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We must address active matter in the context of soft boundaries to bridge the gap between
our understanding of active matter and the dynamics of biological systems (represented as
active matter) under natural conditions. However, the physics of such active drops (matter)
in contact with a soft and deformable surface has remained elusive. In this paper, we
attempt to fill this gap and develop a theory for soft, active wetting. Our theory, which
accounts for the various free energies for passive substrate and active drops as well as the
active stresses, provides an equilibrium description of (active) particle orientation inside
the drop and an equilibrium shape of the drop–soft-solid system. We obtain an analytical
equation relating the activity to the internal pressure of an active drop. The equilibrium
calculation further yields an ordered state of the polarisation field inside the drop. As com-
pared to the non-active drops, the active drops with extensile activity press more into the
soft surface, while the active drops with contractile activity either rise out of the soft sur-
face (for smaller magnitude of negative activity) or make the soft surface bulge (for larger
magnitude of negative activity). Finally, the three-phase contact line undergoes a rotation
that depends on the strength of activity. These findings shed light on the manner in which
the active stresses interact with surface tension and elasticity at the fundamental level.

Key words: active matter, drops, wetting and wicking

1. Introduction
Active matter (AM) is ubiquitous in life sciences; from collective cell migration in cancer
and growing or healing tissues (Balasubramaniam, Mège & Ladoux 2022; Trepat et al.
2009; Drescher et al. 2011), to bacterial colonies (Peng et al. 2016; Sengupta 2020), to
microtubules transport (Kim et al. 2018; Tan et al. 2019). It is commonplace to encounter
AM over soft backgrounds in both in vitro and ex vivo processes. Soft substrates (SS),
which can be the elastic cell walls, tissues, vesicles or majorly fluid substrate (like
mucus), have elasticity ranging from 0 to 103 Pa (Levental, Georges & Janmey 2007,
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Figure 1. (a,b) Immunofluorescence image of in utero implanted fertilised mouse embryo from side and top,
respectively. Blue regions are epiblast cells that eventually form the embryo’s body; red region is extra-cellular
matrix. Panels (a) and (b) have been reproduced from Ichikawa et al. (2022). (c) Study of drops enclosed by
epithelial cells on soft substrates. (d) Side view and (e) Top view with corresponding stress distribution inside
the drop. Panels (c)–(e) have been reproduced from Latorre et al. (2018). ( f ) Schematic of the active drop on
soft substrate with different angles identified in panel (g).

Soofi et al. 2009, Singh & Chanda 2021); at lengths scales associated with active matter
(1–100 µm), surface tension (ST) becomes a dominating force in such systems. Therefore,
the hydrodynamics of active matter is invariably coupled to the substrate shape, which, in
turn, is coupled to the active ordering due to the active stresses. For example, Guruciaga
et al. (2024) used Landau’s theory to describe the geometry of the first cells of fertilised
mouse embryo on soft background (e.g. Matrigel and uterine wall Ichikawa et al. 2022)
(see figure 1a,b) that were simplistically modelled as a spherical cap of fixed radius.
Typically, the active stresses produced from directional cellular activity consistently range
from 0.1 to 1 kPa (Saw et al. 2017; Bazellières et al. 2015; Trepat et al. 2009); such
stresses, coupled with the elasticity of the biological tissues that surround these cellular
systems, will ensure that elasto-capillarity will determine the geometry and influence of
the surrounding background. Furthermore, Latorre et al. (2018). demonstrated how active
stresses imparted by the epithelial cells (which follow nematic ordering) dictate the overall
shape of fluid filled bumps (figure 1c–e); however, in the theoretical description of the
system, the directionality of the active stresses was disregarded (Pérez-González et al.
2019; Guillamat et al. 2022). While an a priori assumption on the deformed state of the
substrate (Pérez-González et al. 2019; Guruciaga et al. 2024) can give us some insights into
the developmental topology of that particular system, or an isotropic-state assumption can
provide a solution for a simplified shape, the question of what topological deviations result
from conditions of greater (or lesser) stiffness for varying active arrangements remains
unaccounted for; in short, a rigorous theory of active matter (or active drops) on soft
substrates remains missing in the existing literature.

