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Globally Asymptotic Stability of a Delayed
Integro-Differential Equation With
Nonlocal Diffusion

Peixuan Weng and Li Liu

Abstract. We study a populationmodelwith nonlocal diòusion,which is a delayed integro-diòeren-
tial equation with double nonlinearity and two integrable kernels. By comparison method and
analytical technique, we obtain globally asymptotic stability of the zero solution and the positive
equilibrium. _e results obtained reveal that the globally asymptotic stability only depends on the
property of nonlinearity. As an application, we discuss an example for a population model with age
structure.

1 Introduction

Consider an integro-diòerential equation

(1.1) ∂w
∂t

= DmAw(t, x) − dmw + g(∫
R
k(x − y)b(w(t − r, y)) dy)

for x ∈ R, t > 0, where Aw(t, x) ∶= ∫R J(x − y)[w(t, y) −w(t, x)] dy. We introduce
the following assumptions on kernel functions J and k.
(J) J is a nonnegative Lebesguemeasurable function deûned on R such that J(x) =

J(−x) for x ∈ R, J ∈ L1(R) and ∫R J(y) dy = 1.
(K) k is a nonnegative Lebesguemeasurable function deûned onR such that k(x) =

k(−x) for x ∈ R, k ∈ L1(R), and ∫
∞

−∞
k(s) ds = 1.

Equation (1.1) is in regard to a nonlocal diòusion system, since its diòusion process
ismodelled by a nonlocal operatorAw(t, x) that uses a probability density function J
and a convolution function to describe the diòusion of densityw at a position x from
the value w at all positions y ∈ R. Furthermore, (1.1) also involves a delayed nonlo-
cal reaction term, which includes a kernel function k and two nonlinear functions g
and b. In fact, (1.1) takes somewell-known equations as its special cases. We now give
some examples in the following.
● Let J(x) = δ(x) (Dirac-delta function). _en (1.1) yields

(1.2) ∂w
∂t

= −dmw + g(∫
R
k(x − y)b(w(t − r, y)) dy) , x ∈ R, t > 0.
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● Let J(x) = δ(x) + δ(2)(x), k(x) = 1
√

4πα e
− x2

4α , and g(v) = εv. _en (1.1) yields

(1.3) ∂w
∂t

= Dm
∂2w
∂x2 − dmw + ε∫

R

1
√

4πα
e−

(x−y)2
4α b(w(t − r, y)) dy, x ∈ R, t > 0.

● Let J(x) = δ(x) ± δ(1)(x) + δ(2)(x), k(x) = 1
√

4πα e
−
(x∓α)2

4α , and g(v) = εv. _en
(1.1) yields

(1.4) ∂w
∂t

= Dm[
∂2w
∂x2 (t, x) ∓

∂w
∂x

(t, x)] − dmw

+ ε∫
R

1
√

4απ
e−

(x−y∓α)2
4α b(w(t − r, y)) dy

for t > 0, x ∈ R.
● Let k(x) = δ(x) and b(w) = w. _en (1.1) yields

(1.5) ∂w
∂t

= DmAw(t, x) − dmw + g(w(t − r, x)), x ∈ R, t > 0.

Equations similar to those in (1.2)–(1.5) with r ≥ 0 were studied in the existing liter-
ature [1–5, 11–13], where most of the results are about the existence, uniqueness, and
wave tail behaviors of travelling wave solutions.
Another equation,more general than (1.1), is

(1.6) ∂w
∂t

= DAρw(t, x) + f (w(t, x),∫
∞

0
∫
R
G(s, x − y)b(w(t − s, y)) dyds)

for x ∈ R, t > 0, where Aρw(t, x) ∶= ∫R
1
ρ J(

x−y
ρ )[w(t, y) − w(t, x)] dy. Wu and

Liu [16], Zhang [20], and Xu andWeng [17] investigated, respectively, the existence of
travelling wave solutions for

D = 1, ρ = 1, f (w , v) = −l(w) + f (v), b(w) = w ,G(t, x) = 0 for t ≥ τ ≥ 0,

ρ = 1, f (w , v) = −g(w) + l(w)v , G(t, x) = δ(t − τ)h(x),

ρ = 1, f (w , v) = −h(w) + v , G(t, x) = 1
√

4πDt
e−

x2
4D t .

As for the general form (1.6), the existence, uniqueness, and wave tail behaviors were
discussed in [19] for D = 1, and a special case as b(w) = w was discussed in [18].

It is obvious that (1.1) is taken from (1.6) while
f (w , v) = −dmw + g(v) and G(t, x) = δ(t − r)k(x).

