
JFP 19 (3 & 4): 377–402, 2009. c© 2009 Cambridge University Press

doi:10.1017/S0956796809007291 Printed in the United Kingdom

377

The essence of the ITERATOR pattern

JEREMY GIBBONS and BRUNO C. d. S. OL IVEIRA

Oxford University Computing Laboratory,

Wolfson Building, Parks Road, Oxford OX1 3QD, UK

(e-mail: {jeremy.gibbons,bruno.oliveira}@comlab.ox.ac.uk)

Abstract

The Iterator pattern gives a clean interface for element-by-element access to a collection,

independent of the collection’s shape. Imperative iterations using the pattern have two simul-

taneous aspects: mapping and accumulating. Various existing functional models of iteration

capture one or other of these aspects, but not both simultaneously. We argue that C. McBride

and R. Paterson’s applicative functors (Applicative programming with effects, J. Funct.

Program., 18 (1): 1–13, 2008), and in particular the corresponding traverse operator, do

exactly this, and therefore capture the essence of the Iterator pattern. Moreover, they do so

in a way that nicely supports modular programming. We present some axioms for traversal,

discuss modularity concerns and illustrate with a simple example, the wordcount problem.

1 Introduction

Perhaps the most familiar of the so-called Gang of Four design patterns (Gamma

et al. 1995) is the Iterator pattern, which ‘provides a way to access the elements

of an aggregate object sequentially without exposing its underlying representation’.

Traditionally, this is achieved by identifying an Iterator interface that presents

operations to initialise an iteration, to access the current element, to advance to the

next element and to test for completion; collection objects are expected to implement

this interface, usually indirectly via a sub-object. Essential to the pattern is the idea

that elements are accessed sequentially, but independently of their ‘position’ in the

collection; for example, labelling each element of a tree with its index in left-to-right

order fits the pattern, but labelling each element with its depth does not.

This traditional version of the pattern is sometimes called an External Iterator.

An alternative Internal Iterator approach assigns responsibility for managing the

traversal to the collection instead of the client: the client needs only to provide an

operation, which the collection applies to each of its elements. The latter approach

is simpler to use, but less flexible; for example, it is not possible for the iteration

to affect the order in which elements are accessed, nor to terminate the iteration

early. By ‘iteration’ in this paper we mean the Internal Iterator approach – not

External Iterators, nor iteration in the sense of Pascal’s for loop.

An External Iterator interface has been included in the Java and the C#

libraries since their inception. Syntactic sugar supporting use of the interface, in the

form of the foreach construct, has been present in C# since the first version and in

https://doi.org/10.1017/S0956796809007291 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809007291

378 J. Gibbons and B. C. d. S. Oliveira

public static int loop〈MyObj 〉 (IEnumerable〈MyObj 〉 coll){
int n = 0;

foreach (MyObj obj in coll){
n = n + 1;

obj.touch ();

}
return n;

}
Fig. 1. Iterating over a collection in C#.

Java since version 1.5. This syntactic sugar effectively represents internal iterators in

terms of external iterators; its use makes code cleaner and simpler, although it gives

privileged status to the specific iteration interface chosen, entangling the language

and its libraries.

In Figure 1 we show an application of C#’s foreach construct: a method loop

that iterates over a collection, counting the elements but simultaneously interacting

with each of them. The method is parametrised by the type MyObj of collection

elements; this parameter is used twice, once to constrain the collection coll passed

as a parameter, and again as a type for the local variable obj. The collection itself is

rather unconstrained; it only has to implement the IEnumerable〈MyObj〉 interface.

In this paper, we investigate the structure of iterations over collection elements like

that shown in Figure 1. We emphasise that we want to capture both aspects of the

method loop and iterations like it: mapping over the elements, and simultaneously

accumulating some measure of those elements. Moreover, we aim to do so holistically,

treating the iteration as an abstraction in its own right; this leads us naturally to

a higher-order presentation. We also want to develop an algebra of such iterations,

with combinators for composing them and laws for reasoning about them; this leads

us towards a functional approach. We argue that McBride and Paterson’s applicative

functors (McBride & Paterson 2008), and in particular the corresponding traverse

operator, have exactly the right properties. Finally, we will argue that traverse and its

laws are ideally suited to modular development, whereby more complex programs

can be obtained by composing simpler ones together, and compositions may be

transformed by the application of the laws.

The rest of this paper is structured as follows. Section 2 reviews a variety of earlier

approaches to capturing the essence of iterations functionally. Section 3 presents

McBride and Paterson’s notions of applicative functors and traversals. These two

sections summarise previous work; our present contribution starts in Section 4, with

a more detailed look at traversals. In Section 5 we propose a collection of laws of

traversal, and in Section 6 we illustrate the use of some of these laws in the context

of a simple example, the wordcount problem. Section 7 concludes the paper.

2 Functional iteration

In this section, we review a number of earlier approaches to capturing the essence of

iteration. In particular, we look at a variety of datatype-generic recursion operators:

https://doi.org/10.1017/S0956796809007291 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809007291

The essence of the ITERATOR pattern 379

maps, folds, unfolds, crushes and monadic maps. The traversals we discuss in

Section 4 generalise most of these.

2.1 Origami

In the origami style of programming (Meijer et al. 1991; Gibbons 2002, 2003), the

structure of programs is captured by higher-order recursion operators such as map,

fold and unfold . These can be made datatype-generic (Jansson & Jeuring 1997;

Gibbons 2006a), parametrised by the shape of the underlying datatype, as shown

below.

class Bifunctor s where

bimap :: (a→ b)→ (c→ d)→ s a c→ s b d

data Fix s a = In{out :: s a (Fix s a)}
map :: Bifunctor s⇒ (a→ b)→ Fix s a→ Fix s b

map f = In ◦ bimap f (map f) ◦ out

fold :: Bifunctor s⇒ (s a b→ b)→ Fix s a→ b

fold f = f ◦ bimap id (fold f) ◦ out

unfold :: Bifunctor s⇒ (b→ s a b)→ b→ Fix s a

unfold f = In ◦ bimap id (unfold f) ◦ f

For a suitable binary type constructor s, the recursive datatype Fix s a is the

fixpoint (up to isomorphism) in the second argument of s for a given type a

in the first argument; the constructor In and destructor out witness the implied

isomorphism. The type class Bifunctor captures those binary type constructors

appropriate for determining the shapes of datatypes: the ones with a bimap operator

that essentially locates elements of each of the two types of parameters. Technically,

bimap should also satisfy the laws

bimap id id = id -- identity

bimap (f ◦ h) (g ◦ k) = bimap f g ◦ bimap h k -- composition

but this constraint is not expressed in the type class declaration.

The recursion pattern map captures iterations that modify each element of a

collection independently; thus, map touch captures the mapping aspect of the C#

loop in Figure 1, but not the accumulating aspect.

At first glance, it might seem that the datatype-generic fold captures the accu-

mulating aspect; but the analogy is rather less clear for a non-linear collection. In

contrast to the C# method above, which is sufficiently generic to apply to non-linear

collections, a datatype-generic counting operation defined using fold would need a

datatype-generic numeric algebra as the fold body. Such a thing could be defined

polytypically (Jansson & Jeuring 1997; Hinze & Jeuring 2003), but the fact remains

that fold in isolation does not encapsulate the datatype genericity.

Essential to iteration in the sense we are using the term is linear access to collection

elements; this was the problem with fold . One might consider a datatype-generic

operation to yield a linear sequence of collection elements from possibly non-linear

structures, for example by unfold ing to a list. This could be done (though as with the

https://doi.org/10.1017/S0956796809007291 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809007291

380 J. Gibbons and B. C. d. S. Oliveira

fold problem, it requires additionally a datatype-generic sequence coalgebra as the

unfold body); but even then, this would address only the accumulating aspect of

the C# iteration, and not the mapping aspect – it discards the shape of the original

structure. Moreover, for some datatypes the sequence of elements is not definable as

an unfold (Gibbons et al. 2001).

We might also explore the possibility of combining some of these approaches.

For example, it is clear from the definitions above that map is an instance of fold .

Moreover, the banana split theorem (Fokkinga 1990) states that two folds in parallel

on the same data structure can be fused into one. Therefore, a map and a fold in

parallel fuse to a single fold, yielding both a new collection and an accumulated

measure, and might therefore be considered to capture both aspects of the C#

iteration. However, we feel that this is an unsatisfactory solution: it may indeed

simulate or implement the same behaviour, but it is no longer manifest that the

shape of the resulting collection is related to that of the original.