In this paper, we provide a theory of active matter or active drop on soft substrates:
we denoted it as the theory of soft active equilibrium wetting (figure 1f ,g). The theory
accounts for various free energies and active stresses associated with the active-drop–
soft-substrate interactions and provide an equilibrium picture of the orientation of active
particles inside the drop and the shape of the drop–substrate system. There are three
key findings. First, we recover the equilibrium ordered state of the polarisation field as
described by the Landau–de Gennes theory (Ramaswamy 2010; Ravnik & Žumer 2009).
Second, through the development of a fundamental equation relating the drop shape to a
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combination of activity and the drop internal pressure, we show that in comparison to a
neutral drop, an active drop with extensile activity presses down more on the substrate,
thereby increasing the wetting radius. This same equation is used to demonstrate that in
comparison to the neutral drop, the active drop with contractile activity, however, can
either raise above the substrate more (and consequently decrease the wetting radius)
for a smaller magnitude of negative activity, or can make the substrate itself bulge
(with an increased wetting radius) for a larger magnitude of negative activity. Last, we
find that the three-phase contact line (TPCL) undergoes a rotation that depends on the
strength of activity. Thus, our findings reveal the trifecta of mechanisms dictating the soft
active wetting: substrate elasticity resisting shape change, capillary pressure pressing the
substrate isotropically and the directional active stresses contributing predominantly to the
drop curvature. These results challenge the intuition that the bulk active stress stretches
or squeezes the substrate directly into a deformed shape; rather, at least for slender drops,
active stresses effectively increase or decrease the contribution of the surface tension in
elastocapillary deformation.

2. Mathematical description of the system
We start by considering a set-up where the mass of the active matter rests on a soft
substrate. Such a set-up mirrors systems such as elongated cells on soft tissues, drops
with microtubules over kinesin motors, lumen formation during embryonic development
or muscle cells contracting soft tissues. In other words, the active drops that we consider
are collections of active particles (or collections of active biological cells), as opposed to
liquid drops containing suspended active particles. From the mathematical standpoint, our
system consists of two parts: the first part (Ftot) that can be expressed in a variational form
(i.e. terms that can be represented as gradients of energy functional) and second, the non-
variational terms that alter the equilibrium conditions through activity, pulling the system
out of its lowest energy state.

2.1. Expression for free energies of the system
We can write

Ftot =
∫

dx f (h, H, p) = FS + FEl + Fγ + Fspo + Fel + Fcoupl + F1 + F2, (2.1)

where f is the free energy density. Following Jing, Sinha & Das (2017),

FS =
∫ ∞

−∞
dx γS

(
1 + h′2)1/2

. (2.2)

Here, FS represents the surface energy of the substrate, and h and γS are the height and
the surface tension of the substrate. For us, γS(x) = γSV, that is, the vapour–solid surface
tension for |x | > R and γS(x) = γSL, or vapour–liquid surface tension for |x |� R, where
R is the radius of the active drop in consideration. Second,

FEl =
∫ ∞

−∞
dq√

2π K̂ (q)

[
ĥ(q)ĥ(−q)

]
(2.3)

is the elastic energy stored in the deformed solid; here, ĥ(q) is the Fourier transform of
the height and K̂ (q) = (2E |q|/3)−1 is the kernel for a semi-infinite elastic solid in Fourier
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space (Jerison et al. 2011; Lubbers et al. 2014). Moving forward, we have

Fγ =
∫ R

−R
dx γ

(
1 + H ′2)1/2

, (2.4)

where Fγ is the surface energy of the liquid phase (active matter), γ is the liquid–vapour
surface tension and H is the liquid–vapour interface height. It is worthwhile to discuss
the meaning of H here. Unlike traditional drops, where the definition of the height of
the drop is meaningful at scales sufficiently larger than atomic scale (usually above a few
nanometres), with active drops, the validity of a definition of a sharp interface, such as a
liquid–vapour interface, depends highly on the type of active matter under consideration.
This is due to the fact that the continuum theories pertaining to active matter average
the field variables (such as active stress, polarisation field, free-energy density, etc.) over
several particles, as opposed to several molecules. In the context of soft boundaries, the
active drops that we consider here are cellular colonies and our consequent theories must
not make any predictions below sub-µm scale (or the scale much smaller than the size of a
single cell) about the physical system. Put simplistically, the lower limit of the drop height
H is set by the size of a single cell and, accordingly, this lower limit is much larger than
the sub-µm scale. As a further note, we would like to point out here that there can be other
types of active drops (different from those that we consider here), such as the suspension
of swimming bacteria, chemical liquid crystals or drops with Janus particles. Such active
drops, which are suspensions of active particles in liquids, are subject to similar interfacial
phenomenon as regular drops.

