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Abstract

Proper orthogonal decomposition (POD) is applied to three-dimensional (3-D) velocity fields collected from large-
eddy simulations (LES) of a baffled stirred tank. In the LES, the tank operates with a Rushton-type impeller
under turbulent conditions (at least in the near-impeller region) and the working fluid exhibits either Newtonian
or shear-thinning rheology. The most energetic POD modes are analysed, and a POD reconstruction based on the
higher modes is proposed to approximate the fluctuating component of the velocity field. Subsequently, the POD
reconstruction is used to identify vortical structures and characterise them in terms of their shape. The structures
are identified by considering a frame-invariant formulation of a popular, Eulerian, local-region-type method: the
Q-criterion. Statistics of shape-related parameters are then investigated to address the morphology of the structures.
Itis found that: (i) regardless of the working fluid rheology, it seems feasible to decompose the 3-D field into its mean,
most energetic periodic and fluctuating components using POD, allowing, for instance, reduced-order modelling of
the energetic periodic motions for mixing enhancement purposes, and (ii) vortical structures related to turbulence
are mostly tubular. Finding (ii) implies that, as starting point, phenomenological models for the interaction between
fluid particles (drops and bubbles) and vortices should consider the latter as cylindrical structures rather than of
spherical shape, as classically assumed in these models.

Impact Statement

Stirred tank reactors are used for homogenisation, interphase mass transfer and chemical reactions in numerous
industries. Therefore, there is a persistent need for improving their performance. In this sense, one possibility
is to work towards more optimal designs. Another is to take full advantage of the current ones. In any case,
it is critical to have a better understanding of the flow in stirred tanks, which is quite complex, particularly
in the case of turbulence. This paper considers a linear technique (proper orthogonal decomposition) to
decompose three-dimensional instantaneous velocity fields obtained from numerical simulations (large-eddy
simulations), with the aim of exploring the most energetic motions and related structures (coherent regions
in time and/or space). The findings herein can guide future efforts to make the most of the energetic regions
in the flow and also provide a basis for more realistic models to address turbulence—fluid-particles (drops and
bubbles) interactions.
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1. Introduction

Stirred tanks are mechanically agitated vessels, used for mixing enhancement purposes, encountered
in almost 25 % of all operations in the process industry (Nikiforaki, Montante, Lee, & Yianneskis,
2003). The flow in these devices is known to be complex — having a wide range of temporal and spatial
scales — especially in the case of the turbulent regime. In recent years, and as in other turbulent flow
problems, there has been an increasing interest in the study of organised flow motions or coherent
structures, as a complement to the traditional approach of investigating long-term turbulence statistics.

Coherent structures are regions of space and time (significantly larger than the smallest turbulence
scales) within which the flow field has a characteristic coherent pattern (Pope, 2000). Typically, efforts
to isolate coherent structures follow two basic lines of approach (Cantwell, 1981): (i) identification of
instantaneous flow structures and (ii) construction of stochastic representations. Approach (i) consists of
using various methods to identify discernible flow patterns, e.g. direct flow visualisation, or the isolation
of connected regions in the flow where a relevant property (vorticity, for example) is more intense. On
the other hand, approach (ii) consists of implementing an eduction technique to obtain representations
of the most probable states of the flow according to an applied criterion. A well-known example of
approach (ii) is proper orthogonal decomposition (POD).

The POD procedure is also known as Karhunen—Loéve expansion or principal components analysis
(Sirovich, 1987). In the context of turbulent flows, POD was introduced by Lumley (1967), and was
applied for the first time in the study of wall-bounded turbulence (Bakewell & Lumley, 1967). The
basic idea behind POD is not complicated. For an ensemble of realisations, one is looking for a set of
orthonormal basis vectors which, on average, are the ‘most similar’ (Berkooz, Holmes, & Lumley, 1993)
to all members of the ensemble. Such empirical bases are often denoted as POD modes. Subsequently,
once the POD modes are found, each realisation may be represented by a (linear) superposition of
the deterministic modes modulated by corresponding random, uncorrelated, coefficients. Furthermore,
it can be shown — see Holmes, Lumley, Berkooz, and Rowley (2012) — that a truncated expansion in
terms of ordered POD modes gives a representation that is better than any other linear representation,
having the same number of modes, in terms of capturing the energy content. That is, the representation
is optimal even with just a few POD modes and not only in an asymptotic sense. In consequence, when
considering the POD representation of the velocity field, it is not surprising that some researchers denote
the POD modes as characteristic eddies (Lumley, 1970).