2.2 Crush

Meertens (1996) generalised APL’s ‘reduce’ to a crush operation, 〈〈⊕〉〉 :: t a→ a for

binary operator (⊕) :: a → a → a with a unit, polytypically over the structure of a

regular functor t. For example, 〈〈+〉〉 polytypically sums a collection of numbers. For

projections, composition, sum and fixpoint, there is an obvious thing to do, so the

only ingredients that need to be provided are the binary operator (for products) and

a constant (for units). Crush captures the accumulating aspect of the C# iteration

in Figure 1, accumulating elements independently of the shape of the data structure,

but not the mapping aspect.

2.3 Monadic map

One aspect of iteration expressed by neither the origami operators nor crush is

the possibility of effects, such as stateful operations or exceptions. Seminal work

by Moggi (1991), popularised by Wadler (1993), showed how such computational

effects can be captured in a purely functional context through the use of monads.

class Functor f where

fmap :: (a→ b)→ f a→ f b

class Functor m⇒Monad m where

(>>=) :: m a→ (a→ m b)→ m b

return :: a→ m a

satisfying the following laws:

fmap id = id -- identity

fmap (f ◦ g) = fmap f ◦ fmap g -- composition

return a >>= f = f a -- left unit

mx >>= return = mx -- right unit

(mx >>= f) >>= g = mx >>= (λx→ f x >>= g) -- associativity

Roughly speaking, the type ma for a monad m denotes a computation returning

a value of type a, but in the process possibly having some computational effect

https://doi.org/10.1017/S0956796809007291 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809007291

The essence of the ITERATOR pattern 381

corresponding to m; the return operator lifts pure values into the monadic domain,

and the ‘bind’ operator >>= denotes a kind of sequential composition.

Haskell’s standard library (Peyton Jones 2003) defines a monadic map for lists,

which lifts an effectful computation on elements to one on lists:

mapM :: Monad m⇒ (a→ m b)→ ([a]→ m [b])

Fokkinga (1994) showed how to generalise this from lists to an arbitrary regular

functor, polytypically. Several authors (Meijer & Jeuring 1995; Moggi et al. 1999;

Jansson & Jeuring 2002; Kiselyov & Lämmel 2005; Pardo 2005) have observed that

a monadic map is a promising model of iteration. Monadic maps are very close

to the idiomatic traversals that we propose as the essence of imperative iterations;

indeed, for monadic applicative functors, a traversal reduces exactly to a monadic

map. However, we argue that monadic maps do not capture accumulating iterations

as nicely as they might. Moreover, it is well known (Jones & Duponcheel 1993;

King & Wadler 1993) that monads do not compose in general, whereas applicative

functors do; this will give us a richer algebra of traversals. Finally, monadic maps

stumble over products, for which there are two reasonable but symmetric definitions,

coinciding only when the monad is commutative. This stumbling block forces either

a bias to left or right, or a restricted focus on commutative monads, or an additional

complicating parametrisation; in contrast, applicative functors generally have no

such problem, and in fact can exploit it to provide traversal reversal.

Closely related to monadic maps are operations like Haskell’s sequence function

sequence :: Monad m⇒ [m a]→ m [a]

and its polytypic generalisation to arbitrary datatypes. Indeed, sequence and mapM

are interdefinable: mapM f = sequence ◦ map f, and so sequence = mapM id. Most

writers on monadic maps have investigated such an operation; Moggi et al. (1999)

call it passive traversal, Meertens (1998) calls it functor pulling, and Pardo (2005)

and others have called it a distributive law. McBride and Paterson (2008) introduce

the function dist playing the same role, but as we shall see, more generally.

3 Applicative functors

McBride and Paterson (2008) recently introduced the notion of an applicative functor

or idiom as a generalisation of monads. (‘Idiom’ was the name McBride originally

chose, but he and Paterson now favour the less evocative term ‘applicative functor’.

We have a slight preference for the former, not least because it lends itself nicely to

adjectival uses, as in ‘idiomatic traversal’. However, out of solidarity, we will mostly

use ‘applicative functor’ as the noun in this paper, resorting to ‘idiomatic’ as the

adjective. Note that Leroy’s parametrised modules that map equal type parameters

to equal abstract types (Leroy 1995) are a completely different kind of ‘applicative

functor’.) Monads allow the expression of effectful computations within a purely

functional language, but they do so by encouraging an imperative programming style

(Peyton Jones & Wadler 1993); in fact, Haskell’s monadic do notation is explicitly

designed to give an imperative feel. Since applicative functors generalise monads,

they provide the same access to effectful computations; but they encourage a more

applicative programming style, and so fit better within the functional programming

https://doi.org/10.1017/S0956796809007291 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809007291

382 J. Gibbons and B. C. d. S. Oliveira

milieu. Moreover, as we shall see, applicative functors strictly generalise monads;

they provide features beyond those of monads. This will be important to us in

capturing a wider variety of iterations, and in providing a richer algebra of those

iterations.

Applicative functors are captured in Haskell by the following type class, provided

in recent versions of the GHC hierarchical libraries (GHC Team 2006).

class Functor m⇒ Applicative m where

pure :: a→ m a

(�) :: m (a→ b)→ m a→ m b

Informally, pure lifts ordinary values into the idiomatic world, and � provides an

idiomatic flavour of function application. We make the convention that � associates

to the left, just like ordinary function application.

In addition to those of the Functor class, applicative functors are expected to

satisfy the following laws.

pure id � u = u -- identity

pure (◦) � u � v � w = u � (v � w) -- composition

pure f � pure x = pure (f x) -- homomorphism

u � pure x = pure (λf → f x) � u -- interchange

In case the reader feels the need for some intuition for these laws, we refer them

forwards to the stream Napierian applicative functor discussed in Section 3.1, which

we believe provides the most accessible instance of them.

These four laws are sufficient to rewrite any expression built from the applicative

functor operators into a canonical form, consisting of a pure function applied to a

series of idiomatic arguments: pure f � u1 � · · · � un. (The composition law read

right to left re-associates applications to the left; the interchange law moves pure

functions to the left; and the homomorphism and identity laws combine multiple or

zero occurrences of pure into one.) Hence the sequencing of effects of any applicative

computation is fixed; in contrast, the ‘bind’ operation of a monad allows the result

of one computation to affect the choice and ordering of effects of subsequent

computations, a feature therefore not supported by applicative functors in general.

3.1 Monadic applicative functors

Applicative functors generalise monads; every monad induces an applicative functor

with the following operations:

newtype � m a = Wrap{unWrap :: m a}
instance Monad m⇒ Applicative (� m) where

pure = Wrap ◦ return

f � x = Wrap (unWrap f ‘ap‘ unWrap x)

(The wrapper � lifts a monad to an applicative functor, and is needed to avoid

overlapping type class instances.) The pure operator for a monadic applicative

functor is essentially just the return of the monad, and idiomatic application � is

essentially monadic application, mf ‘ap‘mx = mf >>= λf → mx>>= λx→ return (f x),

here with the effects of the function preceding those of the argument – there is

another, completely symmetric, definition with the effects of the argument preceding

https://doi.org/10.1017/S0956796809007291 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809007291

The essence of the ITERATOR pattern 383

those of the function (see Section 4.3). We leave the reader to verify that the monad

laws thus entail the applicative functor laws.

For example, the State monad uses the type declaration

newtype State s a = State{runState :: s→ (a, s)}
and induces a monadic applicative functor � (State s).

A particular subclass of monadic applicative functors corresponds to datatypes

of fixed shape, and is exemplified by the stream functor:

data Stream a = SCons a (Stream a)

The pure operator lifts a value to a stream, with infinitely many copies of it;

idiomatic application is a pointwise ‘zip with apply’, taking a stream of functions

and a stream of arguments to a stream of results:

instance Applicative Stream where

pure x = xs where xs = SCons x xs

(SCons f fs) � (SCons x xs) = SCons (f x) (fs � xs)

This applicative functor turns out to be equivalent to the one induced by the Reader

monad:

newtype Reader r a = Reader{runReader :: r → a},
where the environment type r is the natural numbers. Computations within the

stream applicative functor tend to perform a transposition of results; they are related

to what Kühne (1999) calls the transfold operator. We find that this applicative

functor is the most accessible one for providing some intuition for the applicative

functor laws.