Next, the terms Fspo, Fel and Fcoup represent the energies associated with the active
particles (and, hence, the polarisation field p) and are denoted as spontaneous energy,
elastic energy and coupling energy, respectively (Trinschek et al. 2020). As discussed
previously, the active drops considered in the paper are a collection of active cells
and, thus, we do not see the Van der Waals interactions that happen near the solid–
liquid and liquid–vapour interface. These particles are mostly directional in nature and
the polarisation field ( p) reflects, approximately, the directionality of these particles
(Ravnik & Žumer 2009). We express Fspo as

Fspo =
∫ R

−R
dx (H − h)

[csp4

4
( p · p)2 − csp2

2
(1 − 2βκ(H − h)) ( p · p)

]
. (2.5)

For active systems, Fspo ensures that at a film height smaller than the fluid adsorption
layer thickness (Ha), which is typically a few molecules thick, the disordered state ( p = 0)
is preferred, while with an increasing film thickness, in the absence of noise, all particles
align in a spontaneous direction. In (2.5), csp4 and csp2 are parameters that determine
how strongly the particles align in the ordered state and β is the adjusting parameter for
height above which the particles start aligning in the ordered state. Finally, the variable κ

appearing in (2.5) is as

κ(H − h) = Ha fw(H − h)

(H − h) fw(Ha)
, (2.6)

where fw is the wetting energy that can expressed in terms of the Hamaker constant A as

fw(u) = A

(
− 1

2u2 + Ha
3

5u5

)
. (2.7)
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Here, κ ensures that below a certain height, the spontaneous arrangement of active
particles is hindered due to geometric constraints. Consideration of this wetting energy
(see (2.7)) is equivalent to considering a disjoining pressure Π , which can be related
to fw(h) as Π(h) = −(∂ fw/∂h) = −A((1/h3) − (H3

a /h6)). This expression of the
disjoining pressure clearly reproduces the well-known disjoining pressure scaling, where
Π(h) varies as A/h3 (where h is the local thickness). This expression obtained here
includes an additional term (A(H3

a /h6)) which includes Ha . This additional term is a
correction to a purely vdW-force-based disjoining pressure, as below a certain height (Ha),
the molecular repulsion overtakes the vdW attraction. Please note that for the present case,
in (2.6), H >> Ha , stemming from the fact that the lower limit of the drop height (H )
is determined by the size of the cell that has a length scale of several microns. More
importantly, it is because of this consideration that in our final calculations, we have not
considered the effect of either the wetting energy or the disjoining pressure. In other words,
we say that our theory is not to be taken to the length scales where the wetting energy or,
equivalently, the disjoining pressure become important. Despite disregarding the effect
of fw and Π in our final calculations, we still retain their expressions in our paper for
the sake of completeness, given the fact that the main paper (Trinschek et al. 2020) from
which we obtain the different free energy expressions used in our calculation considered
this expression for fw as it probed the equilibrium of active liquid drops (or drops of liquids
suspended with active particles). Therefore, if one aims to extend the theory to drops of
liquids suspended with active particles or drops of chemical liquid crystals, they must
account for the wetting energy into their energy functional to resolve the drop dynamics at
TPCL. Further, we have

Fel =
∫ R

−R
dx (H − h)

cp
2

(∇p : ∇p) (2.8)

as the elastic energy of the active matter (cp is the corresponding elasticity). Finally, the
contribution

Fcoupl =
∫ R

−R
dx
[chp

2
( p · ∇h)2 + cHp

2
( p · ∇H)2

]
(2.9)

couples p to the drop surface and accounts for contributions where particles, depending
on cHp and chp, either align themselves in parallel or terminate perpendicularly to the film
surface at the drop–vapour and drop–solid boundaries, respectively. For our slender two-
dimensional (2-D) system, we cannot reorient p in the depth direction (Trinschek et al.
2020) and, hence, Fcoupl is constant for 2-D drops. Finally, in (2.1), F1 and F2 ensure two
necessary system constraints. Here,

F1 = P

[
V −

∫ R

−R
dx(H − h)

]
(2.10)

ensures for volume conservation, while

F2 = λSL
[
H(R) − h(R−)

]+ λSV
[
H(R) − h(R+)

]
+ λSL

[
H(−R) − h(−R+)

]+ λSV
[
H(−R) − h(−R−)

]
(2.11)

ensures drop–solid interface continuity at the TPCL. As discussed, Ftot alone cannot
provide the equilibrium of the system, given the significance of non-variational terms
associated with the active drops.
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2.2. Non-variational contributions and equilibrium
For the active drop, the active stress (σ a) and the propulsion-related terms cannot be
represented by variational calculations. Here, σ a is experienced by the liquid drop due
to the presence of the active particles inside the drop, ensuring that p and σ a are related
(see later) (Ravnik & Žumer 2009). Accordingly, using the work of Trinschek et al. (2020),
we express the time variations of H and p in terms of the appropriate free energy gradients
as

∂t H =
∑
k

∂xk

⎡
⎣QHH

⎛
⎝∂xk

δ f

δH
−
∑
j

∂xkσ
a
k j

⎞
⎠+

∑
j

QH Pj ∂xk
δ f

δPj

⎤
⎦, (2.12)

∂t Pi =
∑
k

∂xk

⎡
⎣QPi H

⎛
⎝∂xk

δ f

δH
−
∑
j

∂xkσ
a
k j

⎞
⎠+

∑
j

QPi Pj ∂xk
δ f

δPj

⎤
⎦− QNC

δ f

δPj
.