_ere are two reasons for us to only consider the situation of f (w , v) = −dmw+ g(v).
One is that the population modelwith age structure has the character that the growth
function depends on a ûxedmaturation period r, but themortality function does not
(see [8], where dm is themortality rate). Furthermore, the rate of population change
for single species is generally of the form dw

d t = births − deaths +migration [10]. _e
other reason is the consideration of technical simplicity on analysis.

_emain concern of this article is the globally asymptotic stability of the zero so-
lution and the positive equilibrium. To the best of our knowledge, there is little in the
literature concerning this problem, and the results obtained in this article are new.
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_e organization of this paper is as follows. In Section 2, we give some basic theory,
aswell as two comparison lemmas. In Section 3,we obtain results for globally asymp-
totic stability, global attractivity, as well as persistence. _e last section is devoted to
the application and discussion.

2 Basic Theory and Comparison Lemmas

We ûrst state some basic spaces and denotations as follows.

Ĵ(ω) = ∫
R
e iωx J(x) dx , G(x , α) ∶= 1

2π ∫R
eα( Ĵ(ω)−1)e−iωx dω,

X ∶= {ϕ∶R→ R ∣ ϕ = {ϕ(x)}x∈R is bounded and uniformly continuous},
X+

∶= {ϕ ∈ X ∣ ϕ(x) ≥ 0 for x ∈ R},

Aϕ(x) ∶= ∫
R
J(x − y)[ϕ(y) − ϕ(x)] dy, ∀ϕ ∈ X ,

T(t)ϕ(x) ∶= e−dm t
∫

+∞

−∞
G(x − y,Dm t)ϕ(y)dy

= e−(dm+Dm)t
∞

∑
k=0

(Dm t)k

k!
ak(ϕ)(x),∀ϕ ∈ X , t > 0,

where a0(ϕ) = ϕ, ak(ϕ) = J∗ak−1(ϕ) for k ≥ 1 (see [8] for the properties ofG(x , α)).
Clearly, X+ is a closed cone of X under the partial ordering induced by X+. We shall
express the supremumnormof X by ∥ϕ∥ ∶= supx∈R ∣ϕ(x)∣. _en X is a Banach lattice,
and T(t)∶X → X is a linear operator with T(t)X+ ⊆ X+ for t > 0.

Let C = C([−r, 0], X) be the Banach space of continuous functions mapping from
[−r, 0] into X with the supremum norm ∥φ∥ = maxθ∈[−r , ,0] ∥φ(θ)∥ (where for every
θ, ∥φ(θ)∥ is the norm in X). We deûne C+ ∶= {φ ∈ C ∣ φ(s) ∈ X+ , s ∈ [−r, 0]}.
Clearly, C+ is a closed (positive) cone of C. As usual,we identify an element φ ∈ C as a
function from [−r, 0] ×R into R deûned by φ(θ , x) = φ(θ)(x). For any continuous
function w∶ [−r, a) → X, a > 0, we deûne wt ∈ C, t ∈ [0, a) by wt(θ) = w(t + θ),
θ ∈ [−r, 0]. _en t → wt is a continuous function from [0, a) to C.
Furthermore, we need some assumptions.

(P1) g , b ∈ C(R+ ,R+), b(0) = 0, g(0) = 0 and g(b(w)) > 0 for w > 0; b (g) is
globally Lipschitz continuous on R+ with Lipschitz constant Lb (Lg).

(P2) b( ⋅ ) and g( ⋅ ) are nondecreasing on [0,+∞).
(P′2) _ere exists a number wmax > 0 such that g(b(w)) is nondecreasing for 0 <

w < wmax and decreasing for w > wmax.
(P3) _ere exists a constant K > 0 such that g(b(K)) = dmK, and g(b(w)) > dmw

for w ∈ (0,K), g(b(w)) < dmw for w > K.
(P′3) dmw > g(b(w)) for w > 0.

Together with (1.1), we introduce an initial value condition
⎧⎪⎪
⎨
⎪⎪⎩

w(s, x) = φ(s, x) for (s, x) ∈ [−r, 0] ×R, φ ∈ C,
φ(s, x) ≥ 0 for (s, x) ∈ [−r, 0] ×R.
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For getting a nontrivial solution, we need φ(0, ⋅ ) > 0, where φ(0, ⋅) > 0 implies

φ(0, x) ≥ 0, φ(0, x) /≡ 0 x ∈ R.

Deûne F∶C → X by F(φ)(x) ∶= g(∫R k(x − y)b(φ(−r, y)) dy) . _en the initial
value problem of (1.1) can be rewritten as

(2.1)
⎧⎪⎪
⎨
⎪⎪⎩

w′(t) = DmAw(t) − dmw(t) + F(wt), t > 0,
w0 = φ ∈ C+ .

We have known [9] that (2.1) is equivalent to

(2.2)
⎧⎪⎪
⎨
⎪⎪⎩

w(t, ⋅) = T(t)φ(0, ⋅ ) + ∫
t
0 T(t − s)F(ws)( ⋅ ) ds, t > 0,

w(θ , ⋅ ) = φ(θ , ⋅ ), θ ∈ [−r, 0].