During the last two decades or so, the POD procedure has been implemented for the study of stirred
tanks in transitional (see e.g. Charalambidou, Micheletti, & Ducci, 2023; Fan et al., 2022; Hasal,
Montes, Boisson, & Fofrt, 2000; Raju, Balachandar, Hill, & Adrian, 2005) and turbulent (see e.g. de
Lamotte, Delafosse, Calvo, & Toye, 2018; Doulgerakis, Yianneskis, & Ducci, 2011; Hasal et al., 2000;
Moreau & Liné, 2006; Raju et al., 2005) flow regimes. Nevertheless, previous works considered two-
dimensional velocity fields and it was not until recently that POD analyses and reconstructions based on
three-dimensional (3-D) velocity fields have been reported. Janiga (2019) and Mikhaylov, Rigopoulos,
and Papadakis (2021, 2023a, 2023b) considered simulations of unbaffled stirred tanks. Janiga (2019)
performed large-eddy simulation (LES) of the turbulent regime where the flow is agitated with a pitched-
blade turbine with three blades. The movement of the propeller was incorporated using the sliding mesh
approach (Murthy, Mathur, & Choudhury, 1994), and the POD analysis was performed in two different
regions of the tank (a per-zone approach). A fixed region was considered to analyse macrostabilities
(large-scale, long-lived, quasi-periodic structures; see e.g. Nikiforaki et al., 2003), whereas a rotating
region was examined to explore the structures related to the periodic passage of the blades, i.e. trailing
vortices (counterrotating vortex pairs generated behind the upper and lower edges of each impeller blade;
see e.g. Escudié, Bouyer, & Liné, 2004; Van’t Riet & Smith, 1975). On the other hand, Mikhaylov et al.
(2021) and Mikhaylov et al. (2023a) performed direct numerical simulations of transitional flow where
the rotational motion is induced by a six-blade Rushton turbine. The movement of the impeller was
addressed through the frozen motor approach (Luo, Issa, & Gosman, 1994) and the POD technique
targeted the reconstruction of trailing vortices based on velocity (Mikhaylov et al., 2021) and pressure
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(Mikhaylov et al., 2023a) data from a small number of probing points. After these two works, for the
same tank geometry and stirrer, Mikhaylov et al. (2023b) performed LES of turbulent flow with the
aim of studying and reconstructing macrostabilities from sparse measurements. Interestingly, in this
study, the first pair of modes are associated with trailing vortices that appear to form a macrostability
as they propagate away from the blades, whilst the second pair of modes are believed to represent the
precession of large structures around the impeller shaft. Conversely, there is a single study about POD
applied to 3-D velocity fields in baffled stirred tanks. Mayorga, Morchain, and Liné (2022) considered
the turbulent flow in a four-baffled stirred tank operating with a Rushton turbine. In Mayorga et al.
(2022), the turbulent flow is modelled with an unsteady Reynolds-averaged Navier—Stokes method and,
as in Janiga (2019), a sliding mesh approach is used for the propeller. Yet, on the contrary, a global
approach is proposed for the POD reconstruction of mean and organised flow motion, the latter due to
the periodic passages of the blades in the stirred tank.

Considering the works mentioned previously (Janiga, 2019; Mayorga et al., 2022; Mikhaylov et al.,
2021, 2023a, 2023b), it is noticeable that the attention given to POD modes other than those related to
the mean flow motion, trailing vortices and macroinstabilities has been minor. In a complex flow, the
attractiveness of the POD technique resides in its capability for yielding an optimal (linear) stochastic
representation of a velocity signal in the sense of capturing, on average, the largest amount of kinetic
energy (KE). Therefore, energetic modes associated with turbulent fluctuations and their resulting
velocity reconstructions are certainly also worth exploring. Of course, information about the mean flow
pattern, trailing vortices and macroinstabilities is still of utmost importance. The mixing efficiency,
as well as product quality, are influenced by the flow patterns occurring in the stirred vessel (Chhabra
& Richardson, 2008). Power consumption — perhaps the most important parameter from a practical point
of view — is majorly affected by the mean flow (Mikhaylov et al., 2023a). In addition, the disruption of
trailing vortices also impacts the power consumption by affecting the time-average recirculation pattern
on the suction side and leading to a decrease in energy dissipation (Bagbug, Papadakis, & Vassilicos,
2018a). Mixing time is affected as well by the disruption of the trailing vortices — due to the changes
in the mean flow circulation inside the vessel (Bagbug, Vassilicos, & Papadakis, 2018b) — and by
macroinstabilities, when their cores are used for feed insertion (Ducci & Yianneskis, 2007). Furthermore,
trailing vortices are also known to provide a source of turbulence (Escudié et al., 2004) and to produce
regions of high strain in their proximity (Bouremel, Yianneskis, & Ducci, 2009) where mixing could
be performed more efficiently.

Keeping in mind Hussain & Reynolds’s (1970) triple decomposition, the goal of the present paper
is to investigate, for a baffled stirred tank and two different fluids, the most energetic POD modes
corresponding to mean, organised (periodic) and turbulent motion. Regarding the latter, the idea is to
use the higher-order modes to also reconstruct 3-D velocity fields mostly representing the turbulent
fluctuations. These approximations to the velocity fluctuations may then be used to explore turbulent
structures in the agitated vessel. More specifically, vortical structures are considered and their shape is
studied. In the context of stirred tanks, vortices are extremely important due to their role in mixing and
possibly in the breakup and coalescence of fluid particles (drops and bubbles) in turbulent dispersions.
Indeed, one plausible scenario is that topological changes experienced by the fluid particles are strongly
dependent upon the interactions with surrounding swirling-like structures. For instance, a drop embedded
into a structure much larger than it may be advected with the structure with little deformation, whilst if
the structure is of a comparable size and strong enough to overcome the cohesive forces will cause its
breakage into two or more daughter particles. Moreover, not only are the size, intensity and proximity
to the fluid particles likely deciding factors but also the shape, number of structures and type of
interactions. A droplet squeezed between two corotating structures could be torn apart whereas between
two counterrotating ones could be just elongated (Kresta & Brodkey, 2004). Here, the shape of the
structures is crucial since it determines the amount of contact area and how different properties are
distributed which, in turn, affects important integral quantities such as circulation (macroscopic measure
of rotation). In fact, many phenomenological models for the breakup and coalescence processes (see e.g.
Liao and Lucas (2009, 2010) and Solsvik, Tangen, and Jakobsen (2013) for reviews of these models)
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are based on several simplifications to these factors, including the interaction of fluid particles with
structures having matching size and being of spherical shape. In this work, our aim is to address as
well how reasonable this last-mentioned assumption is for vortices arising due to the most energetic,
POD-reconstructed, velocity fluctuations.

The paper is organised as follows. Section 2 outlines the numerical experiments and the database
considered for the analyses. Section 3 summarises the POD procedure and the ‘method of snapshots’
(Sirovich, 1987), which is an alternative and (in general) less computationally expensive method. Section
3 describes as well an objective version of the traditional Q-criterion (Hunt, Wray, & Moin, 1988)
considered to identify vortical structures. Material objectivity (frame invariance) is a highly desirable
property for vortex criteria (Giinther, Gross, & Theisel, 2017), especially in case of rotating flows (see
Giinther, Schulze, & Theisel, 2016). Next, §4 presents the modal analysis and the characterisation
of the identified vortical structures in terms of their shape. Finally, § 5 provides some concluding
remarks.

