite ground plane. Hence, we use the same
antenna beam pattern for the inference that has been used for sim-
ulating the dataset to facilitate computation. Adding a physically
realistic ground plane or soil into the simulations can be studied
in subsequent research. We expect that a finite ground plane will
introduce systematic effects that are handled separately from the
noise modelling within REACH Scheutwinkel et al. (2022) while
introducing soil will be seen as a smooth loss profile of the radi-
ation efficiency (Acedo et al. 2015) that can be modelled through
the likelihood function.

The precise number of sky regions Nreg is arbitrarily chosen,
however, there is a tendency that the simulated datasets with
Gaussian noise prefer more than ten regions and the Bayesian
evidence plateaus with some fluctuations for higher number of
regions (Anstey et al. 2021b). One can treat this parameter as an
extra dimension to “tune” the Bayesian evidence to find the opti-
mum sky region number, however, this would increase the number
of parameter dimensions of the cosmological model one has to
track. Therefore, we do not progress with this extra dimension as
the inference is computationally expensive, and it has no signifi-
cant effect on the sky-averaged 21-cm parameter inference as the
posterior distributions are seen to be uncorrelated later on. We
note that for the analysis of a real experimental dataset, this extra
dimension has to be taken into account.

For the sky-averaged 21-cm signal component, we param-
eterise the Gaussian signal model of equation (9) with θ21 =
(f0,21, σ21,A21). For the noise contribution, we have varying param-
eterisation θnoise depending on the likelihood functions used.
Therefore, we have the following parameterisation for eachmodel:
θM1 = (θfg, θ21, θnoise) and θM2 = (θfg, θnoise).

4.1. Likelihood functions

For each cosmological model M, we construct the likelihood
functions with:

Table 1. Prior choices for the foreground spectral indices β1:Nreg , sky-averaged
21-cm signal shape f0,21, σ21, A21 and the varying noise parameters.

Parameter Type Range

β1:Nreg uniform 2.458-3.146

f0,21 uniform 50-200 MHz

σ21 uniform 10-20 MHz

A21 uniform 0-0.25 K

Gaussian noise

σL log uniform 10−4-10−1 K

Generalised normal noise

σL log uniform 10−4-10−1 K

βL uniform 0-5

Cauchy noise

γ log uniform 10−4-10−1 K

Radiometric noise

Trec log uniform 100-1000 K

η uniform 0.8-1

σradio log uniform 10−8-10−1

logL= log p(Tdata|θM ,M)=
∑

ν

log p(Tν |θM ,M), (17)

which is a sum of the noise model components p(Tν |θM ,M) over
the frequencies ν with θM the parameters of the model M and
Tν the observed antenna temperature. Depending on the choice
of the likelihood function, we parameterise the likelihood in the
following ways:

• Gaussian: θnoise = σL

• Generalised normal: θnoise = (βL, σL)
• Cauchy: θnoise = γL

• Radiometric: θnoise = (Trec, η, σradio)

For the radiometric likelihood, we define σradio = 1/
√

τ�ν as
the radiometric noise level. Analogous to the radiometric noise,
we model its likelihood function through a Gaussian likelihood
with the radiometric noise of equation (14) inserted. Moreover,
we model the Student-t noise through the generalised normal
likelihood as they are similar in nature.

4.2. Priors

We list the priors and their ranges in Table 1. We note that for a
Bayesian analysis-focused paper, the resulting analysis and result
are prior dependent. We choose (log)-uniform priors for all the
model parameters as this choice maximises the entropy and puts
equal weight across all possible posterior models. One could argue
that other prior distributions are more suitable if one understands
the underlying system well enough, however, as we do not know
what could be a reasonable prior for this problem, we continue our
analysis with uniform priors as an enforcement of the principle of
maximum entropy. The prior ranges are then set to values that
seem the most physically realistic for our experimental setup e.g.
setting the foreground region parameters β1:Nreg to minimum and
maximum values that were explicitly calculated in equation (6).
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Table 2. PolyChord initialisations with nlive the number of live
points, nprior the number of randomly drawn prior samples
before execution, nfail the failed spawn criterion, and nrepeats
the number of slice sampling repeats which is proportional to
the model dimension Ndim. The precision_criterion is the ter-
mination criterion and do_clustering activates the clustering
algorithmwithin a nested sampling run.