_e following two lemmaswere originally shown in [8] for system(1.1)with g(z) =
εz. For general system (1.1), by using the Lipschitz condition, we have

∣g(∫
R
k(x − y)b(w1(t − r, y))dy) − g(∫

R
k(x − y)b(w2(t − r, y)) dy) ∣

≤ Lg ∣∫
R
k(x − y)[b(w1(t − r, y)) − b(w2(t − r, y))] dy∣

≤ LgLb ∫
R
k(x − y)∣w1(t − r, y)) −w2(t − r, y)∣ dy,

and thus we can derive the conclusions by similar arguments as in [8].

Lemma 2.1 Assume (J), (K) and (P1) hold. _en for any φ ∈ C+, (2.1) has a unique
nonnegative solution w(t, x;φ) for t > 0. Furthermore, if φ(0) ∈ IntX+, then w(t) ∈
IntX+ for t ≥ 0; if φ(0) > 0, then w(t) ∈ IntX+ for t > 0, and wt ∈ IntC+ for t > r.

In view of Lemma 2.1, we know T(t) is strongly positive if Dm t > 0, and T(t) is a
C0 semigroup on X.

Remark 2.2 Assume that φ(0, ⋅ ) ≥ δ > 0. We have from (2.2) and the conclusion
of Lemma 2.1 that w(t, x) ≥ T(t)φ(0, x) ≥ e−dm t inf x∈R φ(0, x) ≥ e−dm tδ for (t, x) ∈
[0,∞) ×R.

Lemma 2.3 Assume that (J), (K) and (P1) hold. _en for any φ ∈ C+, the solution
w(t, x;φ) of (1.1) satisûes 0 ≤ w(t, x;φ) ≤ M for any (t, x) ∈ [0,+∞) × R, where
Θ ∶= maxθ∈[−r ,0] supx∈R φ(θ , x) and

M ∶=

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

max{g(b(wmax))/dm ,Θ} if (P′2) holds,
max{K ,Θ}, if (P2) and (P3) hold,
Θ if (P′3) hold.

We give two comparison lemmas.
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Lemma 2.4 Assume that (J), (K), (P1)–(P2) and (P′3) are satisûed. Letw(t, x) and
w(t, x) be such that M ≥ w(s, x) ≥ w(s, x) for all (s, x) ∈ [−r, 0] ×R and

∂w
∂t

≥ DmAw(t, x) − dmw + g(∫
R
k(x − y)b(w(t − r, y)) dy) ,

∂w
∂t

≤ DmAw(t, x) − dmw + g(∫
R
k(x − y)b(w(t − r, y)) dy) ,

for (t, x) ∈ [0,+∞) ×R. _en w(t, x) ≥ w(t, x) for (t, x) ∈ [0,∞) ×R. Moreover, if
w(θ , x) ≥ w(θ , x) for θ ∈ [−r, 0] with w(0, x) /≡ w(0, x), then there holds w(t, x) >
w(t, x) for all (t, x) ∈ (0,∞) ×R.

Proof Under (P2), F(φ) is a nondecreasing functional of φ. Note that the above
inequalities lead to the following:

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

w(t, ⋅ ) ≥ T(t)w(0, ⋅ ) + ∫
t
0 T(t − s)F(ws)( ⋅ ) ds, t > 0,

w(t, ⋅ ) ≤ T(t)w(0, ⋅ ) + ∫
t
0 T(t − s)F(ws)( ⋅ ) ds, t > 0,

w(θ , ⋅ ) ≥ w(θ , ⋅ ), θ ∈ [−r, 0].

Rewritew0(x) = w(θ , x),w0(θ) = w(θ , x) for (θ , x) ∈ [−r, 0]×R. _en from [9, Co-
rollary 5] we have that the solutions of (2.2) satisfy 0 ≤ w(t, x;w0) ≤ w(t, x;w0) for
(t, x) ∈ (0,∞) ×R. We have from (P′3) that

∂M
∂t

≥ DmAM − dmM + g(∫
R
k(x − y)b(M)dy) , (t, x) ∈ [0,+∞) ×R.

Again applying [9, Corollary 5 ] with

[v+(t, ⋅ ) = M , v−(t, ⋅ ) = w(t, ⋅ )] and [v+(t, ⋅ ) = w(t, ⋅ ), v−(t, ⋅ ) = 0],

respectively, we obtain that, for t ≥ 0,

w(t, ⋅ ) ≤ w(t, ⋅ ;w0) ≤ M , and 0 ≤ w(t, ⋅ ;w0) ≤ w(t, ⋅ ).
Combining the above three inequalities, we have w(t, x) ≤ w(t, x) for all (t, x) ∈

(0,∞) ×R.
Let v = w − w. _en we already know that v(t, x) ≥ 0 for all (t, x) ∈ (0,∞) ×R.