A similar construction works for any fixed-shape datatype: pairs, vectors of

length n, matrices of fixed size, infinite binary trees, and so on. Peter Hancock

calls such datatypes Napierian, because they support a notion of logarithm. That is,

datatype t is Napierian if t a 	 ap 	 p → a for some type p of positions, called

the logarithm log t of t. Then t 1 	 1p 	 1, and so the shape is fixed and familiar

properties of Napier’s logarithms arise – for example, log (t × u) 	 log t + log u.

Napierian functors generally are equivalent to Reader monads, with the logarithm as

environment; nevertheless, we feel that it is worth identifying this particular subclass

of monadic applicative functors as worthy of special attention. We expect some

further connection with data-parallel and numerically intensive computation, in the

style of Jay’s language FISh (Jay & Steckler 1998), but we leave the investigation

of that connection for future work.

3.2 Monoidal applicative functors

Applicative functors strictly generalise monads; there are applicative functors that

do not arise from monads. A second family of applicative functors, this time non-

monadic, arises from constant functors with monoidal targets. McBride and Paterson

(2008) call these phantom applicative functors because the resulting type is a phantom

type, as opposed to a container type of some kind. Any monoid (∅,⊕) induces an

applicative functor, where the pure operator yields the unit ∅ of the monoid and

application uses the binary operator ⊕.

newtype Const b a = Const{unConst :: b}
instance Monoid b⇒ Applicative (Const b) where

https://doi.org/10.1017/S0956796809007291 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809007291

384 J. Gibbons and B. C. d. S. Oliveira

pure = Const ∅
x � y = Const (unConst x⊕ unConst y)

Computations within this applicative functor accumulate some measure: for the

monoid of integers with addition, they count or sum; for the monoid of lists with

concatenation, they collect some trace of values; for the monoid of booleans with

disjunction, they encapsulate linear searches; and so on.

Note that the ‘repeat’ and ‘zip with apply’ operations of the stream Napierian

applicative functor can be adapted for ordinary lists (Fridlender & Indrika 2000)

(although this instance does not seem to arise from a monad):

instance Applicative [] where

pure x = xs where xs = x : xs

(f : fs) � (x : xs) = f x : (fs � xs)

� = []

Therefore, lists form applicative functors in three different ways: monadic in the

usual way using cartesian product, when they model non-deterministic evaluation;

monoidal using concatenation, when they model tracing of outputs; and Napierian-

inspired using zip, when they model data-parallel computations.

3.3 Combining applicative functors

Like monads, applicative functors are closed under products; so two independent

idiomatic effects can generally be fused into one, their product.

data (m � n) a = Prod{pfst :: m a, psnd :: n a}
(⊗) :: (Functor m,Functor n)⇒ (a→ m b)→ (a→ n b)→ (a→ (m � n) b)

(f ⊗ g) x = Prod (f x) (g x)

instance (Applicative m, Applicative n)⇒ Applicative (m � n) where

pure x = Prod (pure x) (pure x)

mf � mx = Prod (pfst mf � pfst mx) (psnd mf � psnd mx)

Unlike monads in general, applicative functors are also closed under composition;

so two sequentially dependent idiomatic effects can generally be fused into one, their

composition.

data (m � n) a = Comp{unComp :: m (n a)}
(�) :: (Functor n,Functor m)⇒ (b→ n c)→ (a→ m b)→ (a→ (m � n) c)

f � g = Comp ◦ fmap f ◦ g

instance (Applicative m, Applicative n)⇒ Applicative (m � n) where

pure x = Comp (pure (pure x))

(Comp mf) � (Comp mx) = Comp (pure (�) � mf � mx)

The two operators ⊗ and � allow us to combine idiomatic computations in two

different ways; we call them parallel and sequential composition, respectively. We will

see examples of both in Sections 4.1 and 6.

3.4 Idiomatic traversal

Two of the three motivating examples McBride and Paterson (2008) provide for

idiomatic computations – sequencing a list of monadic effects and transposing a

https://doi.org/10.1017/S0956796809007291 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809007291

The essence of the ITERATOR pattern 385

matrix – are instances of a general scheme they call traversal. This involves iterating

over the elements of a data structure, in the style of a ‘map’, but interpreting certain

function applications idiomatically.

traverseList :: Applicative m⇒ (a→ m b)→ [a]→ m [b]

traverseList f [] = pure []

traverseList f (x : xs) = pure (:) � f x � traverseList f xs

A special case is for traversal with the identity function, which distributes the data

structure over the idiomatic structure:

distList :: Applicative m⇒ [m a]→ m [a]

distList = traverseList id

The ‘map within the idiom’ pattern of traversal for lists generalises to any (finite)

functorial data structure, even non-regular ones (Bird & Meertens 1998). We capture

this via a type class of Traversable data structures (a slightly more elaborate type

class Data.T raversable appears in recent GHC hierarchical libraries (GHC Team

2006)):

class Functor t⇒ Traversable t where

traverse :: Applicative m⇒ (a→ m b)→ t a→ m (t b)

traverse f = dist ◦ fmap f

dist :: Applicative m⇒ t (m a)→ m (t a)

dist = traverse id

For example, here is a datatype of binary trees:

data Tree a = Leaf a | Bin (Tree a) (Tree a)

instance Functor Tree where

fmap f (Leaf x) = Leaf (f x)

fmap f (Bin t u) = Bin (fmap f t) (fmap f u)

The corresponding traverse closely resembles the simpler map, with judicious uses

of pure and �:

instance Traversable Tree where

traverse f (Leaf x) = pure Leaf � f x

traverse f (Bin t u) = pure Bin � traverse f t � traverse f u

McBride and Paterson (2008) propose a special syntax involving ‘idiomatic

brackets’, which would have the effect of inserting the occurrences of pure and

� implicitly; apart from these brackets, the definition then looks exactly like

a definition of fmap. This definition could be derived automatically (Hinze &

Peyton Jones 2001), or given datatype-generically once and for all, assuming some

universal representation of datatypes such as sums and products (Hinze & Jeuring

2003) or (using the definitions of Bifunctor , Fix and fold from Section 2.1) regular

functors (Gibbons 2003):

class Bifunctor s⇒ Bitraversable s where

bidist :: Applicative m⇒ s (m a) (m b)→ m (s a b)

instance Bitraversable s⇒ Traversable (Fix s) where

traverse f = fold (fmap In ◦ bidist ◦ bimap f id)

When m is specialised to the identity applicative functor, traversal reduces precisely

(modulo the wrapper) to the functorial map over lists.

https://doi.org/10.1017/S0956796809007291 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809007291

386 J. Gibbons and B. C. d. S. Oliveira

newtype Id a = Id{unId :: a}
instance Applicative Id where

pure x = Id x

mf � mx = Id ((unId mf) (unId mx))

In the case of a monadic applicative functor, traversal specialises to monadic

map, and has the same uses. In fact, traversal is really just a slight generalisation

of monadic map: generalising in the sense that it applies also to non-monadic

applicative functors. We consider this an interesting insight, because it reveals that

monadic map does not require the full power of a monad; in particular, it does not

require the ‘bind’ or ‘join’ operators, which are unavailable in applicative functors

in general.

For a Napierian applicative functor, traversal transposes results. For example,

interpreted in the pair Napierian applicative functor, traverseList id unzips a list of

pairs into a pair of lists.

For a monoidal applicative functor, traversal accumulates values. The function

reduce performs that accumulation, given an argument that assigns a value to each

element:

reduce :: (Traversable t,Monoid m)⇒ (a→ m)→ t a→ m

reduce f = unConst ◦ traverse (Const ◦ f)

The special case crush (named after Meertens’ operator discussed in Section 2.2, but

with an additional monoidal constraint) applies when the elements are their own

values:

crush :: (Traversable t,Monoid m)⇒ t m→ m

crush = reduce id

For example, when the monoid is that of integers and addition, traversal sums the

elements of a collection.

tsum :: Traversable t⇒ t Integer → Integer

tsum = crush

4 Traversals as iterators

In this section, we show some representative examples of traversals over data

structures, and capture them using traverse.