2. Numerical experiments

To perform POD, a database obtained from LES of an 111, baffled stirred tank with a Rushton-type
impeller is considered. The simulations were performed using the commercial package Ansys FLUENT
(version 19.1, Ansys Inc., Canonsburg, PA). The minimum and maximum grid sizes were set to 2 X 1074
and 4 x 1073 m, respectively. Such resolution was deemed adequate for the LES considering that rough
estimates — based on isotropic conditions, volume-averaged dissipation rate and turbulent KE — for the
Taylor microscale and the Kolmogorov length scale (see e.g. Escudié & Liné, 2003; Sharp & Adrian,
2001) were mostly within the order of 10™#~1073 m and of the order of 10~ m, respectively. These
estimates are for the Newtonian case which is the most restrictive (see next paragraph). The computations
were initialised with the results obtained from steady Reynolds-averaged Navier—Stokes simulations,
and the volume-averaged torque and turbulent KE were monitored during the LES. Instantaneous
realisations (samples) were only taken after reaching statistically stationary conditions.

For the analyses, two test cases are considered. The stirred vessel operates at 800 rpm (impeller
frequency fy ~ 13.33r.p.s. or Hz), and the working fluid is either water (Newtonian) or a 0.2 wt%
carboxymethyl cellulose (CMC) solution presenting shear-thinning behaviour (see e.g. Irgens, 2014).
Information about the tank configuration is given in figure 1 and table 1. A summary of other relevant
parameters is presented in table 2. Note that the normalised total sampling time reported in table 2
corresponds to approximately 22.67 cycles of the stirrer. On the other hand, the reported normalised time
between collected samples corresponds to a normalised sampling frequency, fi.,/fy, of approximately
18.75. Such fi,, is suitable for the study of flow structures of intermediate scale taking place close to
and at the blade passage frequency, fppr = 6fy (six times the impeller frequency for a six-bladed disc
turbine). Moreover, the total sampling time is also large enough to capture many cycles of these structures
and, potentially, even traces of other quasi-periodic, long-lived structures, i.e. macroinstabilities.

For further details about the LES and the test cases, see Arosemena et al. (2022).

3. Methods
3.1. The POD procedure and the method of snapshots

The classical POD procedure aims to find a set of optimal basis vectors to represent the flow field data,
e.g. U € R™™ where U denotes a data matrix comprised of instantaneous velocity fields u, n is the
number of grid points times the number of variables (three in the case of a 3-D velocity field) and m is
the number of collected realisations. In other words, one has an extremisation problem resulting in the
following eigenvalue formulation (Holmes et al., 2012):

Réu =Awdu, Pw €R™, Aqy =224, >0, k=1,...,n, 3.1)
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Figure 1. Geometrical configuration of the stirred tank considered in the LES: (a) cross-sectional view
and (b) top view. The values of the geometrical parameters are given in table 1. The Cartesian coordinate
system is shown in blue. Figure adapted from Arosemena et al. (2022), copyright 2022 AIP Publishing.

Table 1. Geometrical details for the stirred tank considered in the LES. The tank diameter T = 24 cm.
For corresponding schematic representation, see figure 1.

Parameter Value
H|T 1.000
C/T 0.292
D/T 0.292
D;/T 0.217
h,/T 0.063
t,/T 0.008
wy/T 0.075
DS;|T 0.042
DS,/T 0.050
l/,f/T 0.042
be/T 0.104

Table 2. Parameters of the LES. Here W800/C800 refers to simulation case with water/0.2 wt% CMC
where the tank operates at 800 r.p.m. Time t4 denotes the total sampling time (after discarding the
initial transients), w,y, is the tip speed of the impeller and At is the time between the samples. Parameter
Re,ix is a mixing Reynolds number based on the working fluid density p, the impeller rotational speed
N and diameter D, and an apparent fluid viscosity u, for an average strain rate according to the
Metzner—Otto correlation for a Rushton-type stirrer (see Metzner & Otto, 1957). For water, u, is the
dynamic viscosity whereas for the 0.2 wt% CMC case, u, is computed according to the Carreau fluid
model (see Arosemena et al. (2022) for further details).

Parameter W800/C800
ta/(T [ugp) 20.769
At/(T [uzp) 48.900 x 1073
Reix = pND? [, 65.333/1.616 x 103
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where R = UUTW/m € R™" is the weighted covariance matrix, & 1s the set of eigenvectors or
POD modes and Ay are the corresponding eigenvalues. Note that W is an n X n matrix arising after
considering the discrete form of the inner product (see e.g. Smith, Moehlis, & Holmes, 2005; Taira et al.,
2017) and which accounts for the grid non-uniformity. The optimal linear expansion is then given by

n r
1
U= kZ;‘ Pwaw ~ kZ; dpaw, aw €R, r<n, (3.2)

where the set of uncorrelated temporal coefficients a () is found by projecting the input data into the
k-mode. Usually, a satisfactory upper bound r for the truncated series is much less than the total number
of modes n.

An issue with the classical POD method is that for a very large n, solving the eigenvalue problem
becomes impractical and sometimes even not possible. An alternative approach is the method of
snapshots proposed by Sirovich (1987). The basic idea is that instead of having a decomposition involving
deterministic spatial modes and random time coefficients, one may have a decomposition in terms of
deterministic temporal modes with random spatial coefficients (Weiss, 2019). This is computationally
advantageous since, typically, m << n and the resulting eigenvalue problem involves a matrix of size
m X m rather than of size n X n. Of course, the method does not provide a full POD representation, and
to be successful the chosen realisations must be representative of the flow statistics (Jiménez, 2018).
In any case, once the reduced eigenvalue problem is solved, one can recover the leading spatial POD
modes through a transformation as shown next.

In the method of snapshots, the resulting eigenvalue problem is as follows (Holmes et al., 2012):

Réuy =dwdw: Sw R Aqy 22w 20, k=1,....m, (3.3)

where R = UTWU/m € R™" is the reduced matrix, sharing the same leading eigenvalues with R (Taira
etal, 2017), and @y, is the temporal eigenvector. Thereafter, the spatial modes are recovered from

1
¢(k) =U¢(k)T/ll/2 GR”XI, k=1,...,m, (34)
m

which is obtained by considering the singular value decomposition (see e.g. Press, Teukolsky, Vetterling,
& Flannery, 2007) of W'2U/m"/.