(2.13)

In (2.12) and (2.13), P = (H − h) p is the height-averaged polarisation field, σ a =
−ca pp, and Qαβ are the mobility coefficients (Trinschek et al. 2020). Here, Qαβ refers to
the contribution of the variation of the free-energy with respect to the quantity β towards
the time evolution of the quantity α. Also, QNC is the non-conservative term that accounts
for the fact that P is not conserved over time. Considering a 2-D drop, where only the
x-component of P is important (and hence we write P = P), and solving for steady state
(∂t H = ∂t P = 0), we see that in general (i.e. when QHHQPP �= QPHQHP and QNC �= 0),
the only way the system can be in equilibrium is when

− QHH

QHP

(
δ f

δH
− σ a

xx

)
= − δ f

δP
= Aex

√
c + Be−x

√
c, (2.14)

where c = QNCQHH/(QPPQHH − QHPQPH), and A and B are arbitrary constants.

2.3. Minimisation
To obtain equilibrium, we take variations of f (or Ftot) with respect to (w.r.t.) P , R, H
and h. Normatively, free-energy is at a minimum at equilibrium. However, the active-stress
(which is a result of active energy consumption by the active particles) pulls the system out
of the minima and, therefore, instead of variation (of the free energy) w.r.t. H and P being
zero, we get the equilibrium condition as (2.14). However, the free energy variation w.r.t.
h and R still remain zero as there is no active energy consumption, i.e. no non-variational
terms in the equilibrium condition for the elastic substrate or the drop edge. Considering
the variation w.r.t P (remember, P = (H − h) p) yields (using (2.1) and (2.14))

− csp2 p + csp4 p
3 − cp

(
(H − h)p′)′

H − h
= Aex

√
c + Be−x

√
c. (2.15)

Considering the variation w.r.t. R yields[
γSL

√
1 + h′2 + γ

√
1 + H ′2 + (λSL + λSV) H ′2 − λSLh

′2]
x=R−

=
[
γSV

√
1 + h′2 + λSVh

′]
x=R+ . (2.16)
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Next, the variation w.r.t. H gives

δ f

δH
= − γ H ′′(

1 + H ′2)3/2 − P+ csp2 p
2 − csp4 p

4, (2.17)

δFtot =
[
λSL + λSV ± γ

H ′(±R)(
1 + H ′2(±R)

)1/2

]
δH(±R) +

∫ R

−R
dx

δ f

δH
δH(x). (2.18)

As alluded, due to the non-variational terms, our variation in total energy w.r.t. H(x) will
be non-zero; hence, the variations are not equated to zero. However, at the TPCL, we have
a localised surface tension force alone and no effect of polarisation field as per our energy
functionals. For any variation in height near edges, δH(±), Ftot must be constant as a
small imaginary volume element at the drop edge experiencing only surface tension force
must be in a net force balance. Hence, boundary terms in (2.18) reduce to

λSL + λSV = γ
H ′(−R)√

1 + H ′2(−R)

= γ sin θ. (2.19)

Here, substituting (2.17) in (2.14), with negligible activity (csp2, csp4, ca → 0), we must
have the excess pressure inside a drop satisfy P= γ sin θ/R = −γ H ′′/(1 + H ′2)3/2, and
since A,B are not functions of H or p, we conclude A = B = 0. Here, sin θ/R is the
drop curvature and P= γ sin θ/R represents the stress balance inside the drop (Joanny &
Ramaswamy 2012; Chandel, Sivasankar & Das 2024).

Now, from (2.15) at steady state, we get p = 0 (isotropic state) and p =√csp2/csp4
(ordered state), which are the local maximum and the local minimum of Fspo,
respectively. Therefore, we use p =√csp2/csp4. Hence, from (2.17) and (2.14),

γ sin θ

R

(
1 + Λ

sin θ

)
= P+ c2

cp2

4ccp4
, (2.20)

where Λ = Rcaccp2/(4γ ccp4) is the active capillary number representing the ratio of
the active stress to the capillary pressure. Equation (2.20) is the central result of this
paper, showing the effect of activity in capillary pressure inside an active drop on a soft
substrate. In (2.20), the right-hand side is the effective excess pressure with which the drop
isotropically presses upon the substrate.