Before we look at traversals, however, we will introduce a convenient piece of

notation. Recall the identity and constant functors introduced in Section 3:

newtype Id a = Id{unId :: a}
newtype Const b a = Const{unConst :: b}

We will have a number of new datatypes with coercion functions like Id , unId ,

Const and unConst. To reduce clutter, we introduce a common notation for such

coercions:

class Coerce a b | a→ b where

⇓ :: a→ b

⇑ :: b→ a

The idea is that an instance of Coerce a b indicates that type a is a new datatype

built on top of an underlying type b; the function ⇓ reveals the underlying value,

https://doi.org/10.1017/S0956796809007291 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809007291

The essence of the ITERATOR pattern 387

and the function ⇑ wraps it up. The identity functor is an instance of this type class,

of course:

instance Coerce (Id a) a where

⇓ = unId

⇑ = Id

and so are constant functors:

instance Coerce (Const a b) a where

⇓ = unConst

⇑ = Const

Moreover, instances may be propagated through product:

instance (Coerce (m a) b, Coerce (n a) c)⇒ Coerce ((m � n) a) (b, c) where

⇓ mnx = (⇓ (pfst mnx), ⇓ (psnd mnx))

⇑ (x, y) = Prod (⇑ x) (⇑ y)
through composition:

instance (Functor m,Functor n, Coerce (m b) c, Coerce (n a) b)⇒
Coerce ((m � n) a) c where

⇓ = ⇓ ◦ fmap ⇓ ◦ unComp
⇑ = Comp ◦ fmap ⇑ ◦ ⇑

and through monad wrapping:

instance Coerce (m a) c⇒ Coerce (� m a) c where

⇓ = ⇓ ◦ unWrap

⇑ = Wrap ◦ ⇑
We will introduce other instances of Coerce as we need them.

4.1 Shape and contents

In addition to being parametrically polymorphic in the collection elements, the

generic traverse operation is parametrised along two further dimensions: the datatype

being traversed, and the applicative functor in which the traversal is interpreted.

Specialising the latter to lists as a monoid yields a generic contents operation:

contentsBody :: a→ Const [a] b

contentsBody x = ⇑ [x]

contents :: Traversable t⇒ t a→ Const [a] (t b)

contents = traverse contentsBody

To obtain a function of the expected type t a→ [a], we need to remove the type

coercions. The type class Coerce allows this to be done generically:

run :: (Coerce b c,Traversable t)⇒ (t a→ b)→ t a→ c

run program = ⇓ ◦ program
Now we can define the function we expect:

runContents :: Traversable t⇒ t a→ [a]

runContents = run contents

(so that runContents = reduce (:[])). The function run is applicable to all the other

traversals we define as well, but for the sake of brevity we usually omit the routine

definitions.

The contents operation is in turn the basis for many other generic operations,

including non-monoidal ones such as indexing. Moreover, it yields one half of Jay’s

https://doi.org/10.1017/S0956796809007291 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809007291

388 J. Gibbons and B. C. d. S. Oliveira

decomposition of datatypes into shape and contents (Jay 1995). The other half of the

decomposition is obtained simply by a map, which is to say, a traversal interpreted

in the identity idiom:

shapeBody :: a→ Id ()

shapeBody = ⇑ ()

shape :: Traversable t⇒ t a→ Id (t ())

shape = traverse shapeBody

This pair of traversals nicely illustrates the two aspects of iterations that we are

focussing on, namely mapping and accumulation. Of course, it is trivial to compose

them in parallel to obtain both halves of the decomposition as a single function, but

doing this by tupling in the obvious way

decompose :: Traversable t⇒ t a→ (Id � Const [a]) (t ())

decompose = shape⊗ contents

entails two traversals over the data structure. Is it possible to fuse the two traversals

into one? The product of applicative functors allows exactly this, and Section 5.3

justifies this decomposition of a data structure into shape and contents in a single

pass:

decompose = traverse (shapeBody ⊗ contentsBody)

Moggi et al. (1999) give a similar decomposition, but using a customised combi-

nation of monads; we believe that the above component-based approach is simpler.

A similar benefit can be found in the reassembly of a full data structure from

separate shape and contents. This is a stateful operation, where the state consists of

the contents to be inserted; but it is also a partial operation, because the number

of elements provided may be less than the number of positions in the shape. We

therefore make use of both the State monad and the Maybe monad, and so we

incorporate these two in our framework for coercions:

instance Coerce (Maybe a) (Maybe a) where

⇓ = id

⇑ = id

instance Coerce (State s a) (s→ (a, s)) where

⇓ = runState

⇑ = State

This time, we form the composition of the functors, rather than their product. (As it

happens, the composition of the State and Maybe monads in this way does in fact

form another monad, but that is not the case for monads in general.)

The central operation in the solution is the partial stateful function that strips the

first element off the list of contents, if this list is non-empty:

reassembleBody :: ()→ (� (State [a]) � � Maybe) a

reassembleBody = ⇑ ◦ takeHead

where takeHead [] = (Nothing, [])

takeHead (y : ys) = (Just y, ys)

This is a composite monadic value, using the composition of the two monads

State [a] and Maybe; traversal using this operation yields a stateful function for the

whole data structure.

https://doi.org/10.1017/S0956796809007291 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809007291

The essence of the ITERATOR pattern 389

reassemble :: Traversable t⇒ t ()→ (� (State [a]) � � Maybe) (t a)

reassemble = traverse reassembleBody

Now it is simply a matter of running this stateful function and discarding any

leftover elements:

runReassemble :: Traversable t⇒ (t (), [a])→Maybe (t a)

runReassemble = fst ◦ uncurry (run reassemble)

Decomposition and reassembly are partial inverses, in the following sense:

run decompose t = (s, c)⇔ run reassemble s c = (Just t, [])

Moreover, traversal of any data structure may be expressed in terms of list-based

traversal of its contents:

runDecompose xs = (ys, zs)⇒
fmap (curry runReassemble ys) (traverseList f zs) = fmap Just (traverse f xs)

This reinforces the message that traversal concerns the linear processing of contents,

preserving but independent of the shape.

4.2 Collection and dispersal

We have found it convenient to consider special cases of effectful traversals, in which

the mapping aspect is independent of the accumulation and vice versa. The first of

these traversals accumulates elements effectfully, with an operation of type a→ m (),

but modifies those elements purely and independently of this accumulation, with a

function of type a→ b.

collect :: (Traversable t, Applicative m)⇒ (a→ m ())→ (a→ b)→ t a→ m (t b)

collect f g = traverse (λa→ pure (λ()→ g a) � f a)

The C# iteration in Figure 1 is an example using the applicative functor of the State

monad to capture the counting:

loop :: Traversable t⇒ (a→ b)→ t a→� (State Integer) (t b)

loop touch = collect (λa→Wrap (do {n← get; put (n + 1)})) touch
The second kind of traversal modifies elements purely but dependent on the state,

with a binary function of type a → b → c, evolving this state independently of the

elements, via a computation of type mb:

disperse :: (Traversable t, Applicative m)⇒ mb→ (a→ b→ c)→ t a→ m (t c)

disperse mbg = traverse (λa→ pure (ga) � mb)

An example of this family of traversals is a kind of converse of counting, labelling

every element with its position in order of traversal.

label :: Traversable t⇒ t a→� (State Integer) (t Integer)

label = disperse (Wrap step) (curry snd)

step :: State Integer Integer

step = do {n← get; put (n + 1); return n}

4.3 Backwards traversal

In contrast to pure maps, the order in which elements are visited in an effectful

traversal is significant; in particular, iterating through the elements backwards is

https://doi.org/10.1017/S0956796809007291 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809007291

390 J. Gibbons and B. C. d. S. Oliveira

observably different from iterating forwards, because the effects happen in the

opposite order. We can capture this reversal quite elegantly as an applicative functor

adapter:

newtype Backwards m a = Backwards{runBackwards :: m a}
instance Applicative m⇒ Applicative (Backwards m) where

pure = Backwards ◦ pure

f � x = Backwards (pure (flip ($)) � runBackwards x � runBackwards f)

Informally, Backwards m is an applicative functor if m is, but any effects happen

in reverse; this provides the symmetric ‘backwards’ embedding of monads into

applicative functors referred to in Section 3.1.