3.2. An objective version of the Q-criterion

Swirling-like structures or vortices are the ‘sinews and muscles of fluid motion’ (Kiichemann, 1965). This
is even more so when the flow is turbulent and/or rotational. Over the years, many vortex identification
methods have been proposed (see Epps (2017) for a recent review). The Q-criterion (Hunt et al., 1988)
is among the most popular ones. In this method, a vortex is a local region in which there is an excess
of rotation rate relative to the strain rate (Chakraborty, Balachandar, & Adrian, 2005). Nevertheless,
the Q-criterion, as other Galilean-invariant methods such as the 4-criterion (Chong, Perry, & Cantwell,
1990) or the A,-criterion (Jeong & Hussain, 1995), has an important shortcoming: it is not objective.
That is, rotational invariance, an essential feature for rotating flows, it is not fulfilled (see Haller,
2005). In this respect, Haller (2021) remarked that these local vortex criteria may effectively be objec-
tivised by replacing the spin/rotation rate tensor by a spin-deviation tensor. The spin-deviation tensor
is defined as the difference between the original rotation rate tensor and its instantaneous spatial
average (see Haller, Hadjighasem, Farazmand, & Huhn, 2016). This procedure was proposed and
implemented by Liu, Gao, and Liu (2019a) and Liu, Gao, Wang, and Liu (2019b) to objectivise the
Rortex criterion (Liu, Gao, Tian, & Dong, 2018; Tian, Gao, Dong, & Liu, 2018) and the omega method
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(Liu, Wang, Yang, & Duan, 2016). The same procedure has also been implemented by Arosemena et al.
(2022) to objectivise the Q-criterion, and it may be summarised as follows.
First, the spin-deviation tensor is computed as

«=2-(Q), (3.5)

where Q = %[Vu — (Vu)T] is the spin/rotation rate tensor and () (r) = (1/V) /,V 2dYV is the
instantaneous spatial average of £ over the full flow domain V.
Next, the Q-criterion is reformulated as

0. =1 (12,17 - I8I*]. (3.6)

which is objective (not observer-dependent). Here S = %[Vu + (Vu)T] is the strain rate tensor.

4. Results

Before discussing the results, it is important to clarify some points about the input data. The impeller
movement in the LES is implemented by means of the sliding mesh approach. Therefore, regardless
of having an inertial or a rotational frame of reference, part of the mesh is moving as the simulations
proceed. In such cases, to date, the following strategies have been implemented: (i) the POD method
is applied in a per-zone manner where different modes and coefficients are found for the stationary
and rotating domains or zones (Janiga, 2019) and (ii) the POD method is applied in a global manner
considering the two zones altogether (Mayorga et al., 2022). Both strategies are feasible for POD
reconstruction of the velocity field yet pose some issues for the analysis of the modes. In the case of the
per-zone treatment, the connection between modes in the two zones and their energy content is rather
ambiguous. On the other hand, with respect to the global treatment, direct physical interpretation of
the POD modes is not possible since the modes are referenced to the elements of the mesh (cells), the
positions of which change from time step to time step in the rotating zone.

In this work, instead, the flow-field data are interpolated to a fixed set of points through Sibson
(natural neighbour) interpolation (Sibson, 1981). This interpolation scheme is more computationally
expensive than others; however, it is known to work well with scattered data (Park, Linsen, Kreylos,
Owens, & Hamann, 2006). The query points are set to those of the mesh of the first saved snapshot
for the cases outlined in table 2. Here, as with any interpolation method, the issue is how well the
interpolated data approximate the original values and may reflect the actual physical process. Appendix
A presents a comparison between a randomly selected velocity field for case W800 and its natural
neighbour interpolation.

4.1. The POD modal analysis

The amount of KE contributed by each POD mode is found in the corresponding eigenvalue. Figure 2(a)
displays the energy contained in the k-mode normalised by the energy contained in all modes. Mode 1
contains most of the total energy (=60 %—70 %) followed by modes 2 and 3 with very similar energy
levels (=5 %). In comparison, the amount of energy in the remaining modes is fairly small (less than
1% for k > 6). From figure 2(a) one can also observe that the decay of energy is slow, especially as the
theoretical estimate for the inertial subrange (Knight & Sirovich, 1990) is approached. Moreover and
as expected, this behaviour is more prominent for the higher-Reynolds-number case, i.e. W800. This is
more clearly seen in figure 2(b) where the cumulative percentage of total KE is shown. It is also worth
noting that at least 95 % of the total KE is captured once about a third of the total number of modes
m is considered. Lastly, regarding the sensitivity of the results to the number of considered snapshots,
Appendix B compares the fraction of total KE for case W800 — presented in figure 2(a) — with the
fraction when the number of snapshots is doubled.
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Figure 2. The KE content in POD modes: (a) fraction of total KE versus mode number k and
(b) percentage cumulative amount of KE versus k/m. Total number of modes, m = 426. Colours black
and red correspond to cases W800 and C800, respectively. See table 2. In (a), the dotted line represents
the —11/9 power law (Knight & Sirovich, 1990).

In the following, the most energetic modes and their corresponding temporal coeflicients are
discussed.