Finally, we perform variation w.r.t h, yielding

δFtot =
[

γSLh′(R−)(
1 + h′2(R−)

)1/2 − λSL

]
δh(R−) −

[
γSVh′(R+)(

1 + h′2(R+)
)1/2 − λSV

]
δh(R+)

−
∫ ∞

−∞
dx

[
γs(x)h′′(x)(

1 + h′2(x)
)3/2 −

(
P+ c2

sp2

4csp4

)
Π
( x

2R

)]
δh(x)

+ 1
2

∫ ∞

−∞
dq√

2π K̂ (q)

[
δĥ(q)ĥ(−q) + ĥ(q)δĥ(−q)

]= 0. (2.21)

Equating the boundary terms in (2.21) to zero, along with h′
x=R− = tan θSL and h′

x=R+ =
tan θSV, we obtain the Lagrange multipliers as λSL = γSL sin θSL and λSV = γSV sin θSV,
using which, we get the x-component of Young’s equation, i.e.

γSL cos θSL + γ cos θ = γSV cos θSV. (2.22)
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Next, by substituting the expression for the Lagrange multipliers (λSL = γSL sin θSL and
λSV = γSV sin θSV) in (2.19), one can obtain

γSL sin θSL + γSV sin θSV = γ sin θ. (2.23)

Equation (2.23) is the vertical component or the y-component of Young’s equation. Thus,
we find that the vertical component of the Young’s equation is derived in a straightforward
manner from the theory. However, note that this equation is not used in the following
numerical calculations. Instead, for the numerical solutions, the necessary system of
equations is completely defined just by the horizontal component of Young’s equation
(see (2.22)).

Following Jing et al. (2017), we express the integrand in (2.21) in terms of the
wavenumber q using Fourier transform (with the symmetric convention) and further
using (2.20), we get

1
2

∫ ∞

−∞
dq√

2π K̂ (q)

[
δĥ(q)ĥ(−q) + ĥ(q)δĥ(−q)

]

+
∫ ∞

−∞
dq√
2π

[
q
{
γ̂s(q) ∗ (qĥ(q)

)}
δĥ(q)

]

−
∫ ∞

−∞
dq γ sin θ

√
2
π

[
exp
(

− 1
2a2q2

)
cos Rq −

(
1 + Λ

sin θ

)
sinc Rq

]
δĥ(q) = 0.

(2.24)

Here, a is an infinitesimal width of the Gaussian used to approximate the concentrated
force at the TPCL. Since we consider nematic particles, we expect the drop to be
symmetric around the centre. Given that our entire starting system, namely the drop,
substrate and the arrangement of active particles, is symmetric about origin, we can safely
expect our solution for the drop shape to be symmetric as well. Therefore, h(x) will be
real and even, implying h((q) to be real and even. This leaves the integrand in (2.24) as

ĥ(q)√
2π K̂ (q)

+ qγ̂s(q) ∗ (qĥ(q)
)

√
2π

− γ sin θ√
π/2

[
exp
( −1

2a2q2

)
cos Rq −

(
1 + Λ

sin θ

)
sinc Rq

]
= 0. (2.25)

Accordingly, after isolating the ĥ(q) from (2.25), the final equilibrium equation reads as

ĥ(q) =
[√

2π K̂ (q) f̂n(q, a)

1 + γSVq2 K̂ (q)

]
, (2.26)

f̂n(q, a) = γ sin θ

√
2
π

[
exp
(

− 1
2a2q2

)
cos Rq −

(
1 + Λ

sin θ

)
sinc Rq

]

− (γSV − γSL)

√
2
π

[
q
[
sinc(q) ∗ (qĥ(q)

)]]
√

2π
. (2.27)

This gives us all the necessary equations needed to solve (iteratively) for the drop and
the solid shapes. We first guess a value for θ , solve for ĥ(q) (using (2.26)) over a range
of wave numbers (we used q = {−16 × 104 to 16 × 104} in increments of 0.25). We then
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obtain h(x) from ĥ(q). With h(x) known, we know tan θSL and tan θSV, and, hence, θ

from (2.22). We now use this θ to get a better approximation for ĥ(q), which will give
us a better approximation for θ . We see that one gets a stable solution for the shape of
our system regardless of initial guess value of θ . The radius corresponding to Λ = 0 is
noted as R0. For non-zero values of Λ, we repeat the above-mentioned process by varying
the radius by R0 → R(Λ) iteratively, till the volume is matched to an accuracy of 10−6

of relative error in volume. For a detailed derivation of Fourier transformation of the free
energies, we request the readers to read our previous paper (Jing et al. 2017).