Such an adapter can be parcelled up existentially:

data AppAdapter m where

AppAdapter :: Applicative (g m)⇒
(∀a. m a→ g m a)→ (∀a. g m a→ m a)→ AppAdapter m

backwards :: Applicative m⇒ AppAdapter m

backwards = AppAdapter Backwards runBackwards

It can be used to define a parametrised traversal:

ptraverse :: (Applicative m,Traversable t)⇒
AppAdapter m→ (a→ m b)→ t a→ m (t b)

ptraverse (AppAdapter insert retrieve) f = retrieve ◦ traverse (insert ◦ f)

For example, reverse labelling is just labelling, adapted to run backwards:

lebal = ptraverse backwards (λa→ step)

Of course, there is a trivial forwards adapter too:

newtype Forwards m a = Forwards{runForwards :: m a}
instance Applicative m⇒ Applicative (Forwards m) where

pure = Forwards ◦ pure

f � x = Forwards (runForwards f � runForwards x)

instance Functor m⇒ Functor (Forwards m) where

fmap f = Forwards ◦ fmap f ◦ runForwards

forwards :: Applicative m⇒ AppAdapter m

forwards = AppAdapter Forwards runForwards

5 Laws of traverse

In line with other type classes such as Functor and Applicative, we should consider

also what properties the various datatype-specific definitions of traverse ought to

enjoy.

5.1 Free theorems of traversal

In addition to his popularisation of Moggi’s work on monads, Wadler made

Reynolds’ work on parametricity (Reynolds 1983) more accessible under the slogan

‘theorems for free’ (Wadler 1989). This principle states that a parametrically poly-

morphic function enjoys a property that follows entirely from its type, without any

https://doi.org/10.1017/S0956796809007291 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809007291

The essence of the ITERATOR pattern 391

consideration of its implementation. The free theorem arising from the type of dist

is

dist ◦ fmap (fmap k) = fmap (fmap k) ◦ dist

As corollaries, we get the following two free theorems of traverse:

traverse (g ◦ h) = traverse g ◦ fmap h

traverse (fmap k ◦ f) = fmap (fmap k) ◦ traverse f

These laws are not constraints on the implementation of dist and traverse; they

follow automatically from their types.

5.2 Sequential composition of traversals

We have seen that applicative functors compose: there is an identity applicative

functor Id and, for any two applicative functors m and n, a composite applicative

functor m�n. We impose on implementations of dist the constraint of respecting this

compositional structure. Specifically, the distributor dist should respect the identity

applicative functor

dist ◦ fmap Id = Id

and the composition of applicative functors,

dist ◦ fmap Comp = Comp ◦ fmap dist ◦ dist

As corollaries, we get analogous properties of traverse:

traverse (Id ◦ f) = Id ◦ fmap f

traverse (Comp ◦ fmap f ◦ g) = Comp ◦ fmap (traverse f) ◦ traverse g

Both of these consequences have interesting interpretations. The first says that

traverse interpreted in the identity applicative functor is essentially just fmap, as

mentioned in Section 3.4. The second provides a fusion rule for the sequential

composition of two traversals; it can be written equivalently as

traverse (f � g) = traverse f � traverse g

5.3 Idiomatic naturality

We also impose the constraint that the distributor dist should be natural in the

applicative functor, as follows. An applicative functor transformation φ :: m a → n a

from applicative functor m to applicative functor n is a homomorphism over the

structure of applicative functors, that is, a polymorphic function (categorically, a

natural transformation between functors m and n) that respects the applicative

functor structure, as follows:

φ (purem a) = puren a

φ (mf �m mx) = φ mf �n φ mx

(Here, the idiomatic operators are subscripted by their idiom for clarity.)

Then dist should satisfy the following naturality property: for applicative functor

transformation φ,

distn ◦ fmap φ = φ ◦ distm
One consequence of this naturality property is a ‘purity law’:

traverse pure = pure

https://doi.org/10.1017/S0956796809007291 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809007291

392 J. Gibbons and B. C. d. S. Oliveira

This follows, as the reader may easily verify, from the observation that purem ◦ unId

is an applicative functor transformation from applicative functor Id to applicative

functor m. This is an entirely reasonable property of traversal; one might say that

it imposes a constraint of shape preservation. (But there is more to it than shape

preservation: a traversal of pairs that flips the two halves necessarily ‘preserves

shape’, but breaks this law.) For example, consider the following definition of

traverse on binary trees, in which the two children are swapped on traversal:

instance Traversable Tree where

traverse f (Leaf a) = pure Leaf � f a

traverse f (Bin t u) = pure Bin � traverse f u � traverse f t

With this definition, traverse pure = pure ◦ mirror, where mirror reverses a tree, and

so the purity law does not hold; this is because the corresponding definition of

dist is not natural in the applicative functor. Similarly, a definition with two copies

of traverse ft and none of traverse fu makes traverse pure purely return a tree in

which every right child has been overwritten with its left sibling. Both definitions

are perfectly well-typed, but (according to our constraints) invalid.

On the other hand, the following definition, in which the traversals of the two

children are swapped, but the Bin operator is flipped to compensate, is blameless. The

purity law still applies, and the corresponding distributor is natural in the applicative

functor; the effect of the reversal is that elements of the tree are traversed ‘from

right to left’.

instance Traversable Tree where

traverse f (Leaf a) = pure Leaf � f a

traverse f (Bin t u) = pure (flip Bin) � traverse f u � traverse f t

We consider this to be a reasonable, if rather odd, definition of traverse.

Another consequence of naturality is a fusion law for the parallel composition of

traversals, as defined in Section 3.3:

traverse f ⊗ traverse g = traverse (f ⊗ g)

This follows from the fact that pfst and psnd are applicative functor transformations

from Prod m n to m and to n, respectively.

5.4 Sequential composition of monadic traversals

A third consequence of naturality is a fusion law specific to monadic traversals. The

natural form of composition for monadic computations is called Kleisli composition:

(•) :: Monad m⇒ (b→ m c)→ (a→ m b)→ (a→ m c)

(f • g) x = do {y ← g x; z ← f y; return z}
The monad m is commutative if, for all mx and my,

do {x← mx; y ← my; return (x, y)} = do {y ← my; x← mx; return (x, y)}
When interpreted in the applicative functor of a commutative monad m, traversals

with bodies f :: b→ m c and g :: a→ m b fuse:

traverse f • traverse g = traverse (f • g)

This follows from the fact that μ ◦ unComp forms an applicative functor transforma-

tion from m � m to m, for a commutative monad m with ‘join’ operator μ (that is,

μ = (>>=id)).

https://doi.org/10.1017/S0956796809007291 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809007291

The essence of the ITERATOR pattern 393

This fusion law for the Kleisli composition of monadic traversals shows the bene-

fits of the more general idiomatic traversals quite nicely. Note that the corresponding

more general fusion law for applicative functors in Section 5.2 allows two different

applicative functors rather than just one; moreover, there are no side conditions

concerning commutativity, in contrast to the situation with Kleisli composition. For

example, consider the following programs:

update1 :: a→ State Integer a

update1 x = do {var ← get; put (var ∗ 2); return x}
update2 :: a→ State Integer a

update2 x = do {var ← get; put (var + 1); return x}
monadic1 = traverse update1 • traverse update2

monadic2 = traverse (update1 • update2)

applicative1 = traverse update1 � traverse update2

applicative2 = traverse (update1 � update2)

Because update1 and update2 do not commute, monadic1 �= monadic2 in general;

nevertheless, applicative1 = applicative2. The only advantage of the monadic law is

that there is just one level of monad on both sides of the equation; in contrast, the

idiomatic law has two levels of applicative functor, because there is no analogue of

the ‘join’ operator μ.

We conjecture that the monadic traversal fusion law also holds even if m is not

commutative, provided that f and g themselves commute (f • g = g • f); but this no

longer follows from naturality of the distributor in any simple way, and it imposes

the alternative constraint that the three types a, b, c are equal.

5.5 No duplication of elements

Another way in which a definition of traverse might cause surprises would be to visit

elements multiple times. (A traversal that skips elements would violate the purity

law in Section 5.3.) For example, consider this definition of traverse on lists, which

visits each element twice:

instance Traversable [] where

traverse f [] = pure []

traverse f (x : xs) = pure (const (:)) � f x � f x � traverse f xs

Note that this definition still satisfies the purity law. However, it behaves strangely

in the following sense: if the elements are indexed from zero upwards, and then the

list of indices is extracted, the result is not an initial segment of the natural numbers.