Mode 1

Mode 1 (denoted as the zeroth mode by some researchers) is probably representing the mean flow. This
is a classical result when POD is applied to the instantaneous velocity fields (Moreau & Liné, 2006).
Figure 3 depicts the first eigenvector at selected planes for cases W800 and C800. Figure 3(a,b) shows
the y, z components at x/7 = 0, a cross-section between two baffles, whilst figure 3(c,d) shows the
x,y components at z/T ~ 0.4, a horizontal plane above the impeller. From figure 3(a,b), one can see
the impeller stream and the lower and upper circulation loops. On the other hand, from figure 3(c,d),
one can discern the expected effect of using vertical baffles; no gross vortexing is taking place and
counterrotating structures — with respect to the rotating direction of the impeller — are appearing
behind the baffles. All these patterns are typical of the mean flow for the configuration considered (see
e.g Chhabra & Richardson, 2008). Furthermore, as reported in previous studies (see e.g. de Lamotte
et al., 2018), the temporal coefficient for mode 1 is seemly a constant which is being superimposed
by small-amplitude, higher-frequency signals. See temporal signal in figure 4(a), displayed only for
t/(T/usp) € [0,1], and the corresponding power spectral density (PSD) in figure 4(b). As seen from
the PSD, aside from the main peak at f/fy = 0, there are two other, less noticeable, peaks: one at fgpp
and another at its nearest overtone. Note that the latter is being masked due to the considered sampling
frequency: |2fgpr — (Nfsam)|/fv = 6.75, where (Nfy,,) is the integer multiple of fi,, closest to the
frequency of interest, 2fppr.

It is also interesting to note that there are some differences in the first POD mode of two fluid cases.
Compared with the Newtonian fluid case, there are more quasi-stagnant regions, an overall attenuation
of the circulation loops and the structures behind the baffles and more asymmetry below the impeller for
the shear-thinning fluid. These factors suggest poorer macromixing for case C800, especially in regions
away from the impeller.

Modes 2 and 3

Modes 2 and 3 are probably coupled — as mentioned previously in this section, these modes have nearly
identical energy content — and represent organised motion due to the periodic passage of the blades,
namely trailing vortices as reported in previous works (see e.g. Gabelle, Morchain, & Liné, 2017; Liné,
Gabelle, Morchain, Anne-Archard, & Augier, 2013). Figure 5(a—d) shows the y, z components of the
second and third eigenvectors at x/7 = 0 for cases W800 and C800. As can be seen and as expected
in the case of trailing vortices, modes 2 and 3 reveal swirling-like, counterrotating patterns exhibiting
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Figure 3. Visualisation of POD mode 1 in (a,b) a vertical plane between two baffles at x/T = 0 and
(¢c,d) a horizontal plane above the impeller at z/T ~ 0.4. In (c,d), the blue arrow indicates the rotating
direction of the stirred vessel. Colours black and red correspond to cases W800 and C800, respectively.

See table 2.
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Figure 4. Temporal coefficient of POD mode 1: (a) normalised temporal coefficient and (b) PSD
corresponding to the normalised coefficient. Here, fy represents the impeller frequency in revolutions
per second. Colours black and red correspond to cases W800 and C800, respectively. See table 2.
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Figure 5. Visualisation of POD modes 2 and 3 in a vertical plane between two baffles at x/T = 0 and in
the vicinity of the impeller: (a,b) mode 2 and (c,d) mode 3. Colours black and red correspond to cases
W800 and C800, respectively. See table 2.

symmetry with respect to the plane of the impeller (z = C), albeit these are not as pronounced for
the shear-thinning fluid case when compared with the Newtonian case. In addition, the analysis of
the temporal coefficients corresponding to modes 2 and 3 evidences their coupled periodic nature.
Figure 6(a), presenting the normalised temporal coefficients for ¢/(T /u,,) € [0, 1], allows one to note
an apparent out-of-phase, sinusoidal-like behaviour in the signals. Moreover, as displayed in figure 6(b),
their corresponding PSDs are peaking at the blade passage frequency which emphasises the connection
between modes 2 and 3 and the periodic motion due to the passages of the blades. Here, note as well
there is a second, barely noticeable, peak at f/fy ~ 6.75. As commented before while discussing the
temporal coefficient for POD mode 1, this peak happens at the nearest overtone of fzpr with aliasing
due to the considered f;,,, and corresponds to a superimposed, small-amplitude, signal.

Another tool to highlight the harmonic coupling between the modes is the cross-plotting of their
temporal coefficients (van Oudheusden, Scarano, van Hinsberg, & Watt, 2005). This is done in figure 6(c)
and as can be seen, although the coefficients are statistically uncorrelated, they are not independent and
instead are scattered around an ellipse. This is typical of sinusoidal signals out of phase.

Modes 4 to 11
The POD modes 4 to 11 are probably representing either complex harmonic motion linked to the trailing
vortices, or a macroinstability. Previous investigations of stirred tanks have shown that modes following
modes 2 and 3 may also exhibit counterrotating structures that are almost symmetric with respect to
z = C (see e.g. Gabelle et al., 2017; Liné et al., 2013). Moreover, together with modes 2 and 3, these
structures depict a convective pattern resembling the vortex shedding behind bluff bodies reported in
many works (Liné et al., 2013). Meanwhile, depending on the total sampling time (here #4; see table 2),
it is possible that the modes following modes 2 and 3 are representing a macroinstability (see e.g.
Doulgerakis, Yianneskis, & Ducci, 2009).

In the following and to shorten the discussion, the visualisation of all these POD modes (4 to 11)
is not shown nor the time evolution of their corresponding coefficients. Instead, here the phase portrait
of the coeflicients of these modes with a(3) are investigated to also gain insight into the modes. In the
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Figure 6. Temporal coefficients of POD modes 2 and 3: (a) normalised temporal coefficients, (b) PSD
corresponding to the normalised coefficients and (c) phase portrait of the normalised coefficients. In
(a,b), continuous and dotted line styles are used for normalised a(y) and a3), respectively. In (c), the
continuous line represents the unitary ellipse, and to avoid excessive clustering not all data points are
displayed. Here, fy represents the impeller frequency in revolutions per second. Colours black and red
correspond to cases W800 and C800, respectively. See table 2.

case of periodic vortex shedding, a3 would be one of the basic harmonics. From figures 7(a)—(h), it
is clear that there is some relation between a3y and the coefficients corresponding to modes 4, 5, 7,
8 and 9 in case W800 and those corresponding to modes 5, 6, 8 and 9 in case C800. The displayed
patterns are similar to Lissajous curves which, indeed, suggests complex harmonic behaviour. At this
point, it is worth mentioning that (in general) the POD technique is not suitable for isolating structural
coherence based on observations about the temporal coefficients, since a given modulated POD mode
may encompass different signals and physical phenomena. Therefore, other statistical techniques such
as dynamic mode decomposition (see Schmid, 2010) are preferred when one is interested in the ‘best fit’
for approximating the dynamics of the data. Nevertheless, for periodic and convective phenomena (as
in the case of vortex shedding), it is known that both linear decompositions (POD and dynamic mode
decomposition) yield remarkably similar structures (Schmid, Violato, & Scarano, 2012).