3. Results
We study the behaviour of the active-drop–soft-substrate system by making our system
dimensionless (variables with tilde overhead) as (h̃, H̃ , x̃, R̃) = (h, H, x, R)/R0. The
system, as expected, gives a steady-state solution in its ordered state. This state
corresponds to low noise/turbulence in the active system (or the low-temperature state
if drawn an analogy with liquid-crystal theory). In the ordered state, we get a simple
analytical solution to the polarisation field, enabling us to analyse various properties of
the active-drop–soft-substrate system. We first demonstrate the shape of the drop on the
soft substrate for the extensile drop (Λ > 0) (figure 2d) and the contractile drop (Λ < 0)
(figure 2a,b) in contrast to the neutral drop (Λ = 0) (figure 2c) for elasto-capillary number
(γ /(ER0)) of 0.1. As compared to the neutral drops, the drop flattens out corresponding to
extensile activity. However, for the case of the contractile activity, as compared to neutral
drops, the drop thickens (for smaller |Λ|) or the substrate gets lifted (for larger |Λ|).

We next compare similar drops of a given volume corresponding to varying activities
for different values of γ /(ER0) (see figure 2e). As compared to the neutral drops, the
dimensionless radius R̃ increases for the active drops with extensile activity, as for this
case, the active drop presses deeper into soft surface (compare figure 2c and 2d). However,
for the drop with contractile, i.e. negative activity, as compared to the neutral case, the
dimensionless radius R̃ decreases for smaller |Λ| (for this case, the drop bulges out more
from the soft surface) (compare figures 2b and 2c) and increases for larger |Λ| (for this
case, the soft surface itself gets lifted up) (compare figures 2a and 2c). The greater the
value of γ /(ER0), the more prominent is this effect. Also, this result suggests that as
compared to a neutral drop, the active drop with extensile activity wets the soft surface
more, while the active drop with contractile activity de-wets (wets) the soft surface more
for smaller (larger) |Λ|.

Such enhanced wetting/dewetting can be mechanistically understood by observing the
contact angles at the TPCL. In regular drops, the excess pressure inside the drop is directly
proportional to the contact angle θ for a given radius R. However, from (2.20), we see that
for a fixed radius and a fixed contact angle, the excess pressure (term appearing on the
right-hand side of (2.20)) inside the drop increases linearly with the active stress (Λ) for
extensile drops (Λ > 0). Let us increase the activity Λ from zero to a positive value and see
what happens. This will pushes the substrate down and consequently increase the solid–
liquid contact angle θSL (see figure 2g). However, now we must realise that the contact
angle and the radius will change if the substrate is pushed down as a result of the increased
activity. Under such circumstances, according to the x-component of Young’s equation
(see (2.22)), there will be a decrease in θ and θSV by a similar amount (see figure 2g,h).
This increase in θSL for a fixed R results in an increased volume of the drop, while the
decrease in θ would result in a decrease in the drop volume. Evidently, from the numerics,
the gain in the drop volume due to an increase in θSL is less than the loss in drop volume
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ỹ
R̃ (−0.7)

= 1.006

R̃
( Λ

)

R̃

1.0 1.5

0

0.2

Contractile, Λ = −0.3

−0.2

−1.5 −1.0 −0.5

Extensile, Λ = +0.5

0.5x̃

x̃

ỹ
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Figure 2. (a–d) Equilibrium shapes for (a) contractile (Λ = −0.7 < 0), (b) contractile (Λ = −0.3), (c) neutral
(Λ = 0), and (d) extensile (Λ = 0.5 > 0) drops for γ /(ER0) = 0.1 and γSV/γ = 10. (e) Variation of the
dimensionless wetting radius (R̃ = R/R0) with Λ for different values of γ /(ER0). ( f ) Variation of the
dimensionless height of TPCL (h̃max = h(R)/R0) with Λ for different γ /(ER0). (g) Variation of the solid–
liquid (θSL) and solid–vapour (θSV) contact angles with Λ for different γ /(ER0). (h) Variation of the contact
angle (θ ) with Λ for different γ /(ER0). In panels (a)–(h), γSV/γ = 10. (i) Variation of R̃ with γ /(ER0) for
various γSV/γ . ( j) Variation of h̃max with γ /(ER0) for various γSV/γ . In panels (i) and ( j), the cases of
contractile and extensile activities have been identified by their corresponding markers as shown in the legend.
In all the cases shown from panels (a)–( j), we have kept the ratio, (γSV − γSL)/γ = 0.95, i.e. constant.

due to a decrease in θ , resulting in a smaller overall drop volume for a fixed drop radius.
Therefore, with increased excess pressure due to active stress for an extensile drop, the
drop expands in radius R to accommodate for the lost volume. This explains the variation
in R with Λ for extensile drops (see figure 2e). This also accounts for the drop shape
illustrated in figure 2(d).