To make this precise, we define

index :: Traversable t⇒ t a→ (t Integer , Integer)

index xs = run label xs 0

where label was given in Section 4.2. We might expect for any xs that if index xs =

(ys, n) then runContents ys = [0 . . n − 1]; however, with the duplicating definition

of traversal for lists above, we get index "abc" = (ys, 6) where runContents ys =

[1, 1, 3, 3, 5, 5].

We might impose ‘no duplication’ as a further constraint on traversal, but the

characterisation of the constraint in terms of indexing feels rather ad hoc; we are

https://doi.org/10.1017/S0956796809007291 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809007291

394 J. Gibbons and B. C. d. S. Oliveira

public static int [] wc〈char〉 (IEnumerable〈char〉 coll){
int nl = 0, nw = 0, nc = 0;

bool state = false;

foreach (char c in coll){
++ nc;

if (c ≡ ’\n’) ++ nl;

if (c ≡ ’ ’ ∨ c ≡ ’\n’ ∨ c ≡ ’\t’){
state = false;

} else if (state ≡ false){
state = true;

++ nw;

}
}
int [] res = {nc, nw, nl };
return res;

}
Fig. 2. Kernighan and Ritchie’s wc program in C#.

still searching for a nice theoretical treatment of this condition. For the time being,

therefore, we propose to leave as an observation the fact that some odd definitions

of traversal may duplicate elements.

6 Modular programming with applicative functors

In Section 4, we showed how to model various kinds of iteration – both mapping

and accumulating, and both pure and impure – as instances of the generic traverse

operation. The extra generality of applicative functors over monads, capturing

monoidal as well as monadic behaviour, is crucial; that justifies our claim that

idiomatic traversal rather than monadic map is the essence of the Iterator pattern.

However, there is an additional benefit of applicative functors over monads,

which concerns the modular development of complex iterations from simpler aspects.

Hughes (1989) argues that one of the major contributions of functional programming

is in providing better glue for plugging components together. In this section, we

make a corresponding case for idiomatic traversals: the improved compositionality

of applicative functors over monads provides better glue for fusion of traversals,

and hence better support for modular programming of iterations.

6.1 An example: wordcount

As an illustration, we consider the Unix word-counting utility wc, which computes

the numbers of characters, words and lines in a text file. The program in Figure 2,

based on Kernighan and Ritchie’s (1988) version, is a translation of the original C

program into C#. This program has become a paradigmatic example in the program

comprehension community (Gallagher & Lyle 1991; Villavicencio & Oliveira 2001;

Gibbons 2006b), since it offers a nice exercise in re-engineering the three separate

slices from the one monolithic iteration. We are going to use it in the other direction:

fusing separate simple slices into one complex iteration.

https://doi.org/10.1017/S0956796809007291 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809007291

The essence of the ITERATOR pattern 395

6.2 Modular iterations, idiomatically

The character-counting slice of the wc program accumulates a result in the integers-

as-monoid applicative functor:

type Count = Const Integer

count :: a→ Count b

count = Const 1

The body of the iteration simply yields 1 for every element:

cciBody :: Char → Count a

cciBody = count

Traversing with this body accumulates the character count:

cci :: String → Count [a]

cci = traverse cciBody

(Note that the element type of the output collection is unconstrained for traversal

in a monoidal applicative functor because the result has a phantom type.)

Counting the lines (in fact, the newline characters, thereby ignoring a final ‘line’

that is not terminated with a newline character) is similar: the difference is simply

what number to use for each element, namely 1 for a newline and 0 for anything

else.

test :: Bool → Integer

test b = if b then 1 else 0

With the help of this function, we define

lciBody :: Char → Count a

lciBody c = ⇑ (test (c ≡ ’\n’))

lci :: String → Count [a]

lci = traverse lciBody

Counting the words is trickier, because it necessarily involves state. Here, we use

the State monad with a boolean state, indicating whether we are currently within a

word, and compose this with the applicative functor for counting:

wciBody :: Char → (� (State Bool) � Count) a

wciBody c = ⇑ (updateState c) where

updateState :: Char → Bool → (Integer , Bool)

updateState c w = let s = not (isSpace c) in (test (not w ∧ s), s)

wci :: String → (� (State Bool) � Count) [a]

wci = traverse wciBody

The wrapper actually to extract the word count runs this traversal from an initial

state of False and discards the final boolean state:

runWci :: String → Integer

runWci s = fst (run wci s False)

These components may be combined in various ways. For example, character-

and line-counting may be combined to compute a pair of results, using the product

of applicative functors:

clci :: String → (Count � Count) [a]

clci = cci⊗ lci

https://doi.org/10.1017/S0956796809007291 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809007291

396 J. Gibbons and B. C. d. S. Oliveira

This composition is inefficient, though, since it performs two traversals over the

input. Happily, the two traversals may be fused into one, as we saw in Section 5.3,

giving

clci = traverse (cciBody ⊗ lciBody)

in a single pass rather than two.

It so happens that both character- and line-counting use the same applicative

functor, but that is not important here. Exactly the same technique works to

combine these two components with the third:

clwci :: String → ((Count � Count) � (� (State Bool) � Count)) [a]

clwci = traverse (cciBody ⊗ lciBody ⊗ wciBody)

Note that character- and line-counting traversals are monoidal, whereas word-

counting is monadic. For a related example using a Napierian applicative func-

tor, consider conducting an experiment to determine whether the distributions

of the letters ‘q’ and ‘u’ in a text are correlated. This might be modelled as

follows:

quiBody :: Char → Pair Bool

quiBody c = P (c ≡ ’q’, c ≡ ’u’)

qui :: String → Pair [Bool]

qui = traverse quiBody

where Pair is a datatype of pairs

newtype Pair a = P (a, a)

made into a Napierian applicative functor in the obvious way. Applying qui to a

string yields a pair of boolean sequences, representing the graphs of the distributions

of these two letters in the string:

run qui "qui" = ([True, False, False], [False, T rue, False])

Moreover, qui combines nicely with character-counting:

ccqui :: String → (Count � Pair) [Bool]

ccqui = cci⊗ qui = traverse (cciBody ⊗ quiBody)

We can also combine qui with the word-counting traversal – although the

product of two applicative functors requires them to agree on the element type,

the word-counting body wci is agnostic about this type and so combines with

anything:

wcqui :: String → (Pair � (� (State Bool) � Count)) [Bool]

wcqui = qui⊗ wci = traverse (quiBody ⊗ wciBody)

In general, however, component traversals may not be so amenable to composition,

and product may not be the appropriate combinator. Such a situation calls for

sequential composition � rather than parallel composition ⊗ of applicative functors

alone. Here, however, we cannot directly compose querying with counting, because

counting discards its argument, and neither can we compose counting with querying,

because querying produces booleans and counting consumes characters. Instead, we

have to use both sequential and parallel composition, preserving a copy of the input

for querying in addition to counting it:

wcqui′ :: String → ((Id � (� (State Bool) � Count)) � Pair) [Bool]

wcqui′ = traverse (quiBody � (Id ⊗ wciBody))

https://doi.org/10.1017/S0956796809007291 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809007291

The essence of the ITERATOR pattern 397

6.3 Modular iterations, monadically

It is actually possible to compose the three slices of wc using monads alone. Let

us explore how that works out, for comparison with the approach using applicative

functors.

The first snag is that none of the three slices is actually monadic; we have to cast

them in the monadic mold first. The simple counting slices can be expressed using

the Writer monad:

ccmBody :: Char →Writer Integer Char

ccmBody c = do {tell 1; return c}
ccm :: String →Writer Integer String

ccm = mapM ccmBody

lcmBody :: Char →Writer Integer Char

lcmBody c = do {tell (test (c ≡ ’\n’)); return c}
lcm :: String →Writer Integer String

lcm = mapM lcmBody

Word-counting is stateful, acting on a state of type (Integer , Bool):

wcmBody :: Char → State (Integer , Bool) Char

wcmBody c = let s = not (isSpace c) in do

(n, w)← get

put (n + test (not w ∧ s), s)

return c

wcm :: String → State (Integer , Bool) String

wcm = mapM wcmBody

This rewriting is a bit unfortunate; however, having rewritten in this way, we can

compose the three traversals into one, and even fuse the three bodies:

clwcm = ccm⊗ lcm⊗ wcm = mapM (ccmBody ⊗ lcmBody ⊗ wcmBody)

Now let us turn to the Napierian traversal. That too can be expressed monadically:

as observed in Section 3.1, a Napierian functor is equivalent to a Reader monad

with the position being the ‘environment’. In particular, the Napierian applicative

functor for the functor Pair is equivalent to the monad Reader Bool.

qumBody :: Char → Reader Bool Bool

qumBody c = do {b← ask; return (if b then (c ≡ ’q’) else (c ≡ ’u’))}
qum :: String → Reader Bool [Bool]

qum = mapM qumBody

We cannot form the parallel composition of this with word-counting, for the same

reason as with the idiomatic approach: the element return types differ. But with

monads, we cannot even form the sequential composition of the two traversals

either: the two monads differ, and Kleisli composition requires two computations in

the same monad.