Parameter Settings

nlive Ndim ∗ 25
nprior Ndim ∗ 25
nfail Ndim ∗ 25
nrepeats Ndim ∗ 5
precision_criterion 0.001

do_clustering True

4.3. PolyChord initialisation

As PolyChord uses slice sampling within the nested sampling
algorithm to draw proposal candidates, PolyChord has sam-
pling initialisations that we list in Table 2. Additionally, we run
PolyChord twice for each model M and dataset D. In the second
run, we use the posterior sample mean and sample variance for the
foreground region parameters β1:Nregof the first iteration to con-
struct narrower prior ranges θ̄∗ ± 5σ ∗ where we keep the same
prior shape as our initial prior distributions. This ensures proper
posterior exploration around high posterior mass regions found
in the first run when encountering a potential multimodal prob-
lem. An evidence correction has been applied afterwards. This
method is adapted from and described in more detail in Anstey
et al. (2021b) and Petrosyan & Handley (2022).

5. Results

For each dataset D, we use PolyChord to numerically compute
the Bayesian evidence logZ for the sky-averaged 21-cm signal
model M1 and the no-signal model M2. In Figures 2 and 3, we
show the corresponding Bayesian evidences and the Bayes factors
of the competing signal models for all considered datasets with
various injected noise structures. Additionally, for each modelM,
we also vary its likelihood function and present the Bayes factor
likelihood comparison. We also provide a Table 4 that lists the
computed Bayesian evidences of this study. In Figure 4, we show
exemplary sky-averaged 21-cm signal recoveries when using vary-
ing likelihood functions for different noise structures and their
implications on the signal parameter inferences.

5.1. Generalised normal noise

For the generalised normal noise datasets, we note that the sig-
nal model M1 has a higher Bayesian evidence than the no-signal
model M2 irrespective of the noise shape parameter βD and their
likelihood functions. This indicates that the sky-averaged 21-cm
signal model, the ground truth model of the dataset, is always pre-
ferred over the no-signal model with Bayes factors logK�M > 34.
However, we see a change in likelihood preference once we change
the shape parameter βD of the dataset.

For the case βD = 2, we observe that the Gaussian likelihood
has a higher Bayesian evidence than the generalised normal likeli-
hood for the signal model M1 with a Bayes factor of logKM1,�L =

Table 3. The Bayes factor for the no-signal model M2 when using the Gaussian
and generalised normal likelihood functions applied on a slightly modified
dataset i.e. stronger sky-averaged 21-cm signal or larger noise. The noise param-
eter refers to the generalised normal noise distribution of the dataset.

Change Noise parameter M2, Gauss− GenNorm

in Dataset in Dataset log K

A21 = 500 mK βD = 1 −2.90± 0.38

A21 = 500 mK βD = 1.2 −3.00± 0.38

A21 = 500 mK βD = 1.5 −5.11± 0.36

σD = 50 mK βD = 1 −0.81± 0.51

σD = 50 mK βD = 1.2 −0.50± 0.37

σD = 50 mK βD = 1.5 +1.18± 0.38

1.53± 0.39. This is due to the Occams razor penalising the gen-
eralised normal likelihood for having an extra shape parame-
ter βL in its likelihood function that is not necessarily needed
to model the Gaussian noise distribution of the dataset, hence,
preferring the Gaussian likelihood function. When we decrease
the shape parameter βD < 2, the noise distribution turns to a
heavy-tailed distribution, therefore, allowing more extreme noise
realisations. For these cases e.g. βD ≤ 1.2, there is a clear pref-
erence (logKM1,�L < −3.50± 0.41) for the generalised normal
likelihood over the Gaussian likelihood with the signal model hav-
ing the highest Bayesian evidence of all models considered. This is
due to the added flexibility of the generalised normal likelihood
through its shape parameter βL. Similar behaviour can be seen
when increasing the shape parameter i.e. concentratingmost of the
probability mass around the mean of the noise distribution. This
likelihood preference has an impact on the sky-averaged 21-cm
signal recovery which tends to be biased when using the Gaussian
likelihood i.e. the posterior sky-averaged 21-cm signal amplitude
is larger than expected. For example in the βD = 1 case shown in
Figure 5, the posterior estimates of the amplitude (ground truth:
A21 = 155 mK) using a Gaussian likelihood are Ā∗

21 ≈ 185± 18
mK whereas the generalised normal likelihood recovers the signal
more accurately (here: Ā∗

21 ≈ 170± 14 mK).
For the no-signal model M2, there is a tendency that the

Gaussian likelihood is slightly more preferred than the generalised
normal distribution for heavy-tailed noise (logKM2,�L ≈ 1.90±
0.40). This is due to the relatively weak sky-averaged 21-cm signal
within the dataset. The no-signal model can use the foreground
model to “fit away” the sky-averaged 21-cm signal and some of
the extremer noise structures, hence, not requiring the additional
flexibility of the generalised normal likelihood.