On the other hand, regarding the remaining temporal coefficients — a ), a(i0) and a1y for W800,
and a4y, a(7), a(10) and a1y for C800 — there is no distinctive relation between them and a(3). Besides,
when considering the time evolution of these coefficients, an exceedingly long signal is uncovered (see
figure 8a,b). Macroinstabilties are large temporal and spatial fluctuations of the flow (Galletti, Paglianti,
& Yianneskis, 2005) arising due to two distinct mechanisms: (i) precessional vortex motion around the
shaft (see e.g. Nikiforaki et al., 2003) and (ii) the impingement of the jet-like discharge stream on
the vessel boundaries (see e.g. Roussinova, Kresta, & Weetman, 2003). In the turbulent flow regime, the
precessional macroinstabilities result in a characteristic frequency which is smaller than the characteristic
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Figure 7. Phase portrait of normalised coefficients, series of mode 3 and (a) mode 4 coefficients,
(b) mode 5 coefficients, (c) mode 6 coefficients, (d) mode 7 coefficients, (e) mode 8 coefficients, ( f) mode
9 coefficients, (g) mode 10 coefficients and (h) mode 11 coefficients. Colours black and red correspond
to cases W800 and C800, respectively. See table 2.
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Figure 8. Traces about precessional macroinstabilities, POD mode 6 for W800 and POD mode 4
for C800: (a) normalised temporal coefficients, (b) PSD corresponding to the normalised coefficients,
(c) visualisation of mode 6 at z/T =~ 0.4 and (d) visualisation mode 1 at z/T =~ 0.4. In (c), the blue
boxes mark regions with precessional patterns. In (d), the blue arrow indicates the rotating direction of
the stirred vessel. Here, fy represents the impeller frequency in revolutions per second. Colours black
and red correspond to cases W800 and C800, respectively. See table 2.

frequency of the jet-impingement macroinstabilities by an order of magnitude. The frequency of the
precessional macroinstabilities is also smaller than the characteristic frequency for trailing vortices by
two orders of magnitude (Doulgerakis et al., 2009). In consequence, the behaviour for the remaining
temporal coefficients is likely reflecting the presence of precessional macroinstabilities in the flow.
Figure 8(c,d) displays the x, y components of the sixth and first eigenvectors at z/T ~ 0.4 for case W800,
respectively. The former shows precessional patterns around the shaft (see blue boxes in figure 8c).

Lastly, it is important to stress the limitation of our data in terms of characterising precessional
macroinstabilities. For the proper study of these periodic or quasi-periodic motions, one requires the
recording of at least some full cycles to minimise statistical errors. For example, Ducci and Yianneskis
(2007) considered four sets of data corresponding to the same experiment where, for each set, a
complete cycle was recorded. Additionally, and with the purpose of capturing at least one full cycle of
the precessional motion, the temporal behaviour of a() for case W800 when #, is doubled is considered
as well. See appendix C.

Higher modes
The higher modes involve the higher-order harmonics of the organised motions discussed thus far as
well as the turbulent fluctuations. This makes the analysis of the subsequent POD modes increasingly
challenging since every mode now has signals with several frequencies, and possibly involves multiple
physical phenomena. See figure 9.

In the remaining part of the paper, our attention is redirected to the identification of vortical structures
and their morphological characterisation. The vortex detection is based upon reconstructed 3-D velocity
fields consisting only of the most energetic higher POD modes. Expressed in a different manner, at a
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Figure 9. The PSD corresponding to the normalised coefficient for mode 100. Here, fy represents the
impeller frequency in revolutions per second. Colours black and red correspond to cases W800 and
C800, respectively. See table 2.

given time ¢, u may be approximated as

r 11 r
u~ kz; awyPw =anda +kz; amw P +];:2a(k)¢(k)7 4.1)
(i)

(ii) (iii)

and the identification of vortices is based on term (iii). Considering the observations made through § 4,
terms (i), (ii) and (iii) of (4.1) seem to represent (for the most part): the mean, periodic and fluctuating
components of # according to Hussain & Reynolds’s (1970) triple decomposition. Here, the upper limit
r is set to capture (at least) 95 % of the total KE. Thus, the POD reconstruction is truncated at mode
130 which corresponds to k/m ~ 0.3 (see figure 2b). The reasoning for truncating the linear expansion
at r = 130 is that within this range a significant amount of KE has already been captured and afterwards,
the decay in the energy content is even slower. For example, for case W800 one captures 99 % of the
total energy content only after keeping more than the first 300 modes. Indeed, one of the weaknesses of
POD is that it is not always clear how many POD modes should be kept, and there are many different
truncation criteria (Taira et al., 2017).

4.2. Vortical structures

The identification and morphological characterisation of vortices related to turbulence proceed as
follows.

(i) The vortex criterion is computed. At a given instant, based on the approximation to the fluctuating
velocity field, i.e. term (iii) of (4.1), the 3-D Q, field is computed according to (3.6).

(i) The vortex criterion is normalised to account for inhomogeneity in the flow. The 3-D Q, field is
normalised by its root mean square. The idea of using a statistical indicator of the turbulent
structure concept to account for inhomogeneity in the flow started with Nagaosa and Handler
(2003) and has been implemented in several works (see e.g. Arosemena, Andersson, Andersson,
& Solsvik, 2021; del Alamo, Jiménez, Zandonade, & Moser, 2006; Hwang & Sung, 2018;
Lozano-Duran, Flores, & Jiménez, 2012).