We have from themonotonicity of F and the positive property of G(x − y,Dm t) that
for t > 0,

(2.3) v(t, x) ≥ T(t)v(0, ⋅ ) = e−dm t
∫

+∞

−∞
G(x − y,Dm t)v(0, y) dy.

_erefore, it follows that v(t, x) > 0 for t > 0 if v(0, x) /≡ 0 on R.

Lemma 2.5 Assume that (J), (K) and (P1) hold, and there exists M > 0 such that
0 ≤ w−(t, x) ≤ w+(t, x) ≤ M for (t, x) ∈ [−r,+∞) × R such that for any function ρ
with 0 ≤ w−(t, x) ≤ ρ(t, x) ≤ w+(t, x) for (t, x) ∈ [−r,+∞) ×R, we have

(2.4) ∂w+(t, x)
∂t

≥ DmAw+
(t, x)− dmw+

(t, x)+ g(∫
R
k(x − y)b(ρ(t − r, y)) dy)

and

(2.5) ∂w−(t, x)
∂t

≤ DmAw−
(t, x)− dmw−

(t, x)+ g(∫
R
k(x − y)b(ρ(t − r, y)) dy)
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for (t, x) ∈ (0,∞) ×R. _en for any function ρ with

0 ≤ w−
(t, x) ≤ ρ(t, x) ≤ w+

(t, x) for (t, x) ∈ [−r, 0] ×R,

we have

0 ≤ w−
(t, x) ≤ w(t, x; ρ) ≤ w+

(t, x) for (t, x) ∈ [0,+∞) ×R,

wherew(t, x; ρ) is the solution of (1.1) with the initial value ρ ∈ C+, andw− andw+ are
called a pair of sub- and super-solutions of (1.1).

Proof For any ρ with w−(t, x) ≤ ρ(t, x) ≤ w+(t, x) for (t, x) ∈ [−r, 0] × R, let
v(t, x) ∶= w+(t, x)−w(t, x; ρ) for (t, x) ∈ [−r,+∞)×R. In (2.4), let ρ(t, x) = ρ(t, x)
for (t, x) ∈ [−r, 0] ×R. _en for (t, x) ∈ (0, r] ×R, we have

∂v(t, x)
∂t

≥ DmAv(t, x) − dmv(t, x)+

[ g(∫
R
k(x − y)b(ρ(t − r, y)) dy) − g(∫

R
k(x − y)b(w(t − r, y; ρ)) dy)] ,

which leads to ∂v(t ,x)
∂t ≥ DmAv(t, x)−dmv(t, x) for (t, x) ∈ (0, r]×R, and therefore,

v(t, x) ≥ T(t)v(0, x) ≥ 0 Ô⇒ w+
(t, x) ≥ w(t, x; ρ) for (t, x) ∈ (0, r] ×R.

Similarly, we obtain from (2.5) that w−(t, x) ≤ w(t, x; ρ) for (t, x) ∈ (0, r] ×R.
In (2.4), let ρ(t, x) = w(t, x; ρ) for (t, x) ∈ [0, r]×R. _en for (t, x) ∈ (r, 2r]×R,

we have
∂v(t, x)

∂t
≥ DmAv(t, x) − dmv(t, x)+

[ g(∫
R
k(x − y)b(w(t − r, y; ρ)) dy) − g(∫

R
k(x − y)b(w(t − r, y; ρ)) dy)] ,

which leads to w+(t, x) ≥ w(t, x; ρ) for (t, x) ∈ (r, 2r] × R. Similarly, we have
w(t, x; ρ) ≥ w−(t, x) for (t, x) ∈ (r, 2r] × R. By mathematical induction, we can
obtain w+(t, x) ≥ w(t, x; ρ) ≥ w−(t, x) for (t, x) ∈ (0,∞) ×R.

In what follows, we always assume that (J), (K) and (P1) hold.

3 Global Stability

In this section, we shall discuss the global asymptotic stability of the zero solution
and the positive equilibrium of (1.1). _emain technique is the comparison between
the solution of (1.1) and the solution of a delay diòerential equation without spacial
variable x. _e idea is motivated by the work ofWu,Weng, and Ruan [15].

_e following proposition is from [6].

Proposition 3.1 Necessary and suõcient conditions for every root of the equation
(λ + A)eλ + B = 0 to have negative real part are

A > −1, A+ B > 0, B < η sin η − Acos η,

where η is the root of η = −A tan η, 0 < η < π if A /= 0, and η = π
2 if A = 0.
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Consider a functional diòerential equation:

(3.1) du(t)
dt

= −dmu(t) + g(b(u(t − r))) , t > 0.