We confirm this by regenerating the dataset with a larger sky-
averaged 21-cm signal A21 = 500 mK. For these datasets and for
the no-signal modelM2, the generalised normal likelihood is pre-
ferred over the Gaussian likelihood, as seen in Table 3. For these
cases, the foreground and Gaussian likelihood function alone can
not account for this larger structure, hence, requiring the addi-
tional flexibility of the generalised normal likelihood. We can see
similar behaviour when we regenerate datasets where we increase
the scale of the non-Gaussian noise to higher values σnoise = 50
mK. Here, the apparent preference of the Gaussian likelihood for
the no-signal model vanishes, as the Bayes Factor is around zero.

5.2. Student-t noise

For the Student-t noise datasets, we see a tendency in favour of the
Gaussian likelihood for the true signal modelM1 when the degree
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Figure 2. Bayesian evidence logZ (first row), signal model comparison (�M=M1 −M2) (second row) and likelihood comparison Bayes factor (third row) for the Gaussian and
generalised normal noise datasets. The errors are in the order of σlogZ ≈ 0.3.

Figure 3. Bayesian evidence logZ (first row), signal model comparison (�M=M1 −M2) (second row) and likelihood comparison Bayes factor (third row) for the Cauchy and
radiometric noise datasets. The errors are in the order of σlogZ ≈ 0.3.
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Figure 4. Foreground subtracted residuals (beige) and sky-averaged 21-cm signal recovery (blue) for the Cauchy noise case (γ = 0.025) (top) and radiometric noise case (τ = 104

s) (bottom) when using varying likelihood functions for inference. The upper case shows signs of biased signal mean estimates and the lower case show signs of higher parameter
variance.

Figure 5. Marginalised posterior estimates of the sky-averaged 21-cm signal param-
eters when using a Gaussian likelihood (red) versus a generalised normal likelihood
function (blue) for an antenna temperature dataset containing generalised normal
noise with βD = 1. The black dashed lines represent the ground truth values of the
parameters.

of freedom parameter ν is increasing (e.g. for ν = 30 logKM1,�L =
1.59± 0.40). This is due to the Student-t distributions property
to converge (in distribution) to a Gaussian distribution the more

underlying samples one has. Therefore, Occam’s razor penalises
the generalised normal likelihood for its shape parameter and
selects the Gaussian likelihood with the true signal model as the
datasets best-fitting choice. Moreover, the signal recovery is for
both likelihoods almost identical with no signs of bias in the
sky-averaged 21-cm signal posterior parameters as these Student-t
noise distributions are similar to the Gaussian distribution,
therefore modelled well with the likelihoods considered.

Consequently, when we decrease the degree of freedom param-
eter ν, the generalised normal distribution will be preferred over
the Gaussian likelihood model with Bayes factors of logKM1,�L <

−1.57± 0.40. However, we note for these heavy-tailed noise cases
ν ≤ 5, the no-signal model M2 has a higher Bayesian evidence
than the signal model M1 with Bayes factors logK�M < −6.
This indicates that the signal-to-noise ratio is too low to confi-
dently detect a sky-averaged 21-cm signal, therefore, preferring
the simpler no-signal model. In terms of likelihood preference,
the no-signal model has a tendency to prefer the simpler Gaussian
likelihood function similar to the generalised normal noise case
(logKM2,�L ≈ 1.00± 0.40). Hence, the foreground model is used
to “fit away” the sky-averaged 21-cm signal features and absorbing
the structure into the noise, therefore, not needing the extra flex-
ibility offered by the shape parameter of the generalised normal
likelihood function.