(iii) The normalised criterion is thresholded to identify the vortical structures. Regions of connected
grid points where the normalised Q,-criterion is >1 are recognised as individual vortices. Here,
connectivity is defined by the six orthogonal nearest neighbours of each grid point and the
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Figure 10. Zingg’s (1935) diagram for shape classification of objects according to their elongation
E and flatness F parameters. Corners also illustrate extreme cases discussed in Moisy and Jiménez
(2004): ribbons (0,0), sheets (0, 1), tubes (1,0) and spheres (1, 1). Reprinted from Arosemena et al.
(2022), with permission of AIP Publishing.

threshold is chosen considering the percolation crisis analysis performed by Arosemena et al.
(2022). Also, it is worth mentioning that as in Arosemena et al. (2022) and due to the
computational cost, a sensitivity analysis to the threshold selected is not performed. Nonetheless,
based on previous studies (see e.g. Arosemena et al., 2021; Cheng, Li, Lozano-Durédn, & Liu,
2020) and for threshold values larger than that where the percolation transition occurs, it is
deemed probable that consistent trends in the results will be observed when changing the
threshold value to another one differing by less than an order of magnitude.

(iv) The identified vortices are characterised according to statistics of shape-related parameters. Here,
the shape of a vortical structure is determined by its maximum projection sphericity
D, = [dé/(de[)]l/3 (Sneed & Folk, 1958), and its elongation E = d;/d;, and flatness F = ds/d;
parameters (Zingg, 1935). Here @, represents the ratio of maximum projection area of a sphere
having the same volume as the structure to the maximum projection area of the structure. Thus,
@, has a maximum of 1 for perfect spheres. On the other hand, the two aspect ratios (F, E) can be
used to classify a structure in terms of its shape (see figure 10). Note that ds, d; and d;, are the
shortest, intermediate and largest lengths of the oriented bounding box of a given structure. The
boxes are computed by principal components analysis (see e.g. Jolliffe, 2002).

Figures 11(a) and 11(b) display the vortical structures identified by the above procedure for cases
W800 and C800, respectively. The rendering takes place in the vicinity of the impeller (not shown in
the figure) and for an instantaneous POD reconstruction based on term (iii) of (4.1). As can be seen,
the vortices visually appear mostly as tubular structures. It is also interesting to note that the population
of structures diminishes for the 0.2 wt% CMC case, as expected for the case having a lower Reynolds
number and exhibiting shear-thinning fluid behaviour.

Regarding the shape-related parameters, figures 11(c) and 11(d) show the cumulative distribution
function (CDF) of @, and the joint CDF (JCDF) of F and E, respectively, for cases W800 and C800.
Figure 11(c,d) also shows the results of Arosemena et al. (2022). As seen from figure 11(c), the
probability of the identified vortices being non-spherical is above 90 %; i.e. CDF(®, < 0.9) > 0.9
for both cases. This result is larger than CDF(®, < 0.9) ~ 0.8 reported by Arosemena et al. (2022)
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Figure 11. Vortical structures based on POD reconstruction to approximate the fluctuating velocity
field, and statistics of shape-related parameters. Isosurfaces of normalised Qy-criterion = 1 in the
vicinity of the impeller, at a given instant, and for cases (a) W800 and (b) C800. Plots of (c) CDF(®,)
and (d) JCDF(F,E). In (c,d), continuous and dotted line styles correspond to the data of this work and
that of Arosemena et al. (2022), whilst colours black and red correspond to cases W800 and C800,
respectively. See table 2. Additionally, in (c), the dashed blue line marks CDF(®,,) = 0.9, whereas in (d),
the blue lines mark the limits for shape classification (see figure 10). Also, in (d), the levels represented
contain 99 %, 70 % and 30 % of the data.

where the identification of vortices is based upon the instantaneous velocity field, instead of a POD
reconstruction for the fluctuating velocity component. In addition, figure 11(d) reveals that about 70 %
of identified structures are likely to fall into the compact and prolate categories whereas just 30 % of
them fall into the compact category alone. This result is consistent with the finding of Arosemena et al.
(2022), albeit in the latter the contour corresponding to 30 % of the data is slightly closer to the limit
for perfect spheres (see figure 10). It is also interesting to observe that the contours of JCDF(F, E)
capturing 70 % and 30 % of the data are for a very narrow range of large F values, i.e. 0.8 < F < 1 and
0.9 < F < 1, respectively. This finding further strengthens the argument in favour of tube-like vortices
of different lengths being detected, instead of spherical ones.

5. Concluding remarks

In this work, POD is performed over instantaneous velocity fields obtained from the LES of an 111,
baffled, stirred tank operating with a Rushton-type impeller at 800 r.p.m., and where the working fluid is
either water or a 0.2 wt% CMC solution (Arosemena et al., 2022). The most energetic modes and their
corresponding temporal coefficients are investigated. In addition, a POD reconstruction of the higher
modes is carried out with the purpose of approximating the fluctuating velocity field and subsequently
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to explore the shape of vortices related to turbulence in the stirred vessel. Vortical structures are
extremely important because of their role in mixing, and (potentially) in the breakup and coalescence
of dispersed fluid particles. More specifically, the focus in their morphological characterisation is due
to the fact that many phenomenological models for the breakage and coalescence of fluid particles (see
e.g. Liao & Lucas, 2009, 2010; Solsvik et al., 2013) are based on several assumptions, including their
interaction with vortices having comparable size and being of spherical shape. The identification of
vortical structures is achieved through an objective version of the traditional Q-criterion (Hunt et al.,
1988) which is normalised to also take into account the inhomogeneity in the rotating flow. On the other
hand, the morphological classification of the identified structures is made thanks to statistics of their
shape-related parameters, maximum projection sphericity and aspect ratios.
Findings of this paper include the following:

(1) It seems promising to implement the POD technique with the purpose of decomposing a 3-D flow
field into its mean, and most energetic periodic and fluctuating components according to Hussain
& Reynolds’s (1970) triple decomposition.

(i) Vortices associated with the fluctuating velocity field are mostly tubular structures.