Lemma 3.2 _e following conclusions hold.
(i) Assume that (P′3) is satisûed. _en the zero solution of (3.1) is asymptotically

stable.
(ii) Assume that (P2)–(P3) are satisûed. _en the positive equilibrium u(t) ≡ K of

(3.1) is asymptotically stable.

Proof Under (P1),w = 0 is a solution of (3.1) and d
dw g(b(w))∣w=0 = g′(0)b′(0) ≥ 0.

_e eigen-equation at the zero solution is (λ + dm)eλr − g′(0)b′(0) = 0.
Assuming (P′3), we have dm > g′(0)b′(0). Let A ∶= dm , B ∶= −g′(0)b′(0). One

can verify that A > −1, A + B > 0 are satisûed. Moreover, since the solution of η =

−dm tan(η) satisûes η ∈ ( π
2 , π), we have cos η < 0 and thus

η sin η − Acos η = − dm

cos η
(sin2 η + cos2 η) = − dm

cos η
> −g′(0)b′(0).

By Proposition 3.1, every root of (λ + dm)eλr − g′(0)b′(0) = 0 has negative real part.
_erefore, we have conclusion (i).
Assuming (P2)–(P3), let є > 0 be an arbitrary constant. _en we have

g′(b(K))b′(K) =
d
du

g(b(u))∣u=K = lim
є→0

g(b(K + є)) − g(b(K))

є

< lim
є→0

dm(K + є) − dmK
є

= dm .

Note that K is the unique positive equilibrium of (3.1) and g′(b(K))b′(K) ≥ 0. _e
eigen-equation at u(t) ≡ K is (λ + dm)eλr − g′(b(K))b′(K) = 0. Let A ∶= dm , B ∶=
−g′(b(K))b′(K). Similar to the above argument,we know that conclusion (ii) holds.

Let ∥φ∥ ∶= maxθ∈[−r ,0] supx∈R φ(θ , x) and

C+δ ,M ∶= {φ ∈ C+ ∶ ∥φ∥ ≤ M and inf
x∈R

φ(0, x) ≥ δ}

for any given constants δ ≥ 0 and M > 0.
In this section, we shall assume that (J), (K), and (P1) hold without any extra

illustration.

3.1 Stability of Zero Solution

If there exists no positive equilibrium, the following theorem says that the trivial equi-
librium is globally stable regardless of themonotonicity of g(b( ⋅ )).

_eorem 3.3 Assume that (P′3) holds. _en for any M > 0,
lim
t→∞

∥w(t, ⋅ ;φ)∥ = 0 uniformly for φ ∈ C+0,M .

Furthermore, the zero solution of (1.1) is globally asymptotically stable.
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Proof First assume that δ > 0 and M > δ are arbitrary and φ ∈ C+δ ,M . From
Lemma 2.3 and Remark 2.2, we have δe−dm t < w(t, x;φ) ≤ M for any (t, x) ∈

[0,∞) × R. In view of condition (P1) and (P′3), g(b( ⋅ )) is either non-decreasing
or non-monotone on [0,∞).

If g(b( ⋅ )) is non-decreasing on [0,∞), by Lemma 2.4, we have

0 ≤ w(t, x;φ) ≤ u(t;M) for (t, x) ∈ [0,∞) ×R,

where u(t;M) is the unique solution of the following initial value problem:

(3.2)
⎧⎪⎪
⎨
⎪⎪⎩

du(t)
d t = −dmu(t) + g(b(u(t − r))), t > 0,

u(s) = M , s ∈ [−r, 0].

Since limt→∞ u(t;M) = 0 (by using the assumption (P′3) and the �uctuation lemma,
see the argument in [15, p. 69]), the conclusion limt→∞ ∥w(t, ⋅ ;φ)∥ = 0 is true and
uniform for φ ∈ C+δ ,M .
Assume that g(b( ⋅ )) is non-monotone on [0,∞). Let

(3.3) B+(u) ∶= max
v∈[0,u]

g(b(v)), u ∈ [0,∞).