5.3. Cauchy noise

For the Cauchy noise datasets, we conduct the inference with three
different likelihoods. We use the Gaussian, generalised normal
and Cauchy likelihood which is the ground truth likelihood func-
tion of the dataset. Here, the Gaussian likelihood has the lowest
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Table 4. Bayesian evidences logZ of all models and likelihoods considered for a simulated antenna temperature dataset with varying degrees and types of noise.

Generalised normal noise GaussM1, logZ Gen. normM1, logZ GaussM2, logZ Gen. normM2, logZ
βD = 5.0 287.46± 0.26 288.26± 0.28 251.13± 0.28 252.53± 0.27

βD = 3.0 287.503± 0.28 286.10± 0.27 252.04± 0.29 251.74± 0.28

βD = 2.5 288.41± 0.27 285.51± 0.27 252.30± 0.28 250.77± 0.28

βD = 2.0 288.01± 0.28 286.482± 0.27 251.87± 0.28 250.60± 0.27

βD = 1.7 287.90± 0.28 287.15± 0.26 253.23± 0.27 251.60± 0.27

βD = 1.5 288.54± 0.26 288.29± 0.28 253.18± 0.27 250.93± 0.27

βD = 1.2 288.32± 0.29 291.82± 0.28 253.69± 0.28 251.37± 0.27

βD = 1.0 289.57± 0.28 297.15± 0.28 254.15± 0.29 252.03± 0.26

Student-t noise Gauss,M1, logZ Gen. normM1, logZ GaussM2, logZ Gen. normM2, logZ
ν = 30 297.86± 0.29 296.26± 0.28 256.82± 0.29 255.35± 0.27

ν = 20 294.83± 0.29 295.91± 0.29 257.11± 0.28 255.99± 0.27

ν = 15 293.40± 0.29 293.88± 0.29 256.76± 0.28 254.53± 0.28

ν = 10 287.28± 0.29 288.86± 0.29 256.29± 0.29 255.55± 0.27

ν = 5 246.99± 0.28 248.87± 0.29 255.96± 0.29 255.86± 0.29

ν = 4 239.76± 0.27 246.30± 0.29 256.01± 0.28 255.81± 0.29

ν = 3 221.29± 0.28 230.73± 0.28 256.45± 0.28 255.43± 0.28

ν = 2 194.14± 0.27 224.73± 0.26 257.10± 0.30 254.95± 0.28

Cauchy noise GaussM1, logZ Gen. normM1, logZ CauchyM1, logZ GaussM2, logZ Gen. normM2, logZ CauchyM2, logZ
γ = 0.03 −385.19± 0.26 90.98± 0.29 110.43± 0.27 −392.70± 0.29 73.96± 0.29 95.01± 0.27

γ = 0.025 −219.19± 0.26 121.15± 0.30 136.81± 0.26 −225.72± 0.28 99.11± 0.31 115.21± 0.29

γ = 0.02 −83.17± 0.27 155.39± 0.29 167.82± 0.28 −88.21± 0.28 129.44± 0.30 139.24± 0.27

γ = 0.015 23.35± 0.27 197.08± 0.31 207.64± 0.27 19.23± 0.27 158.52± 0.30 167.14± 0.27

γ = 0.01 102.48± 0.24 253.97± 0.30 263.31± 0.29 99.69± 0.26 193.33± 029 200.85± 0.27

γ = 0.005 199.89± 0.26 344.75± 0.31 352.83± 0.31 188.10± 0.28 242.32± 0.30 245.56± 0.29

Radiometric noise GaussM1, logZ Gen. normM1, logZ RadiometricM1, logZ GaussM2, logZ Gen. normM2, logZ RadiometricM2, logZ
τ = 105 s 315.73± 0.28 353.55± 0.32 392.05± 0.28 278.62± 0.28 279.97± 0.29 309.10± 0.26

τ = 104 s 155.56± 0.26 197.25± 0.28 235.45± 0.25 153.56± 0.27 179.63± 0.27 220.37± 0.25

τ = 103 s −131.25± 0.26 11.52± 0.27 74.20± 0.22 −131.22± 0.28 6.85± 0.28 72.76± 0.23

τ = 102 s −2792.04± 0.28 −341.69± 0.28 −90.55± 0.20 −2793.34± 0.27 −342.62± 0.30 −90.56± 0.22

τ = 101 s −29840.63± 0.30 −820.28± 0.29 −257.50± 0.17 −29873.58± 0.29 −818.71± 0.33 −257.56± 0.19

τ = 100 s −304196.93± 0.32 −1325.48± 0.36 −427.23± 0.16 −304388.36± 0.30 −1326.45± 0.35 −426.57± 0.17

Bayesian evidence, irrespective of the scale γ and model we con-
sider. Only when decreasing the scale parameter γ significantly,
the Gaussian likelihoods perform gradually better, however still
significantly unfavoured with logKM1,�L < −140.