Finding (i) appears to be valid regardless of the working fluid rheology, consistent with earlier POD
analyses based on two-dimensional velocity fields (Gabelle, Morchain, Anne-Archard, Augier, & Liné,
2013; Liné et al., 2013). Likewise, as recognised by Moreau and Liné (2006), finding (i) signifies
that one would be able to get the periodic component of the flow without the necessity of phased
measurements. More importantly, this finding opens the window for reduced-order modelling of the
organised structures arising due to periodic motions in the tank: trailing vortices and macroinstabilities.
Previous works have considered low-order representations for these organised motions by approximating
the corresponding temporal coefficients with sinusoidal functions (Doulgerakis et al. (2009); Ducci,
Doulgerakis, and Yianneskis (2008), Doulgerakis et al. (2011) and Gabelle et al. (2013), to list a few).
However, more generally, one can do a Galerkin projection of the momentum equation onto these POD
modes to obtain a low-dimensional model for their coefficients (see e.g. Smith et al., 2005). Once
the reduced-order model is solved, it would then be possible to predict the dynamical behaviour of
these periodic structures, and thus better use these highly energetic regions for purposes such as mixing
enhancement. The advantage of following the more general approach is that one is not restricted to simple
periodic motion. Meanwhile, finding (ii) suggests that as starting point for the modelling of breakage
and coalescence of fluid particles in stirred tanks and based on their interaction with vortices, it is
more reasonable to assume that the latter are cylindrical structures rather than spherical. Moreover, this
observation is more in line with our understanding about vortices in turbulent flows (see e.g. Davidson
(2015), §5.3). Lastly, through this work and as expected, an overall attenuation of the swirling-like
motions (e.g. circulation loops, trailing vortices and vortical structures associated with turbulence) is
observed with shear-thinning rheology compared with the Newtonian case.

Finally, it is worth mentioning some limitations of the present investigation. Firstly, since POD is
performed over data obtained from LES, none of the higher-order modes are representative of the dissi-
pative scales. Information about the small-scale motions would be particularly useful for improvement
of chemically reactive systems and mass transfer. Secondly, the different periodic motions in the tank
present different time scales and for proper characterisation of some of them one may require larger sim-
ulation times and a complementary dataset with samples collected using a smaller sampling frequency.
For example, precessional macroinstabilities in the turbulent regime have a normalised frequency of
f/fy =~ 0.02 (Nikiforaki et al., 2003) which is about 300 times smaller than that characteristic of the
trailing vortices, i.e. f/fy ~ 6. Thirdly, the standard POD does not ensure temporal coherence and, as
seen in § 4.1, it may result in temporal signals with mixed frequencies. This is obviously problematic
when considering higher-order modes since it is difficult to separate the higher-order harmonics corre-
sponding to the organised motion from turbulence, yet it may also represent an issue in the case of the
lower-order ones when physical phenomena, taking place at different frequencies, appear in the same
mode. In such cases, it is rather difficult to determine if a structure is evolving into another as it moves in
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Figure 12. Normalised instantaneous velocity components at different axial positions, z/T: (a) [ up,
(b) uy/usp and (c) u; [ uyp. Circle and cross markers are used for the original and the interpolated velocity
values, respectively. Black and blue colours correspond to the nearest points to x/(D/2),y/(D/2) =
0,0.6 and 0, 1.25, respectively. Here, the data correspond to case W800. See table 2.

space or if both structures have similar energy content and simply end sharing the same mode (Mendez,
Balabane, & Buchlin, 2019). Here, a better approach could be one that extracts spatio-temporal coher-
ence such as spectral POD (see e.g. Schmidt & Colonius, 2020; Towne, Schmidt, & Colonius, 2018)
or another where there is some trade-off between energy optimality and spectral purity such as multi-
scale POD (Mendez et al., 2019). Lastly, it is important to keep in mind that POD is the optimal linear
decomposition when one is interested in capturing the energy of the original data, yet it is not when the
interest resides in another property. Furthermore, turbulence is certainly highly nonlinear, and a differ-
ent approach may be more appropriate. For instance, consider the nonlinear wavelet decomposition (see
e.g. Farge & Schneider, 2006), or more recent data-driven methods, such as convolutional neural net-
works (CNNs) POD (see Guastoni et al., 2021; Giiemes, Discetti, & Ianiro, 2019; Nakamura, Fukami, &
Fukagata, 2022). A CNN POD method considers the same spatial basis as traditional POD; however, the
time coefficients are estimated using a CNN, making it able to account for nonlinear features in the flow.

Supplementary material. Raw data are available from the authors.
Funding statement. This work was supported by the Research Council of Norway (RCN, grant no. 274398).

Declaration of interests. The authors report no conflict of interest.

Appendix A. Interpolation

Figure 12(a—c) compares a randomly selected velocity field for case W800, taken after approximately
13.33 impeller revolutions from the first saved snapshot, with its Sibson interpolation. The figure
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Figure 13. Fraction of total KE versus mode number, k, for case W800. See table 2. Markers in black
and blue colours correspond to a total number of modes, m, equal to 426 and to 851, respectively.
Dotted line represents the —11/9 power law (Knight & Sirovich, 1990).
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Figure 14. Temporal coefficients of the sixth POD mode, case W800: (a) normalised temporal coefficient
and (b) PSD corresponding to the normalised coefficient. Total sampling time, t4, is twice that listed in
table 2.

displays the x-, y- and z-instantaneous velocity components, u,, u, and u,, respectively, for different
axial positions in the vicinity of the impeller. As can be seen, there is very good agreement between the
original field and its interpolation.

Appendix B. Sensitivity to the number of considered snapshots

Figure 13 compares the fraction of total KE contained in a given k-mode when m = 426 with the fraction
when m is doubled, for case W800 and for the same #4. See table 2. As can be seen, the profiles are very
similar, especially for the modes containing most of the total KE.

Appendix C. Precessional macroinstabilities

Figure 14(a) shows the temporal signal of mode 6 for case W800 when m = 426, and #4 and At are
doubled. See table 2. From this figure, one observes what appears to be a full cycle of the precessional
motion. Of course, for proper study of precessional macroinstabilities, a larger 74 — covering several full
cycles of the precessional motion — is required.
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