It is easy to see that B+(0) = 0, B+(u) is non-decreasing on [0,∞), B+(u) ≥ g(b(u))
for any u ≥ 0, and B+(u) < dmu for any u > 0. Replace u and g(b( ⋅ )) in (3.2) with
u+ and B+( ⋅ ), respectively. _en we know that the corresponding solution u+(t;M)

satisûes limt→∞ u+(t;M) = 0. Let v(t) ∶= u+(t;M)−w(t, x;φ) for (t, x) ∈ [−r,∞)×

R. _en v(t) ≥ 0 for (t, x) ∈ [−r, 0]×R, and we can obtain on (t, x) ∈ [0, r]×R that

∂v(t, x)
∂t

= DmAv(t, x) − dmv(t, x) + B+(u+(t − r)) − g(b(u(t − r, x;φ)))

≥ DmAv(t, x) − dmv(t, x) + B+(u+(t − r)) − B+(u(t − r, x;φ))
≥ DmAv(t, x) − dmv(t, x),

which implies (2.3) on (t, x) ∈ [0, r] × R. Inductively, we have (2.3) on [0,∞) × R,
which leads to u+(t;M) ≥ w(t, x;φ) for (t, x) ∈ [0,∞) ×R. _at is,

lim
t→∞

∥w(t, ⋅ ;φ)∥ = 0

for φ ∈ C+δ ,M . In fact, since limt→∞ u+(t;M) = 0 is independent on x ∈ R and φ ∈

C+δ ,M , this convergence of w(t, x;φ) is uniform for x ∈ R and φ ∈ C+δ ,M .
Note that δ > 0 is arbitrary. Letting δ → 0, we, in fact, obtain that

lim
t→∞

∥w(t, ⋅ ;φ)∥ = 0 uniformly for φ ∈ C+0,M .

In view of Lemma 3.2 (i), we obtain the asymptotic stability of the zero solution of
(1.1). Combining with the global attractivity, we have the global asymptotic stability
of the zero solution for (1.1).

3.2 Stability of Positive Equilibrium

If there exists a positive equilibrium K, we shall discuss its stability in themonotone
case (_eorem 3.4) and nonmonotone cases (_eorem 3.5), respectively.
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_eorem 3.4 Assume that (P2)–(P3) hold. _en for any δ > 0 andM > 0,
lim
t→∞

∥w(t, ⋅;φ) − K∥ = 0 uniformly for φ ∈ C+δ ,M .

Furthermore, the positive equilibrium w ≡ K of (1.1) is globally asymptotically stable.

Proof If (P3) holds, then from Lemma 2.3 and Remark 2.2, we have

δe−dm t
≤ w(t, x;φ) ≤ K = max{K ,M}

for any (t, x) ∈ [0,+∞) × R and φ ∈ C+δ ,M . Let w(t) and w(t) solve the following
problems:

⎧⎪⎪
⎨
⎪⎪⎩

dw(t)
d t = −dmw(t) + g(b(w(t − r))), t > r,

w(s) = K , s ∈ [0, r],
and

⎧⎪⎪
⎨
⎪⎪⎩

dw(t)
d t = −dmw(t) + g(b(w(t − r))), t > r,

w(s) = δe−dm r , s ∈ [0, r],
respectively. It then follows from Lemma 2.4 that w(t) ≤ w(t, x;φ) ≤ w(t) for
(t, x) ∈ [r,∞)×R. Moreover, using Kuang [7,_eorem 9.1], we have limt→∞w(t) =
limt→∞w(t) = K , and hence the ûrst assertion follows.

In view of Lemma 3.2 (ii), we obtain the asymptotic stability of the positive equi-
libriumof (1.1). Combiningwith the global attractivity,we have the global asymptotic
stability of the positive equilibrium for (1.1).

_eorem 3.5 Let θ ∶= 1
dm g(b(wmax)). Assume that (P′2) and (P3) are satisûed.

Furthermore, assume that one of the following conditions holds:
(i) K ≤ wmax;
(ii) K > wmax, 1

dm g(b(θ)) > wmax with one of the following:
(a) wg(b(w)) is strictly increasing on (0, θ],
(b)

1
dm

g(b(w))

⎧⎪⎪
⎨
⎪⎪⎩

< 2K −w , if w ∈ [wmax ,K),
≥ 2K −w , if w ∈ [K , 2K].

_en for any δ > 0 and M > 0, we have limt→∞ ∥w(t, ⋅;φ) − K∥ = 0 uniformly for
φ ∈ C+δ ,M .

Proof Let K ∶= max{M , θ}. From Lemma 2.3 and Remark 2.2, we have δe−dm t ≤

w(t, x;φ) ≤ K for any (t, x) ∈ [0,+∞) ×R and φ ∈ C+δ ,M . Let W1(t) be the solution
of

(3.4)
⎧⎪⎪
⎨
⎪⎪⎩

dW1(t)
d t = −dmW1(t) + g(b(wmax)), t > r,

W1(s) = K , s ∈ [0, r].

in view of Lemma 2.5, for any φ ∈ C+δ ,M , the solution w(t, x;φ) of (1.1) satisûes 0 ≤

w(t, x;φ) ≤W1(t) for (t, x) ∈ [0,∞) ×R. _is leads to

lim sup
t→∞

sup
x∈R

w(t, x;φ) ≤ lim
t→∞

W1(t) = θ .
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(i) If K < wmax, then by (P3), we have K = 1
dm g(b(K)) ≤ θ < wmax. _ere-

fore, there exists T > 0 such that w(t, x;φ) ≤ W1(t) < wmax for t ≥ T . Noting
that g(b( ⋅ )) is non-decreasing on [0,wmax], similar to _eorem 3.4, one can show
limt→∞ ∣ w(t, ⋅ ;φ) − K∥ = 0 uniformly for φ ∈ C+δ ,M .