It is sometimes possible to work around the problem of sequential composition of

computations in different monads, using monad transformers (Jones 1995). A monad

transformer t turns a monad m into another monad t m, typically adding some

https://doi.org/10.1017/S0956796809007291 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809007291

398 J. Gibbons and B. C. d. S. Oliveira

functionality in the process; the operation lift embeds a monadic value from the

simpler space into the more complex one.

class MonadTrans t where

lift :: Monad m⇒ m a→ t m a

With this facility, there may be many monads providing a certain kind of func-

tionality, so that functionality too ought to be expressed in a class. For example,

the functionality of the State monad can be added to an arbitrary monad using

the monad transformer StateT , yielding a more complex monad with this added

functionality:

newtype StateT s m a = StateT {runStateT :: s→ m (a, s)}
instance MonadTrans (StateT s) where ...

class Monad m⇒MonadState s m | m→ s where

get :: m s

put :: s→ m ()

instance MonadState s (State s) where ...

instance Monad m⇒MonadState s (StateT s m) where ...

Now, in the special case of the composition of two different monads in which one

is a monad transformer applied to the other, progress is possible:

(�•) :: (Monad m,MonadTrans t,Monad (t m))⇒
(b→ t m c)→ (a→ m b)→ (a→ t m c)

p1 �• p2 = p1 • (lift ◦ p2)

(•�) :: (Monad m,MonadTrans t,Monad (t m))⇒
(b→ m c)→ (a→ t m b)→ (a→ t m c)

p1 •� p2 = (lift ◦ p1) • p2

We can use these constructions to compose sequentially the ‘q’–‘u’ experiment and

word-counting. We need to generalise the type of wcmBody from the State monad

specifically to any monad with the appropriate functionality (and in particular, one

with State functionality added to the Reader monad):

wcmBody′ :: MonadState (Integer , Bool) m⇒ Char → m Char

wcmBody′ c = let s = not (isSpace c) in do

(n, w)← get

put (n + test (not w ∧ s), s)

return c

(Notice that the definition is identical; only the type has changed.) Now querying

and word-counting compose monadically:

quwcm :: String → StateT (Integer , Bool) (Reader Bool) [Bool]

quwcm = mapM qumBody •� mapM wcmBody′ = mapM (qumBody •� wcmBody′)
This particular pair of monads composes just as well the other way around,

because the types State s (Reader r a) and Reader r (State s a) are isomorphic. So

we could instead use the ReaderT monad transformer to add Reader behaviour to

the State monad, and use the dual composition operation �•. However, both cases

are rather awkward, because they entail having to generalise (perhaps previously

written) components from types involving specific monads (such as State) to general

monad interfaces (such as StateT). Writing the components that way in the first

https://doi.org/10.1017/S0956796809007291 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809007291

The essence of the ITERATOR pattern 399

place might be good practice, but that rule is little comfort when faced with a body

of code that breaks it. Moreover, the monad transformer approach works only for

certain monads, not for all of them; in contrast, composition of applicative functors

is universal.

The upshot is that composition of applicative functors is more flexible than

composition of monads.

7 Conclusions

Monads have long been acknowledged as a good abstraction for modularising

certain aspects of programs. However, composing monads is known to be difficult,

limiting their usefulness. One solution is to use monad transformers, but this requires

programs to be designed initially with monad transformers in mind. Applicative

functors have a richer algebra of composition operators, which can often replace the

use of monad transformers; there is the added advantage of being able to compose

applicative but non-monadic computations. We thus believe that applicative functors

provide an even better abstraction than monads for modularisation.

We have argued that idiomatic traversals capture the essence of imperative

loops – both mapping and accumulating aspects. We have stated some properties of

traversals and shown a few examples, but we are conscious that more work needs

to be done in both these areas.

This work grew out of an earlier discussion of the relationship between design

patterns and higher-order datatype-generic programs (Gibbons 2006a). Preliminary

versions of that work argued that pure datatype-generic maps are the functional

analogue of the Iterator design pattern. It was partly while reflecting on that

argument – and its omission of imperative aspects – that we came to the more

refined position presented here. Note that idiomatic traversals, and even pure maps,

are more general than object-oriented Iterators in at least one sense: it is trivial

with our approach to change the type of the collection elements with a traversal,

whereas with an approach based on mutable objects, this is essentially impossible.

As future work, we are exploring properties and generalisations of the specialised

traversals collect and disperse. We hope that such specialised operators might enjoy

richer composition properties than do traversals in general, and for example will

provide more insight into the repmin example discussed in the conference version of

this paper (Gibbons & Oliveira 2006). We also hope to investigate the categorical

structure of dist further: naturality in the applicative functor appears to be related

to Beck’s distributive laws (Beck 1969), and ‘no duplication’ to linear type theories.

Acknowledgments

We are grateful to the members of IFIP WG2.1, the Algebra of Programming

research group at Oxford, the Datatype-Generic Programming project at Oxford

and Nottingham and the anonymous MSFP and JFP referees, whose insightful

comments have improved this paper considerably. Thanks are due especially to

https://doi.org/10.1017/S0956796809007291 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809007291

400 J. Gibbons and B. C. d. S. Oliveira

Conor McBride and Ross Paterson, without whose elegant work on applicative

functors this would never have happened. As well as the clear debt we owe to

McBride and Paterson (2008), we thank McBride for pointing us to Hancock’s

notion of Napierian functors, and Paterson for the observation that dist should be

natural in the applicative functor.

References

Beck, J. (1969) Distributive laws. In Seminar on Triples and Categorical Homology Theory,

ETH Zürich, 1966/67, Lecture Notes in Math., vol. 80. Springer, pp. 119–140.

Bird, R. S. & Meertens, L. (1998) Nested datatypes. In Proceedings of the 4th International

Conference on Mathematics of Program Construction, MPC ’98 (Marstrand, June 1998),

Jeuring, J. (ed.), Lecture Notes in Computer Science, vol. 1422. Springer, pp. 52–67.

Fokkinga, M. (1990) Tupling and mutumorphisms, Squiggolist, 1 (4): 81–82.

Fokkinga, M. (1994) Monadic maps and folds for arbitrary datatypes. Memoranda

Informatica 94-28. Department of Computer Science, University of Twente.

Fridlender, D. & Indrika, M. (2000) Do we need dependent types? J. Funct. Program., 10 (4):

409–415.

Gallagher, K. B. & Lyle, J. R. (1991) Using program slicing in software maintenance, IEEE

Trans. Softw. Eng. 17 (8): 751–761.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995) Design Patterns: Elements of Reusable

Object-Oriented Software. Addison-Wesley.

GHC Team. (2006) Haskell hierarchical libraries. http://www.haskell.org/ghc/docs/

latest/html/libraries/.

Gibbons, J. (2002) Calculating functional programs. In Revised Lectures from International

Summer School and Workshop on Algebraic and Coalgebraic Methods in the Mathematics

of Program Construction, ACMMPC 2000, Oxford, Apr. 2000, Backhouse, R., Crole, R.,

& Gibbons, J. (eds), Lecture Notes in Computer Science, vol. 2297. Springer,

pp. 148–203.

Gibbons, J. (2003) Origami programming. In The Fun of Programming, Gibbons, J. & de Moor,

O. (eds), Cornerstones in Computing. Palgrave MacMillan, pp. 41–60.

Gibbons, J. (2006a) Design patterns as higher-order datatype-generic programs. In Proceedings

of the 2006 ACM SIGPLAN Workshop on Generic Programming, WGP ’06 (Portland, OR,

Sept. 2006). ACM Press, pp. 1–12.