We next consider the case of contractile drops (Λ < 0) for relatively small values of
|Λ|, i.e. |Λ| is small enough so that γ sin θ/R + Λγ/R (or the left-hand side of (2.20))
remains positive. Under such circumstances, the pressure (appearing on the right-hand
side of (2.20)) inside the drop decreases linearly with decreasing the active stress (Λ)

(Λ < 0). This makes the drop bulge out of the soft surface and decreases the solid–liquid
contact angle θSL and increases θ and θSV (using the x-component of Young’s equation
or (2.22)). The decrease in θSL for a fixed R decreases the drop volume, while the increase
in θ increases the drop volume. Numerically, in the region of (Λ < 0), where the excess
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pressure is still positive, the effect of the increase in θ dominates; accordingly, the drop
increases in volume. Therefore, with a decreased excess pressure (for the contractile drops
with smaller |Λ|), the drop contracts in radius R (and bulges out from the soft surface) to
compensate for the gained volume. This explains the variation in R with Λ for contractile
drops with small |Λ| (see figure 2e). This also explains the drop shape illustrated in
figure 2(b).

This numerical trend described here holds for the increase/decrease in the drop radius
in the region where 1 + Λ/ sin θ > 0 (or γ sin θ/R + Λγ/R > 0), which may not always
be the case. For example, for contractile drops with sufficiently large magnitude of |Λ| or
sufficiently small θ (i.e. sufficiently flat drop), we may have γ sin θ/R + Λγ/R < 0. As
we see from figure 2(e), for such drops with sufficiently negative (contractile) activity Λ,
the radius increases with an increase in the negative magnitude of the activity. This is
because, for sufficiently negative Λ, the excess pressure inside the drop becomes negative
and thus, not only the drop, but the substrate as well bulges upwards. Numerically, we
find that a further decrease in Λ increases both θ and θSL (i.e. increases the negative
magnitude of θSL ) with an overall decrease in the volume, which is compensated by an
increase in R̃ to ensure the conservation of the drop volume. The physical representation
of this drop–substrate deformation is shown in figure 2(a).

Thus, as compared to a neutral drop, an extensile drop pushes the substrate with a greater
overall downward force, thereby justifying the drop pressing deeper into the soft substrate
(figure 2c,d); as a result, for extensile drops, the dimensionless height of TPCL (h̃max =
h(R)/R0) becomes progressively more negative with an increase in Λ (see figure 2f ).
However, depending on the negative magnitude of Λ, the contractile drop either pushes
the substrate with much lesser pressure (as compared to the neutral drop) and comes out
of the soft surface (this scenario occurs for smaller |Λ|; see figure 2b,c), or makes the soft
surface itself bulge out (this scenario occurs for larger |Λ|; see figure 2a,c). Both these
effects associated with the contractile drop increase the height the dimensionless height of
the TPCL (h̃max), with the larger increase occurring for the case where the substrate bulges
out. As a result, we obtain a progressive increase in h̃max for progressively more negative
values of Λ (figure 2f ).

Next, for the contact angles, we have already discussed how the x-component of Young’s
law governs the relative variation of θSL , θSV and θ (please see the above-mentioned
discussions for figure 2e). Given the fact that this balance holds regardless of the softness
of the substrate, or the magnitude or sign of the activity, implies that a variation of these
components (namely, the substrate softness and the value of Λ) causes a rotation of the
contact line at the drop corner. We plot these angles (θSL , θSV and θ ) in figure 2(g,h).
The dependence of θSL and θSV on the nature of the activity has already been discussed
previously (please see the above-mentioned discussions for figure 2e). With regards to the
variation in θ , intuitively, the contractile drop increases the contact angle (as it either pops
out of the soft surface for small |Λ| or bulges the substrate itself for large |Λ|), while the
extensile drop decreases the angle (as it goes deeper into the soft substrate; figure 2h).