If K = wmax, we deûne B+(w) as in (3.3). Let u+(t;M) be the solution of
⎧⎪⎪
⎨
⎪⎪⎩

du(t)
d t = −dmu(t) + B+(u(t − r)), t > 0,

u(s) = M , s ∈ [−r, 0].

_en in view of [7, _eorem 9.1], we have limt→∞ u+(t;M) = K. Furthermore, for
any given є ∈ (0, 1), there exists T1 > 0 such that w(t, x;φ) ≤ u+(t;M) ≤ K + є for
t ≥ T1. Deûne B−є (w) ∶= min{g(b(w)), g(b(K + є))} for w ∈ [0,K + є]. Note that
B−є (w) is non-decreasing on [0,K + є] and B−є (w) = dmw admits a unique solution
Kє with 0 < K − Kє → 0 as є → 0. Let u−(t) be the solution of

⎧⎪⎪
⎨
⎪⎪⎩

du(t)
d t = −dmu(t) + B−є (u(t − r)), t > T1 + r,

u(s) = δe−dm(T1+r) , s ∈ [T1 , T1 + r].

_en similarly, we have w(t, x;φ) ≥ u−(t) for t ≥ T1 and limt→∞ u−(t) = Kє . Sum-
marizing the above argument, we obtain u−(t) ≤ w(t, x;φ) ≤ u+(t;M) for t ≥ T1.
_erefore, the conclusion follows.

(ii) Assume K > wmax and 1
dm g(b(θ)) > wmax. Let

B(w) ∶= min{g(b(w)), g(b(θ))}, θ satisûes θ =
1
dm
B(θ).

_en B(w) is non-decreasing on [0, θ] and decreasing on [θ ,∞). Furthermore,

(3.5) wmax < θ =
1
dm

g(b(θ)) < 1
dm

g(b(K)) = K < θ .

Comparing W1(t) (see (3.4)), w(t, x;φ) (see (1.1)) with solution V1(t) of the fol-
lowing problem

(3.6)
⎧⎪⎪
⎨
⎪⎪⎩

dV1(t)
d t = −dmV1(t) + B(V1(t − r)), t > r,

V1(s) = δe−dm r , s ∈ [0, r],

we obtain 0 < V1(t) ≤ w(t, x;φ) ≤W1(t) for (t, x) ∈ (r,∞)×R, φ ∈ C+δ ,M . Moreover,
in view of the property of B(w) and the conclusion of (i), we have limt→∞ V1(t) = θ .
Note that limt→∞W1(t) = θ . _erefore, this together with (3.5) leads to the existence
of T2 > 0 such that

umax < θ ∶= 1
2
[umax + θ] < V1(t) < K , K <W1(t) <

3
2
θ for t ≥ T2 .

We now construct a sequence of pairs of sub- and super-solutions of (1.1):
⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

dVn(t)
d t = −dmVn(t) + g(b(Wn−1(t − r))), t > T2 + r,

dWn(t)
d t = −dmWn(t) + g(b(Vn−1(t − r))), t > T2 + r,

Vn(s) = θ , Wn(s) = K , s ∈ [T2 , T2 + r],
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where K = max{M , θ}. Since g(b( ⋅ )) is decreasing on (umax ,∞), one can show (see
also [14]) that

V1(t) ≤ ⋅ ⋅ ⋅ ≤ Vn−1(t) ≤ Vn(t) ≤ K ,
w(t, x;φ) ≤Wn(t) ≤Wn−1(t) ≤ ⋅ ⋅ ⋅ ≤W1(t)

for t > T2 + r.
Bymathematical induction, we know that limt→∞Wn(t) and limt→∞ Vn(t) exist.

Set W∗
n ∶= limt→∞Wn(t), V∗

n ∶= limt→∞ Vn(t). _en dmV∗
n = g((W∗

n−1)), dmW∗
n =

g(b(V∗
n−1)). Let V∗ ∶= limn→∞ V∗

n andW∗ ∶= limn→∞W∗
n . _en we have dmV∗ =

g(b(W∗)), dmW∗ = g(b(V∗)), and V∗ ≤ K ≤W∗ ≤ θ.
We could show that either (a) or (b) can lead to W∗ = K = V∗, but we omit the

details [15, p. 79].