Gibbons, J. (2006b) Fission for program comprehension. In Proceedings of the 8th International

Conference on Mathematics of Program Construction, MPC 2006 (Kuressaare, July 2006),

Uustalu, T. (ed.), Lecture Notes in Computer Science, vol. 4014. Springer, pp. 162–179.

Gibbons, J., Hutton, G. & Altenkirch, T. (2001) When is a function a fold or an unfold? In

Proceedings of the 4th Workshop on Coalgebraic Methods in Computer Science, CMCS 2001

(Genova, Apr. 2001), Corradini, A., Lenisa, M., & Montanari, U. (eds), Electronic Notes in

Theoretical Computer Science, vol. 44(1). Elsevier, pp. 146–160.

Gibbons, J. & Oliveira, B. C. d. S. (2006) The essence of the iterator pattern. In

Proceedings of the Workshop on Mathematically Structured Functional Programming, MSFP

2006 (Kuressaare, July 2006), McBride, C. & Uustalu, T. (eds), Electronic Workshops in

Computing. BCS.

Hinze, R. & Jeuring, J. (2003) Generic Haskell: Practice and theory. In Advanced Lectures from

International Summer School and Workshop on Generic Programming, SSGP 2002, Oxford,

Aug. 2002, Backhouse, R. & Gibbons, J. (eds), Lecture Notes in Computer Science, vol. 2793.

Springer, pp. 1–56.

https://doi.org/10.1017/S0956796809007291 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809007291

The essence of the ITERATOR pattern 401

Hinze, R. & Peyton Jones, S. (2001) Derivable type classes. In Proceedings of the 2000

ACM SIGPLAN Haskell Workshop, Haskell 2000 (Montreal, Sept. 2000), Hutton, G. (ed.),

Electronic Notes in Theoretical Computer Science, vol. 41(1). Elsevier, pp. 5–35.

Hughes, J. (1989) Why functional programming matters, Comput. J., 32 (2): 98–107.

Jansson, P. & Jeuring, J. (1997) PolyP – A polytypic programming language extension. In

Conference Record of 24th ACM SIGPLAN-SIGACT Symposium Principles of Programming

Languages, POPL ’97, Paris, Jan. 1997. ACM Press, pp. 470–482.

Jansson, P. & Jeuring, J. (2002) Polytypic data conversion programs. Sci. Comput. Program.,

43 (1): 35–75.

Jay, C. B. (1995) A semantics for shape. Sci. Comput. Program., 25, 251–283.

Jay, C. B. & Steckler, P. (1998) The functional imperative: Shape! In Proceedings of the 7th

European Symposium on Programming, ESOP ’98 (Lisbon, March/Apr. 1998), Hankin, C.

(ed.), Lecture Notes in Computer Science, vol. 1381. Springer, pp. 139–153.

Jones, M. P. (1995) Functional programming with overloading and higher-order

polymorphism. In Tutorial Text from 1st International Spring School on Advanced Functional

Programming Techniques, AFP ’95, B̊astad, May 1995, Jeuring, J. & Meijer, E. (eds), Lecture

Notes in Computer Science, vol. 925. Springer, pp. 97–136.

Jones, M. P. & Duponcheel, L. (1993) Composing monads. Technical Report.

YALEU/DCS/RR-1004. Department of Computer Science, Yale University.

Kernighan, B. W. & Ritchie, D. M. (1988) The C Programming Language. Prentice Hall.

King, D. J. & Wadler, P. (1993) Combining monads. In Proceedings of the 1992 Glasgow

Workshop on Functional Programming, (Ayr, July 1992), Launchbury, J., & Sansom, P. M.

(eds), Workshops in Computing. Springer, pp. 134–143.

Kiselyov, O. & Lämmel, R. (2005) Haskell’s overlooked object system. ArXiv preprint

arXiv:cs/0509027v1. Available at http://arxiv.org/abs/cs/0509027v1. (Accessed 4

May 2009).

Kühne, T. (1999) Internal iteration externalized. In Proceedings of the 13th European

Conference on Object-Oriented Programming, ECOOP ’99 (Lisbon, June 1999), Guerraoui,

R. (ed.), Lecture Notes in Computer Science, vol. 1628. Springer, pp. 329–350.

Leroy, X. (1995) Applicative functors and fully transparent higher-order modules.

In Conference Record of 22nd ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages, POPL ’95, San Francisco, CA, Jan. 1995. ACM Press, pp. 142–153.

McBride, C. & Paterson, R. (2008) Applicative programming with effects, J. Funct. Program.,

18 (1): 1–13.

Meertens, L. (1996) Calculate polytypically! In Proceedings of the 8th International Symposium

on Programming Languages: Implementations, Logics, and Programs, PLILP ’96 (Aachen,

Sept. 1996), Kuchen, H. & Swierstra, S. D. (eds), Lecture Notes in Computer Science,

vol. 1140. Springer, pp. 1–16.

Meertens, L. (1998) Functor pulling. In Proceedings of the Workshop on Generic Programming,

WGP ’98 (Marstrand, June 1998), Backhouse, R. & Sheard, T. (eds), Department of

Computing Science, Chalmers University of Technology.

Meijer, E., Fokkinga, M. & Paterson, R. (1991) Functional programming with bananas, lenses,

envelopes and barbed wire. In Procedings of the 5th ACM Conference on Functional Pro-

gramming Languages and Computer Architecture, FPCA ’91 (Cambridge, MA, Aug. 1991),

Hughes, J. (ed.), Lecture Notes in Computer Science, vol. 523. Springer, pp. 124–144.

Meijer, E. & Jeuring, J. (1995) Merging monads and folds for functional programming. In

Tutorial Text from 1st International Spring School on Advanced Functional Programming

Techniques, AFP ’95, B̊astad, May 1995, Jeuring, J. & Meijer, E. (eds), Lecture Notes in

Computer Science, vol. 925. Springer, pp. 228–266.

https://doi.org/10.1017/S0956796809007291 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809007291

402 J. Gibbons and B. C. d. S. Oliveira

Moggi, E. (1991) Notions of computation and monads. Inform. Comput., 93 (1): 55–92.

Moggi, E., Bellè, G. & Jay, C. B. (1999) Monads, shapely functors and traversals. In Proceedings

of the 8th International Conference on Category Theory and Computer Science, CTCS ’99

(Edinburgh, Sept. 1999), Hofmann, M., Pavlovic, D., & Rosolini, P. (eds), Electronic Notes

in Theoretical Computer Science, vol. 29. Elsevier, pp. 187–208.

Pardo, A. (2005) Combining datatypes and effects. In Revised Lectures from 5th International

School on Advanced Functional Programming, AFP 2004, Tartu, Aug. 2004, Vene, V. &

Uustalu, T. (eds), Lecture Notes in Computer Science, vol. 3622. Springer, pp. 171–209.

Peyton Jones, S. (ed.) (2003) The Haskell 98 Language and Libraries: The Revised Report.

Cambridge University Press.

Peyton Jones, S. L. & Wadler, P. (1993) Imperative functional programming. In Proceedings of

the 20th ACM Symposium on Principles of Programming Languages, POPL ’93 (Charleston,

SC, Jan. 1993). ACM Press, pp. 71–84.

Reynolds, J. C. (1983) Types, abstraction and parametric polymorphism. In Proceedings of the

9th IFIP World Computer Congress, Information Processing ’83 (Paris, Sept. 1983), Mason,

R. E. A. (ed.). North-Holland, pp. 513–523.

Villavicencio, G. & Oliveira, J. N. (2001) Reverse program calculation supported by code

slicing. In Proceedings of the 8th Working Conference on Reverse Engineering, WCRE 2001

(Stuttgart, Oct. 2001). IEEE CS Press, pp. 35–48.

Wadler, P. (1989) Theorems for free! In Proceedings of the 4th International Conference on

Functional Programming Languages and Computer Architecture, FPCA ’89 (London, Sept.

1989). ACM Press, pp. 347–359.

Wadler, P. (1993) Monads for functional programming. In Proceedings of NATO ASI on

Program Design Calculi (Marktoberdorf, Aug. 1992), Broy, M. (ed.), NATO ASI Series F,

vol. 118. Springer, pp. 233–264.

https://doi.org/10.1017/S0956796809007291 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809007291