In the signal model comparison, the true signal model M1 is
always preferred with logK�M,Gauss > 2.7, logK�M,Gen.norm > 17
and logK�M,Cauchy > 15. Furthermore, as expected, the Bayesian
evidence is the highest for the Cauchy likelihood signal model,
as it is the true noise model of the dataset. However, we note
that the generalised normal likelihood performs almost equally
well on the absolute log-evidence scale i.e. in the likelihood
comparison, the Bayes factor is on a similar scale for the
Cauchy and generalised normal likelihood function (e.g. for
γ = 0.025 we have logKM1,Gauss−Gen.norm = −340.35± 0.39 and
logKM1,Gauss−Cauchy = −356.00± 0.37) when compared to the
Gaussian likelihood model. We note that these Bayes factors
show a clear preference for the Cauchy likelihood when directly
comparing it with the generalised normal likelihood function,

however this Bayes factor difference is significantly smaller than
the Gaussian likelihood comparison.

This Bayesian evidence difference between the likelihoods
is noticed in the sky-averaged 21-cm signal recovery which is
shown in Figure 4. The generalised normal and Cauchy likeli-
hood (ground truth) recovers the sky-averaged 21-cm signal well,
however when using the Gaussian likelihood the sky-averaged
21-cm signal tends to have a noticeably larger amplitude i.e.
the Gaussian likelihood fails to recover the true signal param-
eters. Thus, the generalised normal likelihood function can be
considered as a good approximation of the true Cauchy likeli-
hood function for sky-averaged 21-cm signal antenna temperature
datasets containing Cauchy noise i.e. extreme noisy features.

5.4. Radiometric noise

For the radiometric noise datasets, we see a similar behaviour
as the Cauchy noise case. The Gaussian likelihood always has
the lowest Bayesian evidence for varying integration times τ .
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For these datasets, the true radiometric likelihood has the high-
est Bayesian evidence. Similarly, as in the Cauchy noise datasets,
the generalised normal likelihood performs reasonably well,
hence, accounting for heteroscedastic noise structures through its
shape parameter (e.g. for τ = 104s we have logKM1,Gauss−Gen.norm =
−41.69± 0.38 and logKM1,Gauss−Radiometric = −79.89± 0.39). This
Bayes factor difference is more prominent for lower integration
times. Moreover, this difference can be seen in the sky-averaged
21-cm signal recovery of Figure 4 where the generalised normal
and radiometric likelihood function recovers more tightly con-
strained posterior parameters in contrast to the homoscedastic
Gaussian likelihood function that is more uncertain in the signal
shape.

In the signal comparison, we see a change in model preference
at integration times of τ ∼ 103 s. For lower integration times, the
signal-to-noise ratio is too low to make a confident sky-averaged
21-cm signal detection, therefore, preferring the no-signal model
for these integration times e.g. logK�M,Gen.norm ≤ 0± 0.42 and
logK�M,Radiometric ≤ 0± 0.30. Consequently, when we increase the
integration time the radiometric noise got sufficiently suppressed
such that the signal model will be preferred.

However, with the Gaussian likelihood the signal model M1
is preferred again with Bayes Factors reaching up to logK�M =
37.11± 0.39 if one keeps lowering the integration time. This is
due to the models attempt to fit for a sky-averaged 21-cm sig-
nal imitated by the noise, therefore, incorrectly recovering the
sky-averaged 21-cm signal parameters. We can mitigate this false
sky-averaged 21-cm signal parameter recovery by changing the
central frequency f0,21 prior range. However, we do not see this
behaviour for the generalised normal and radiometric likelihoods,
as they correctly determine that these are noise structures, whereas
the relatively constrained Gaussian likelihood failed to do so.
Hence, we conclude that the generalised normal likelihood is a
better approximation of the radiometric likelihood function if
radiometric noise is present.