Please note that while the streamwise component of the Young’s equation (see (2.22))
is used to obtain the numerical results for the different contact angles, these results also
approximately satisfy the cross-stream component of Young’s equation (see (2.23)) for the
parameter combinations considered in this paper. For example, using (2.22) and (2.23), we
can eliminate θ and can write the following equation:

cos (θSL + θSV) = γ 2
SL + γ 2

SV − γ 2

2γSLγSV
= constant. (3.1)
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In figure 2(g), we find that the maximum and minimum values of |θSL + θSV| are
3◦ and 0◦, respectively, making the maximum and minimum values of (numerically
obtained) cos (θSL + θSV) as 1 and 0.9986, respectively. Hence, (the numerically obtained)
cos (θSL + θSV) is effectively constant and, hence, satisfies (2.23) in the range of |Λ| and
γ /(ER0) values considered here. Of course, the values of cos (θSL + θSV) will become
more deviated from 1 for softer surfaces (i.e. smaller values of γ /(ER0)) and for greater
activity values (or |Λ| > 1); hence, for such values of γ /(ER0) and Λ, the numerical
results might not stringently satisfy (2.23). In this context, it is also useful to point out
that for thicker drops on extremely rigid surfaces (or γ /(ER0) → 0), (2.23) yields θ = 0
since for such cases, there is no solid deformation and θSL = θSV = 0. However, for such
surfaces, θ = θY = cos−1 ((γSV − γSL)/γ ), where θY is Young’s angle. Therefore, it must
be noted that the theory cannot be trivially extended to very rigid surfaces for thicker
drops.

Finally, we plot the behaviour of an active drop (i.e. quantify R̃ and h̃max) as a
function stiffness of the substrate in figure 2(i, j). We consider the three distinct situations
encountered in the present problem: case of extensile drop (Λ > 0) (drop profile shown
in figure 2d), case of contractile drop with a smaller magnitude of Λ (Λ = −0.3) (drop
profile shown in figure 2b) and case of contractile drop with a larger magnitude of Λ

(Λ = −0.7) (drop profile shown in figure 2a). We see that for all the cases, the system
asymptotically attains fixed values of R̃ and h̃max in the limit of extremely stiff substrate
(γ /ER0 → 0), which in a loose sense represents an error-function (this is what one must
expect as an extremely stiff substrate is equivalent to a rigid solid). Also, as has been
already shown in figure 2(e, f ), a softer surface (or a larger value of γ /ER0) enhances
the corresponding variation of R̃ and h̃max at a given Λ value. Hence, for the extensile
drop (Λ = 0.8), R̃ progressively increases and h̃max progressively decreases (i.e. becomes
increasingly more negative) with an increase in the softness. Similarly, with an increase
in the softness, for the contractile drops, for a smaller magnitude of |Λ| (or Λ = −0.3),
R̃ decreases progressively (i.e. becomes less than unity) and h̃max (weakly) increases
progressively. For the same contractile drops, but with a greater magnitude of |Λ| (or
Λ = −0.8) (i.e. conditions for which the substrate itself bulges), an increase in the softness
(corresponding to γ /ER0 > 0.01) progressively increases R̃ and h̃max. Overall, we see
that for drops bounded by surface tension, the active stresses do not stretch or squish
the underlying solid directly; rather, the active stresses decrease (increase) the pressure
employed by the drop on the substrate for a contractile (extensile) drop and the result is the
drop coming out of the solid or bulging the solid itself (for contractile drops) and the drop
pressing deeper into the solid (for extensile drops). This understanding extends even to
non-uniform polarisation field, where we can expect active stresses to locally compensate
(or counterpose) for the nearby curvatures by the same mechanism as described by (2.20).

4. Conclusion
The seemingly omnipresence of active matter in biological and chemical systems
necessitates the treatment of active matter in conjunction to soft substrates. Here, we
provide the first mathematical framework for capturing the interaction of an active drop
(matter) with soft substrates. We find the validity of Young’s equation in its unaltered
form for 2-D drops and the mechanism of drop spreading and impinging on surfaces
through equations that can be solved semi-analytically, thereby illuminatingly revealing
the system. Such a study shows the importance of elasticity in determining the dynamics
of colonies of active cells, provides a first-principles foundation for understanding the
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growth of embryos over uterus (Guruciaga et al. 2024), and has potential impact on
periodic motion (Memarian et al. 2024), chaotic mixing (Mitchell et al. 2024) and other
facets of the growing field of active nematics. In future studies, it would be remarkable
to obtain non-equilibrium solutions to the active arrangement and possibly extend the
solution to three dimensions, which would be a first-principles solution to the formation
of multi-cellular organisms.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2025.10624.
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