In _eorem 3.5, for the case K > wmax, without other assumptions in (ii), we can
obtain the uniform persistence of system (1.1). Let K∗ ∶= θ + 1 and K∗ ∈ (0,K) with
B−(K∗) = dmK∗ and

B−(w) > dmw for w ∈ (0,K∗), B−(w) < dmw for w ∈ (K∗ ,∞),

where B−(w) is deûned by

B−(w) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

minu∈[w ,K∗] g(b(u)), w ∈ [0,K∗],
g(b(w)), w ∈ (K∗ ,∞).

It is obvious that B−(w) is non-deceasing on [0,K∗], and g(b(w)) ≥ B−(w) on
[0,∞).

_eorem 3.6 Assume that (P′2), (P3) and K > wmax are satisûed. _en for any
φ ∈ C+ with inf x∈R φ(0, x) > 0, we have

K∗ ≤ lim inf
t→∞

inf
x∈R

w(t, x;φ) ≤ lim sup
t→∞

sup
x∈R

w(t, x;φ) ≤ θ .

Proof For any given φ ∈ C+, let δ ∶= inf x∈R φ(0, x), M ∶= sup(s ,x)∈[−r ,0]×R φ(s, x),
and K ∶= max{M , θ}. From Lemma 2.3 and Remark 2.2, we have

δe−dm t
≤ w(t, x;φ) ≤ K for any (t, x) ∈ [0,+∞) ×R.

Let W1(t) be the solution of (3.4) and V1(t) be the solution of (3.6) with V1(s) =

min{K∗ , δe−dm r} on s ∈ [0, r]. _en the solution w(t, x;φ) of (1.1) satisûes V1(t) ≤
w(t, x;φ) ≤W1(t) for (t, x) ∈ [r,∞) ×R. _is leads to

lim sup
t→∞

sup
x∈R

w(t, x;φ) ≤ lim
t→∞

W1(t) = θ .

On the other hand, there exists T3 > 0 such that 0 < V1(t) ≤ θ + 1 for t ≥ T3.
Consider the solution v(t) of

⎧⎪⎪
⎨
⎪⎪⎩

dv(t)
d t = −dmv(t) + B−(v(t − r)), t > T3 + r,

v(s) = min{K∗ ,mins∈[T3 ,T3+r] V1(s)}, s ∈ [T3 , T3 + r].
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In view of the property of B−(w), we know limt→∞ v(t) = K∗. Furthermore, by
comparison, we obtain v(t) ≤ V1(t) ≤ w(t, x;φ) for t ≥ T3 + r. _erefore, K∗ ≤

lim inf t→∞ inf x∈Rw(t, x;φ).

4 Application and Discussions

Let u(t, a, x) be the density of individualswith age a at a point x and time t. Let r ≥ 0
be the length of the juvenile period. Let ε = exp{− ∫

r
0 d j(a)da}, α = ∫

r
0 D j(a)da,

and the density of mature (or adult) individuals at point x and time t be denoted by
w(t, x) = ∫

∞

r u(t, a, x)da. Based on the von Foerster type equation
⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

∂u
∂t

+
∂u
∂a

= D j(a)∫
R
J(x − y)[u(t, a, y) − u(t, a, x)]dy − d j(a)u

for a ∈ [0, r], t > 0, x ∈ R,
u(t, 0, x , y) = b(w(t, x , y)) for t ≥ −r, x ∈ R.

_en w(t, x) satisûes

(4.1) ∂w
∂t

= DmAw(t, x)− dmw + ε∫
R
G(x − y, α)b(w(t − r, y))dy, t > 0, x ∈ R.

Here b(w) and dmw are the birth and mortality rates of mature individuals, respec-
tively, d j(a) = d(a)(a ∈ [0, r]) denotes the per capita mortality rate of juveniles at
age a, D j(a)(a ∈ [0, r]) and constant Dm (a > r) are the diòusion coeõcients of
juveniles andmaturities, respectively (see [8] for model derivation).
Assume that J(x) satisûes (J)._en in view of [8, Lemma 3.1],G(x , α) satisûes (K).

It is obviously that we obtain (4.1) from (1.1) by taking g(z) = εz and k(x) = G(x , α),
and (1.2)–(1.4) are three special cases of (4.1) satisfying (J). By using εz to replace g(z)
in all assumptions (P1)–(P3) and (P′2)–(P′3), we can immediately obtain corollaries
for (4.1) from _eorems 3.3–3.6. We omit the details of the statements.

We want to mention a remark on model (1.4) with convection in�uence, where
k(x) in (1.4) is a parallel translation of kernel function

1
√

4πα
e−

x2
4α .

Our conclusion can be explained as follows: the convection has no eòect on the sta-
bility of the system. Furthermore, from our arguments and results in this article, we
also conclude that the delay r and the nonlocal diòusion have nothing to do with the
stability of (1.1).

_e other dynamical properties for equation (1.1) will be investigated in further
research.
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