6. Conclusion

For Bayesian inference, the necessity for an explicit likelihood
function poses a challenging task for cosmological state-of-the-art
data analysis. Usually, it is easier to simulate a dataset for a phys-
ical process based on some input parameters than to identify the
often latent and hierarchical statistical properties in each model
component and solving the inverse problem. Therefore, these
complex noise structures can make the likelihood intractable and
a more simplified approximation such as a Gaussian likelihood
is frequently used. The task of finding an approximation of the
ground truth likelihood function is known as likelihood-free
inference (LFI) with often complex and involved algorithms exe-
cuted to achieve this. However, we demonstrated that LFI can also
be achieved through a simple Bayesian evidence-driven likelihood
analysis in which we show that the Gaussian likelihood function
is not always the best choice as an approximation of the ground
truth likelihood function of the dataset. Although we note, that
in ‘true’ LFI the non-parametric likelihood approximations are
much more expressive than those considered here, nonetheless
they command much larger Occam penalties given by the virtue
of their expressiveness. This forms the subject of ongoing work.

We used a physically motivated simulator to generate antenna
temperature datasets where we injected noise of various complex-
ity and scales. For each dataset, we injected one of the following
noise structures: Gaussian noise, generalised normal noise,

Student-t noise, Cauchy noise or radiometric noise. As each of
these noise distributions has a varying amount of free parameters,
we varied the shape parameter, if the distribution has a shape
parameter, otherwise we varied its scale parameter.

After dataset creation, we defined two models: the true signal
model M1 of the dataset containing the foreground, the sky-
averaged 21-cm signal and the noise contribution and the no signal
model M2 which does not contain any sky-averaged 21-cm signal
component.

We modelled the foreground by dividing the sky intoNreg = 14
regions of equal spectral index and the sky-averaged 21-cm sig-
nal through a Gaussian-shaped absorption feature and the noise
contribution through the likelihood function. As we injected noise
with various structures, we investigated the following likelihood
functions: the Gaussian, generalised normal, Cauchy and the
radiometric likelihood.

By providing priors for our model parameters, we used
PolyChord, a nested sampling-based algorithm, to numerically
compute the Bayesian evidence of the model and likelihood.
Afterwards, we selected the preferred likelihood through the
Bayesian evidence for each model and dataset.

We found that if the dataset contains Gaussian or Gaussian-like
noise (e.g. Student-t with high ν), the Gaussian likelihood func-
tion has the highest Bayesian evidence for the true signal model
M1 of the dataset. However, if the noise is non-Gaussian/heavy-
tailed e.g. Cauchy or radiometric noise, the Gaussian likelihood
has always a lower Bayesian evidence with a tendency for biased
signal parameter recovery than the generalised normal and ground
truth likelihood functions for the datasets studied. Consequently,
for these noise structures, the respective ground truth likelihoods
e.g. Cauchy likelihood for Cauchy noise or the radiometric like-
lihood for radiometric noise has the highest Bayesian evidence.
However, the generalised normal likelihood is only marginally
worse on Bayesian evidence scale with comparable sky-averaged
21-cm signal recovery than the ground truth likelihood functions.
This is due to the flexibility added by the shape parameter of the
generalised normal distribution to account for extremely noisy
features.

To summarise, this analysis demonstrated the influence of
varying likelihoods on sky-averaged 21-cm signal recovery, and it
showed that one can get biased posterior parameter results such
as amplitude enhancement or more uncertain shape parameters
by using the oversimplified Gaussian likelihood function for infer-
ence. Hence, only if one is certain that the noise structure of
the antenna temperature dataset is Gaussian one should use the
Gaussian likelihood function for inference. Moreover, in the gen-
eral case, if one is certain about the precise noise structure, one
should always use its ground truth likelihood function. However,
when one is uncertain about the noise structure, which in principle
holds true for every complex physical process such as the challeng-
ing task of sky-averaged 21-cm signal recovery, one should use the
generalised normal likelihood as a preferred first approximation
for the true unknown likelihood function and expand on it with
further analysis. The generalised normal likelihood offers the flex-
ibility to account for more complex unknown noise structure, and
it generalises the Gaussian distribution by including it as a special
case. Hence, this form of preference of the generalised normal like-
lihood selected by the Bayesian evidence is a simple way of finding
a good approximation of the ground truth likelihood with wider
applications in the likelihood-free inference paradigm by quantify-
ing how well the likelihood estimate found through an algorithmic
method is.
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